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Abstract: SAW devices with a multi-layered piezoelectric substrate have excellent performance
due to advantages such as a high quality factor, Q, low loss insertion, large bandwidth, etc. Prior
to manufacturing, a comprehensive analysis and proper design are essential to evaluating the
device’s key performance indicators, including the Bode Q value, bandwidth, and transverse mode
suppression. This study explored the performance of SAW resonators employing a 42◦Y-X LiTaO3

(LT) thin-plate-based multi-layered piezoelectric substrate. The thicknesses for each layer of the
42◦Y-X LT/SiO2/poly-Si/Si substrate were optimized according to the index of phase velocity, Bode
Q value, and bandwidth. The effect of the device structure parameters on the dispersion curve and
slowness curve was studied, and a flat slowness curve was found to be favorable for transverse
mode suppression. In addition, the design of the dummy configuration was also optimized for
the suppression of spurious waves. Based on the optimized design, a one-port resonator on the
42◦Y-X LT/SiO2/poly-Si/Si substrate was fabricated. The simulation results and measurements are
presented and compared, which provides guidelines for the design of new types of SAW devices
configured with complex structures.

Keywords: SAW devices; comprehensive analysis; multi-layered structure; transverse mode suppression

1. Introduction

Surface acoustic wave (SAW) devices have been a key component in smart phones,
cars, base stations, etc., due to their small size, good performance, and MEMS production
process [1–3]. With the development of 5G communication technology, mobile communi-
cation has put forward a higher demand for the employed SAW filters, including a high
frequency, large bandwidth, low loss, and good temperature stability.

The performance of SAW devices is mainly determined by their piezoelectric sub-
strate. Traditional SAW devices, including the normal SAW structures and temperature-
compensated SAW (TC-SAW) structures, are mainly based on a bulk piezoelectric single
crystal [4,5]. Compared with those traditional ones, a piezoelectric thin film based on a
multi-layered structure [3,6] offers not only a higher frequency and larger coupling fac-
tor (K2) but also a higher Bode Q value [7] and a moderate temperature coefficient of
frequency (TCF). These excellent characteristics have attracted much attention for SAW
devices with multi-layered structures, which have been widely used in RF filters in the
consumer market [8–11].
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Although SAW devices with multi-layered structures have a distinct advantage, the
design of one with an optimized performance calls for intensive study. Prior to manu-
facturing, a comprehensive analysis and proper design are essential to evaluating its key
performance indicators, including the Bode Q value, bandwidth, and transverse mode
suppression. In a previous study, T. Takai et al. studied the K2 and TCF of SAWs on LiTaO3
(LT) thin-film-based multi-layered structures and successfully applied them to a high-
performance SAW filter [8,12]. Recently, researchers have concentrated on the suppression
of the transverse mode because it appears within the passband of the filter and thus affects
the ripple and passband loss. There are some solutions for this thorny issue, for example,
the use of a piston mode [13,14], apodization [15,16], and tilted IDT [9]. S. Inoue et al. [17]
also pointed out that an LT/quartz-layered SAW substrate with a flat slowness curve can
obtain good suppression of transverse modes. Those previous works suggest that LiTaO3
thin-film-based multi-layered structures are good candidate piezoelectric substrates for
high-performance SAW devices. Meanwhile, the employed materials and thicknesses of
the multi-layered substrate can modulate the flatness of the slowness curve, which makes
transverse mode suppression possible. However, there is a need for a comprehensive
analysis prior to manufacturing a desired SAW device.

Therefore, in this paper, a piezoelectric substrate with a 42◦Y-X LT/SiO2/poly-Si/Si
multi-layered structure is proposed. The analytical theory and finite element method were
employed to comprehensively analyze the SAW resonator based on the proposed layered
structure. First, we studied the constitutive relationship between the mechanical displace-
ment and electric field in the piezoelectric thin film, and then the internal relationship
between the slowness curve and dispersion characteristic of the SAWs between the propa-
gation and aperture directions was derived. Second, the device performance, including
the admittance characteristic, Bode Q value, and bandwidth, was calculated. The effect of
the piezoelectric thin film and electrode thickness on the performance of the SAWs on the
42◦Y–X LT/SiO2/poly-Si/Si substrate was studied, which can provide guidelines for the
comprehensive design of SAW devices. Next, the dispersion characteristic was analyzed
for the suppression of spurious transverse modes generated by the boundary effect of the
electrode aperture. Then, the appropriate structure configurations of the substrate and
electrode were obtained according to dispersion and slowness curves. Moreover, in order
to ensure the suppression of spurious waves, a dummy structure based on the optimized
design, a one-port resonator on the 42◦Y-X LT/SiO2/poly-Si/Si substrate, was fabricated.
The simulation results and measurements were compared.

2. Simulation Techniques

For piezoelectric devices, the constitutive relationship between the mechanical dis-
placement and electric field can be described through the multi-physical coupling in
Equations (1) and (2) [18,19]:

TI = cI JSJ − eI jEj (1)

Di = ei JSJ + εijEj (2)

where TI and SJ are stress and strain tensors, respectively; cI J and εij are the stiffness
constant and dielectric permittivity constants; ei J and eI j are both piezoelectric stress
constants; and Di and Ej are the electric displacement vector and electric field, respectively.

The relationship between the strain and mechanical displacement can be described as

SJ = ∇i Jui (3)

where

∇i J =


∂

∂x1
0 0 0 ∂

∂x3
∂

∂x2

0 ∂
∂x2

0 ∂
∂x3

0 ∂
∂x1

0 0 ∂
∂x3

∂
∂x2

∂
∂x1

0

 (4)
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As shown in Figure 1, x1 represents the direction of wave propagation, x2 represents
the direction of the aperture, and x3 represents the direction of the substrate thickness.
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Figure 1. The coordinate system of SAW propagation in a piezoelectric material.

According to Maxwell’s equations and the boundary conditions of SAW devices, the
relationships between the electric displacement, Di, electric field, Ej, electric potential, φj,
and charge density, ρs, are expressed as

D = εE (5)

E = −∇φ (6)

∇·D = ρs (7)

where the Nabla operator is ∇ =
[

∂
∂x1

∂
∂x2

∂
∂x3

]
. Equation (7) is applied to the interface

between the piezoelectric thin film and electrodes. Additionally, ρs = 0 is applied to the
piezoelectric thin film.

Assuming that there is no external force applied, the equilibrium equation in the
piezoelectric medium can be described in the tensor form:

∇i JcJK∇Klul +∇i JeJK∇φ = ρ
..
ui (8)

−∇iεim∇mφ +∇eiK∇Kjuj = 0 (9)

In this work, the thorough consideration of SAW devices consists of two aspects:
(1) The analysis of the substrate structure. We assume that the length of the aperture
along the x2 direction is infinite (∂/∂x2= 0) to research the regulator of the SAW device
structure and find the appropriate size according to the Bode Q values, the relative band-
width, etc. Therefore, the operator ∇i J and Nabla operator ∇ can be expressed as the
following equation:

∇i J =


∂

∂x1
0 0 0 ∂

∂x3
0

0 0 0 ∂
∂x3

0 ∂
∂x1

0 0 ∂
∂x3

0 ∂
∂x1

0

 (10)

∇ =
[

∂
∂x1

0 ∂
∂x3

]
(11)

In addition, many methods for spurious suppression are applied to improve the
properties of SAW devices, but these kinds of methods generally have different effects
on spurious suppression. (2) In the analysis of the spurious wave yield at the aperture
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boundary, it is assumed that the length of the substrate along the x3 direction is infinite
(∂/∂x3 = 0). The operator ∇i J and Nabla operator ∇ can be written as

∇i J =


∂

∂x1
0 0 0 0 ∂

∂x2

0 ∂
∂x2

0 0 0 ∂
∂x1

0 0 0 ∂
∂x2

∂
∂x1

0

 (12)

∇ =
[

∂
∂x1

∂
∂x2

0
]

(13)

Substituting Equations (10) and (11) into the equilibrium Equations (8) and (9), the
wave propagation characteristic along the aperture can be described using the follow-
ing equation:c11

∂2u1
∂x2

1
+ (c 61 + c16)

∂2u1
∂x1∂x2

+ c66
∂2u1
∂x2

2
+ (c 12 + c66)

∂2u2
∂x1∂x2

+ c16
∂2u2
∂x2

1
+ c62

∂2u2
∂x2

2
= ρ ∂2u1

∂t2

c61
∂2u1
∂x2

1
+ (c 21 + c66)

∂2u1
∂x1∂x2

+ c26
∂2u1
∂x2

2
+ (c 62 + c26)

∂2u2
∂x1∂x2

+ c66
∂2u2
∂x2

1
+ c22

∂2u2
∂x2

2
= ρ ∂2u1

∂t2

(14)

As the piezoelectric material is an orthotropic material such as LiNbO3 and LiTaO3,
Equation (14) can take a simplified form [20]: c11

∂2u1
∂x2

1
+ (c 12 + c66)

∂2u2
∂x1∂x2

+ c66
∂2u1
∂x2

2
= ρ ∂2u1

∂t2

C66
∂2u2
∂x2

1
+ (c 21 + c66)

∂2u1
∂x1∂x2

+ c22
∂2u2
∂x2

2
= ρ ∂2u2

∂t2

(15)

The SAW propagates in the x1x2 plane, and a coupling phenomenon occurs. The
equation of the particle displacement is described as

ui = Aiexp[j(ωt− k1x1 − k2x2)] (16)

Substituting Equation (16) into Equation (15), we obtain: c11
∂2u1
∂x2

1
+ (c 12 + c66)

∂2u2
∂x1∂x2

+ c66
∂2u1
∂x2

2
= −ρω2u1

C66
∂2u2
∂x2

1
+ (c 21 + c66)

∂2u1
∂x1∂x2

+ c22
∂2u2
∂x2

2
= −ρω2u2

(17)

According to Equation (16), the wave number domain is described as{
c11
(
−k2

1u1
)
+ c66

(
−k2

2u1
)
+ ρω2u1 + (c 12 + c66)(−k1k2u2) = 0

c66
(
−k2

1u2
)
+ c22

(
−k2

2u2
)
+ ρω2u2 + (c 21 + c66)(−k1k2u1) = 0

(18)

According to the solutions to Equations (17) and (18), the frequency dispensation and
wave number domain can be plotted and are applied to characterize the coupling of the
wave propagation along the x1x2 plane.

3. Results and Discussion
3.1. Analysis of Piezoelectric Thin-Film-Based Multi-Layered Structure

The high performance of SAWs on a piezoelectric thin-film-based multi-layered struc-
ture is due to the utilization of the advantages of various materials. The energy is confined
to the surface due to the combination of low-velocity films and a high-velocity substrate.
Here, we present a comprehensive analysis of a SAW resonator with a 42◦Y-X LT substrate.
As shown in Figure 2, it uses a SiO2 material as the temperature-compensated layer, a
polysilicon (poly-Si) material as the trapping layer, and Si as the support substrate.

Without a loss of generality, the surface acoustic wave is assumed to propagate in the x1
direction on a multi-layered structure. In order to simplify the solution while maintaining
a good enough accuracy, the full-scaled 3D finite element model (FEM) was decomposed
into a double-finger structure with one period interdigital transducer (IDT) [21–25]. In
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addition, a substrate with a perfect matching layer set to the bottom for absorbing the wave
propagated into the substrate was constructed. The continuity periodic boundary condition
was set on the side of the model to extend it in the X direction to infinity. Additionally,
it is seen that the geometric shape of the electrode is trapezoid because of the practical
processing. And the mesh size of the region below the electrode was smaller than the other
regions of the substrate due to the energy of the acoustic surface wave mainly focusing on
the surface of the piezoelectric thin film. The maximum element size of the electrode was
λ/6. The material constants used in the calculation are listed in Table 1.
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Table 1. Material constants used in the calculation.

Symbol LiTaO3 SiO2 Poly-Si Si

Elastic Constants (×1010 N/m2)

C11
C12
C13
C33
C44

23.29
46.89
80.23
27.53
93.89

7.85
1.61
1.61
7.85
3.12

- -

Piezoelectric Constants (C/m2)
e15
e31
e33

2.59
0.08
1.88

- - -

Dielectric Constants ε11/ε0ε33/ε0
40.9
43.3

3.75
3.75 4.5 11.7

Density (kg/m2) ρ 7450 2200 2320 2329

To attain excellent performance in this layer structure, the thicknesses of the different
layers were optimized through frequency domain simulations by the MUMPS solver
using the infinite periodic models shown in Figure 2. The changes in the frequency
characteristic with respect to the LiTaO3 thickness are shown in Figure 3. In this case, the
IDT period, λ, was 2.4 µm, the metallization ratio of the IDT was 0.5, the Al electrode
thickness was 170 nm, the SiO2 thickness was 500 nm, and the poly-Si thickness was
fixed to 1 µm. In the following calculation, the thickness of the bottom Si substrates was
set as 3λ, and the thickness of the PML was set as 2λ. Figure 3a presents a comparison
of the calculated admittance Y11 curves of the SAW resonators with increasing LiTaO3
thickness. It is obvious that the LiTaO3 thickness has a great influence on the frequency
characteristic, as the resonant frequency gradually decreased with the increase in the
LiTaO3 thickness. In SAW applications, spurious waves are not allowed to exist. Figure 3b
clearly shows the dependency of the phase velocity (Vp) on LiTaO3 thickness, with the
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phase velocity increasing with increasing LiTaO3 thickness. This is due to the LiTaO3
thickness-induced dispersion of the phase velocity for high-frequency SAWs, where high-
velocity acoustic waves are expected. Figure 3c shows the effect of the LiTaO3 thickness on
Bode Q values; the Bode Q values decrease with increasing LiTaO3 thickness. For the low
insertion of SAW devices, a special multi-substrate structure with high Bode Q is used. The
electromechanical coupling coefficient (K2) is illustrated in Figure 3d, where it can be seen
that the K2 value gradually decreased as the LiTaO3 thickness increased. For SAWs that
require a large bandwidth, a specific LiTaO3 thickness with a large bandwidth is suitable for
implementation. Based on the above simulation results, it can be seen that the maximum
Q value of I.H.P. SAW resonators reached 3400, which is three times higher than that of
the standard 42◦Y-X LT SAW resonator; in addition, the maximum K2 value of I.H.P. SAW
resonators exceeded 12%, which is a 20% wider bandwidth than that of normal SAWs [8,9].
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With the increase in the LiTaO3 thickness, the resonance frequency, phase velocity,
Bode Q value, and electromechanical coupling coefficient (K2) changed monotonously. This
is because the energy of the SH wave is mainly concentrated on the device’s surface. When
the piezoelectric thin film becomes thicker, its performance is similar to that of an SH wave
on a 42◦Y-X LT structure.

Furthermore, the effect of the temperature-compensated SiO2 layer on the compre-
hensive performance also deserves attention. In this case, the IDT period λ = 2.4 µm, the
metallization ratio of the IDT was 0.5, the Al electrode thickness was 170 nm, the LiTaO3
thickness was 600 nm, and the poly-Si thickness was fixed to 1 µm. Figure 4a illustrates the
calculated admittance Y11 curves as the SiO2 thickness increases. The resonance frequency
monotonously decreased with the increase in the SiO2 thickness. Figure 4b shows the phase
velocity vs. SiO2 thickness curve; it can be clearly seen that the phase velocity decreased
with increasing SiO2 thickness. Figure 4c shows the effect of the SiO2 thickness on the Bode
Q values. It can be seen that the Bode Q values exhibited a nonlinear increase as a whole as
the SiO2 thickness increased. Figure 4d illustrates the K2 vs. SiO2 thickness curve, where
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it is clear that the K2 value appears to decline in a non-linear manner with the increase in
SiO2 thickness. The K2 value reached its maximum at around 300 nm SiO2.
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In addition to the LiTaO3 and SiO2 thicknesses, the electrode thickness also affects
SAW performance due to mass loading, as shown in Figure 5. In this case, the IDT period
λ = 2.4 µm, the metallization ratio of the IDT was 0.5, the LiTaO3 thickness was 600 nm, the
SiO2 thickness was 500 nm, and the poly-Si thickness was 1 µm. Figure 5a illustrates how
the calculated admittance Y11 curve changes with increasing Al thickness. It can be clearly
seen that the mass loading of the Al electrode led to a monotonous decrease in the resonant
frequency as the Al thickness increased. Meanwhile, the wave modes in the piezoelectric
medium have different excitation efficiencies, and therefore a suitable Al thickness was
selected to suppress spurious waves within the passband range. The phase velocity, Bode
Q values, and K2 values showed similar curves to those with increasing SiO2 thickness, as
can be clearly seen in Figure 5b–d.

According to the above analysis, we found that the thickness of LiTaO3 has a significant
impact on the Bode Q and K2 values, while the thicknesses of SiO2 and Al mainly affect the
speed. In practical applications, a local finite element simulation cannot fully characterize
the performance of the model in the aperture direction. In order to maintain generality, we
used Al (170 nm)/42◦Y-X LT (600 nm)/SiO2 (500 nm)/ploy-Si/Si to build a 3D periodic
model with a gap length of 0.175λ, a dummy length of 0.5λ, a dummy width of 0.25λ, and
an aperture length of 15λ. The finite element mesh of the 3D periodic model is made of free
tetrahedral elements. In this analysis, a degree of freedom (DOF) of about 203,761 could
be obtained. As shown in Figure 6, the result exhibited multiple higher-order harmonics
between the resonance frequency and the anti-resonance frequency. Figure 7 shows the
displacement of each higher-order transverse mode (S1, S2, S3, S4, and S5) along the
aperture direction. The surface wave propagates back and forth many times in its resonant
cavity while undergoing total reflection at the busbars and reflectors, thus causing the SAW
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to propagate laterally. The lateral resonant energy exists as higher harmonics near the main
resonant frequency. These responses would cause a large amount of ripple in the passband
of the SAW filter, affecting the loss and flatness of the device.
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3.2. Analysis of Spurious Suppression

The occurrence of transverse modes is mainly due to aperture boundary effects,
which are associated with the variation in the slowness curve. In order to conduct a
rigorous and comprehensive analysis, the influence of LiTaO3, SiO2, and Al thickness
on the slowness curve shape was investigated for the transverse mode suppression on a
Al/42◦Y-X LT/SiO2/poly-Si/Si substrate. As shown in Figures 8–10, the x-axis represents
the normalized frequency and the slowness, Sx, of the horizontal propagation direction,
and the y-axis represents the wave number, ky, and Sy along the aperture propagation
direction. It can be seen that the dispersion and slowness curves show flat, convex, or
concave shapes, i.e., the thickness of each layer has different effects on the curvature of
the dispersion curve. When the LiTaO3 film thickness changed from 200 nm to 1200 nm,
the shape of the dispersion curve changed from convex to concave. This is attributed to
the increasing influence of the concave dispersion curve of the 42◦Y-X LT. This conclusion
is also consistent with the results in Figure 3. Nevertheless, the SiO2 thickness had a
weak effect on the curvature of the dispersion curve, mainly on the wave mode velocity,
manifested by a parallel shift of the slowness curve. Lastly, the Al thickness had a strong
effect on the curvature of the dispersion curve. For the flat curve, the main wave mode
formed a standing wave in the IDT region, with the direction of energy propagation only
along the horizontal direction. A convex or concave curve means that the energy is a
propagating component of the wave in the aperture direction. Therefore, a flat dispersion
curve and slowness at a specific thickness were taken into consideration.
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Corresponding to the flat slowness curves in Figures 8 and 10, the calculated fre-
quency responses of the Al (100 nm)/42◦Y-X LT (600 nm)/SiO2/poly-Si/Si and Al electrode
(170 nm)/42◦Y-X LT (800 nm)/SiO2/poly-Si/Si are shown in Figure 11. The poly-Si thick-
ness was 1 µm. The calculated results show that the effects on the suppression of transverse
modes of these two structures are reasonable. Although the lateral high-order wave existed
near the main resonant frequency, its acoustic energy was still weak.
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During fabrication, there are manufacturing errors in the electrode and film size of
practical SAW devices. For example, electrodes are usually trapezoid in shape due to the
actual process. These errors probably lead to a change in the flat slowness curve. In order
to ensure good production yield and performance, the dummy structure for assisting in
improving SAW performance was also described, as shown in Figure 12, with a LiTaO3
thickness of 600 nm, a SiO2 thickness of 500 nm, and an Al electrode thickness of 170 nm.
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Figure 12. Electrode configuration of resonator.

Figure 13a illustrates the effect of the dummy width (ranging from 0.5p to 1.0p
(p = 0.5λ)) on the suppression of transverse wave modes. It can be seen clearly that
configuring the dummy width and length is an efficient way to suppress the transverse
wave modes, especially transverse modes S3 and S4. When the metallization ratio of the
dummy changed from 0.5p to 1.0p, the amplitude of the transverse modes first decreased
and then increased (Figure 13a). The optimal suppression of the transverse modes can
be achieved at a = 0.7p. Figure 13b shows the effect of the dummy length, b, (ranging
from 0.5p to 1.3p) on the suppression of the transverse wave modes. It is obvious that the
dummy length only had a marked impact on the S4 mode, which showed a decreasing
trend as the dummy length monotonically increased.
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3.3. Experimental Verification

A SAW resonator on a multi-layered Al/42◦Y-X LT/SiO2/poly-Si/Si structure was
fabricated, with an Al electrode thickness of 100 nm, a LiTaO3 thickness of 600 nm, a SiO2
thickness of 500 nm, and a poly-Si thickness of 1000 nm. The IDTs consisted of 151 fingers
and 20 fingers of reflectors on both sides. The gap length was 0.35p, the aperture length
was 15λ, the dummy width was 0.5p (which is equal to the IDT width), and the dummy
length was 1.0p. Figure 14 shows the measured (red lines) and calculated (blue lines)
admittance Y11 curves of the SAW devices. The simulated results are in agreement with
the experiment results for the fundamental wave mode. Notably, there was also a weak
transverse high-order wave near the main resonant frequency.
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As mentioned above, the unmanageable manufacturing errors probably accidentally
yield spurious waves. In order to ensure a good production performance, the dummy
structure to improve the SAW performance was also taken into consideration. Thus, a
one-port resonator with a dummy width of 0.7p and a dummy length of 1.2p was fabricated.
The other parameters remained the same. As shown in Figure 15, the black line shows
the frequency response of the re-designed dummy structure, while the red line shows
the original dummy structure (a dummy width of 0.5p and a dummy length of 1.0p).
The transverse modes near the resonant frequency of the re-designed structure almost
completely disappeared.
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4. Conclusions

In this paper, SAW resonators on an Al/42◦Y-X LT/SiO2/poly-Si/Si-layered structure
were proposed and analyzed. A comprehensive analysis including the Vp, K2, Bode Q
value, and transverse wave modes was performed on the proposed SAW resonator full-
scaled 3D finite element model. Meanwhile, the dispersion and slowness curves were
calculated, which are required to determine if there is good energy confinement and sup-
pression of transverse modes. In addition, the effects of dummy electrodes on transverse
waves were discussed. By optimizing its device structure parameters and configuration,
an SAW resonator with improved performance and transverse mode suppression was
achieved. Furthermore, one-port resonators were fabricated on the optimized Al/42◦Y-X
LT/SiO2/poly-Si/Si-layered structure, and the experimental results were basically consis-
tent with the theoretical calculations. These results give an insight into the general design
process for layered SAW devices, which provides guidelines for the design of desired SAW
devices with improved performance.
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