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Abstract: Colloidal systems and their control play an essential role in daily human activities, but
several drawbacks lead to an avoidance of their extensive application in some more productive
areas. Some roadblocks are a lack of knowledge regarding how to influence and address colloidal
forces, as well as a lack of practical devices to understand these systems. This review focuses
on applying dynamic light scattering (DLS) as a powerful tool for monitoring and characterizing
nanoparticle aggregation dynamics. We started by outlining the core ideas behind DLS and how it
may be used to examine colloidal particle size distribution and aggregation dynamics; then, in the
last section, we included the options to control aggregation in the chemically processed toner. In
addition, we pinpointed knowledge gaps and difficulties that obstruct the use of DLS in real-world
situations. Although widely used, DLS has limits when dealing with complicated systems, including
combinations of nanoparticles, high concentrations, and non-spherical particles. We discussed
these issues and offered possible solutions and the incorporation of supplementary characterization
approaches. Finally, we emphasized how critical it is to close the gap between fundamental studies
of nanoparticle aggregation and their translation into real-world applications, recognizing challenges
in colloidal science.
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1. Introduction

A colloidal system is a mixture of microparticles in a fluid medium that could be gas,
water, or air. The first colloidal system dates back to 1774 when Juncher and Macquer mixed
“extremely finely divided gold in a fluid” [1]. Graham, in 1861, marked the beginning of
the systematic research on colloidal systems, introducing the concept of colloids, indicating
the distinction between the solutions that passed through a membrane and those with no
diffusion through a membrane. Currently, colloids are considered the ones that diffuse
through the membrane for particles in the size range of 1 to 1000 nanometers. In 1827,
Robert Brown, a Scottish botanist, detected the irregular motion of the colloidal-sized
particles of pollen grain in water, now known as Brownian motion, later identified with
thermal movement by Jean Perrin in 1910 [1]. Colloids are microscopic particles of various
substances dispersed throughout a continuous medium of metals, polymers, and biological
materials. Colloids contain a wide variety of particles with different sizes, shapes, and
purposes, including artificial nanoparticles and biological components [2].

In contemporary times, colloids have extensive applications in everyday life, industry,
and new product development that continue to grow at an unprecedented rate. Colloids
have various applications, accounting for 70% of all industrial processes [3–5]. We can find
colloids in food products such as dairy products, or some during food preparation [6–9].
They are also found in the manufacturing process of pigments, as a thickening agent in
lubricants, lotions, toothpaste, and coatings [10], and other applications. Some pharmaceu-
ticals are colloids [11], which allow them to be easily absorbed by the human body, making
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them more efficacious [12–14]. The development and knowledge of colloidal science faces
a considerable challenge regarding controlling and influencing nanoparticles’ agglomer-
ation forces in a suspension system. One exciting application using DLS involves sizing
nanomaterials in situ for metal oxide nanoparticles (MONs) [15]. A great variety of systems
have a propensity for the particles to aggregate or cluster, which may substantially impact
the system’s characteristics and behavior [16–18]. Therefore, understanding and control-
ling aggregation processes in colloidal systems is essential for commercial and scientific
purposes [19–21].

From a great variety of research to handle the particle’s aggregation forces, some have
a significant [22–36], electrostatic interactions [24,27,29,37,38], solvent conditions [39,40],
particle size and shape [41,42] critical influence: surface chemistry, and external fields such
as electric or magnetic fields [43,44]. The chemical composition of the particle surface can
strongly influence aggregation behavior [45]. For example, particles with hydrophobic
surfaces aggregate more readily than those with hydrophilic surfaces [46]. Particles with
charged surfaces can either repel or attract each other, depending on the type and magni-
tude of the charges. Controlling the particles’ surface charge can be an effective way to
manipulate their aggregation behavior [47]. The solvent environment can have a significant
impact on particle aggregation [48,49]. For example, adding salt to a colloidal solution can
screen electrostatic repulsion, increasing the cluster [50,51]. The size and shape of particles
can also affect their aggregation behavior [47]. For example, elongated particles may align
in specific orientations, leading to ordered aggregates [52]. Applying external fields, such
as electric or magnetic fields, can also influence particle aggregation [53]. These fields can
induce particle alignment or motion, leading to ordered aggregates.

Various experimental and theoretical techniques exist to study and control aggrega-
tion processes in colloidal systems. For example, small-angle X-ray scattering (SAXS) [54]
and DLS [55–58] are commonly used to characterize particle size and aggregation be-
havior. Computer simulations, such as Monte Carlo [59–62] and molecular dynamics
simulations [63–67], can also provide insight into the fundamental mechanisms of parti-
cle aggregation. SAXS has some restrictions for use in a practical environment, such as
complex data analysis requiring complicated mathematical calculations to extract infor-
mation [54,68–70]. Computer simulation using Monte Carlo modeling involves significant
computational resources, and model validation can be challenging, as it does not capture
all aspects of real-world systems [56,71]. On the other hand, DLS is easier, faster, and
well-suited to studying diluted systems and is, therefore, more accessible in the manu-
facturing industry or research labs than the other techniques [56]. Each colloidal system
has specific parameters depending on its components, such as raw material properties
(chemical composition), mixing speed and heat control method, temperature, particle size
and shape, and the components’ heterogeneity.

Because a colloidal system involves many variables, it can be challenging to control
aggregation processes. Brownian motion randomly affects colloidal particles in a fluid due
to collisions with solvent molecules and other particles. This irregular kinetic movement
can lead to the impact and subsequent aggregation of particles, making it not easy to
control cluster sizes. Electrostatic interactions are another critical force in colloidal particles,
which can lead to attractive forces between particles and promote aggregation. These
interactions are difficult to control, especially in complex systems where the electrostatic
forces are affected by pH, salt concentration, particle shape, particle size, mixing speed,
mixing interactions, and whether it is a homogeneous or heterogeneous system (different
components), among other factors. Colloidal particles also interact through Van der Waals
forces. These forces are attractive at short distances and can promote aggregation, but
they rapidly decrease as the particles are separated, making it hard to control aggregation.
Colloidal systems can be heterogeneous, with particles of different sizes, shapes, and
surface chemistry. This heterogeneity can lead to complex aggregation behavior, making it
difficult to control the process.
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Due to the rising usage and applications of colloids in many industries, better methods
are required to manage the forces in a colloidal agglomeration system. Understanding how
all the agglomeration forces interact in a colloidal system is critical. However, developing a
practical method or technology to help achieve this target is far from daily life’s applicable
terms. The current review aims to find a workable real-time approach to monitoring a
colloidal system’s electrical conductivity or ionic strength. Besides the general background
on the other control agglomeration techniques, the focus is the application of DLS to control
the pace of the colloidal aggregation at a specific particle size target and narrow particle
size distribution.

We developed a search strategy for this literature review to identify the relevant
literature. This search strategy was tailored to three databases: Scopus, ScienceDirect, and
MinerQuest, and the search terms used were the following: “controlled agglomeration”
and “dynamic light scattering”. All searches spanned from the databases’ inception from
2018 to 2023, including journal articles, review papers, and research reports published in
English only.

The selection criteria were based on the PRISMA statement [72]. The search mainly
mapped the existing literature on “controlled agglomeration” and “dynamic light scat-
tering” in chemical engineering, materials science, environmental science, and chemistry.
The search then narrowed to the subject areas of colloidal science. The primary focus of
this literature review was on articles after 2018, with just a few exceptions, including a
deep-diving review of the 14 latest research articles. Figures 1 and 2 summarize the main
countries and areas related to this article.
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Figure 2. This figure depicts the breakdown of relevant articles published between 2018 and 2023
concerning controlled agglomeration, categorized by their respective subject areas. As shown,
the field of Chemistry dominates the distribution with the highest number of articles published,
followed by Physics and Astronomy. This suggests a significant focus on the application of controlled
agglomeration within the realm of chemical research.

2. Dynamic Light Scattering: Particle Size, Zeta Potential, and Molecular Weight

Scattered light from suspended particles in a colloidal suspension gives information
on the sample’s physical properties (Figure 3). These suspended particles in the solution
have continuous movement due to Brownian motion; if an electrical potential is applied,
the particles achieve a specific velocity. Radio frequency used in a radio detection and
ranging (RADAR) system was developed in World War II [11]. The same principle was
applied to develop DLS, applying the Doppler effect to identify the position and velocity of
particles. DLS uses the light of laser Doppler velocimetry (LDV) to measure a particle’s
velocity. RADAR analyzes the Doppler shift in radio waves reflected from moving objects
to determine an object’s velocity, whereas scattered laser light experiences a Doppler shift
in frequency.
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Figure 3. DLS principle of operation: laser light hits particles in suspension, and a high-time-
resolution detector measures the intensity of the scattered light at a specific angle θ; scattered light
intensity is due to particles’ Brownian motion fluctuating over time. Reproduced with permission
from reference [73].

Due to the random mobility of the liquid-borne particles, their intensity changes over
time when they scatter light. The size of the particles in a sample, ranging from a few
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nanometers to several microns in diameter, can be verified using DLS by examining these
variations. On the other hand, zeta potential measures the particles’ stability in suspension
by quantifying the particle’s electrical charge. Particles with high zeta potential reject each
other and stay in suspension, while those with low zeta potential tend to agglomerate or
flocculate. Combining those three parameters causes them to complement each other for
better dispersion or particle-in-solution characterization.

2.1. Particle Size Theory

The essential operation of DLS to measure particle size is based on the Brownian
motion of particles in suspension. The random speed motion of particles in a liquid
depends on the particle’s size. Small particles move quickly, and large particles move
slowly. DLS, also known as photon correlation spectroscopy (PCS), relates the Brownian
motion to particle size by using a laser to illuminate the particles and analyze the intensity
variations in the scattered light. The Stokes–Einstein equation describes the connection
between a particle’s size and the speed it experiences because of Brownian motion [74].

Figure 4 depicts the scattered light beams as the laser rays hit the particles. Dispersed
nanoparticles (NPs) scatter incident light according to their radii to the sixth power. Particles
with a wavelength <l/10th of the incident light in size produce elastic scattering (scattered
light with the same energy as the incident beam), known as Rayleigh scattering. When
a particle size >l/10 creates inelastic scattering or Mie scattering (scattered light with
different energy from the incident beam) [75], particles are constantly in motion, causing
the destructive and constructive phase addition of the scattered light appearing to fluctuate
in intensity. DLS measures the rate of intensity fluctuation and then uses this to calculate
the size of the particles. DLS has installed a digital correlator that measures the degree of
similarity between two signals over a specific time. The time for the correlation to decline
to zero in a typical speckle pattern is 1 to 10 milliseconds. Large particles move slowly, and
then the speckle intensity fluctuates gradually. While small particles move quickly, their
speckle intensity fluctuates quickly. DLS uses the correlation function to calculate the size
distribution. DLS software uses algorithms to obtain the decay rates for several size classes
to produce a size distribution. One of the typical graphs is the distribution graph, where
the x-axis shows the size class distribution.
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(Rayleigh scattering). Particle size >1/10th of the incident wavelength scatter light is angle dependent
(Mie scattering). Reproduced with permission from reference [76].

The size intensity distribution generated by DLS is converted to volume distribution
using Mie theory. Volume distribution can be converted to a number distribution. However,
the intensity distribution is the primary measurement for obtaining the other measures,
based on the intensity of scattering of a particle, which is proportional to the sixth power of
its diameter, from Rayleigh’s approximation.
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2.2. Molecular Weight Theory

Dynamic light scattering used to measure the size of particles or molecules in a solution
is related to hydrodynamic radius and molecular weight. DLS requires combining other
techniques to give an accurate molecular weight determination. The techniques, such as
size exclusion chromatography (SEC) and multi-angle light scattering (MALS), can give a
more reliable and precise molecular weight [77]. Moreover, DLS requires known molecular
weight calibration standards to estimate molecular weight.

Static light scattering (SLS) and DLS can be combined in specific ways to estimate
the molecular weight of macromolecules in a solution, including polymers or proteins.
Multi-angle light scattering (MALS) or static light scattering paired with DLS are used
to describe this combination technique [78]. The particles in a sample are lit by a light
source, such as a laser, and the particles scatter the light in all directions, like dynamic light
scattering, which is used to determine particle size. However, static light scattering uses
the time-averaged intensity of scattered light rather than the time-dependent oscillations in
the scattering intensity.

For various sample concentrations, the intensity of light scattered over time—roughly
10 to 30 s—is accumulated. “Static Light Scattering” refers to removing the signal’s intrinsic
oscillations caused by this time averaging. For several sample concentrations, the natural
scattered light fluctuations over a period are averaged, eliminating its natural oscillations
known as SLS. The laser beam illuminates the sample, measuring the time-averaged
intensity of the scattered light. From here, it determines the molecular weight and the
second virial coefficient (A2). A2 describes the interaction’s strength between the particles
and the solvent.

A2 > 0, the particle’s high affinity to the solvent.
A2 < 0, the particle’s low affinity to the solvent tends to aggregate.
A2 = 0, the strength of particle–solvent interactions is equal to the strength of molecule–

molecule interactions.
In static light scattering, DLS applies the Rayleigh equation that describes the scattered

light intensity from a particle in a solution at different concentrations, as described in
Equation (1).

K.C.
RΘ

=

(
1

MW
+ 2A2C

)
P(Θ) (1)

RΘ = Rayleigh ratio—the ratio of scattered light to incident light of the sample
MW = Sample molecular weight
A2 = Second virial coefficient
C = Concentration
P(Θ) = Scattering angle
K = Optical constant, calculated in Equation (2):

K =
4π2

λ4
0NA

×
(

n0
dn
dc

)2
(2)

NA = Avogadro constant
λ0 = Laser wavelength
n0 = Solvent refractive index
dn
dc = Differential refractive index as a function of the change in concentration. If not

available in the literature, it can be measured using a differential refractometer.
The molecular weight is measured by comparing a well-defined pure ‘standard’ scat-

tering intensity with a known Rayleigh ratio to the analyte.
The accepted method for determining molecular weight is to measure the analyte’s

scattering intensity compared to a well-defined ‘standard’ pure liquid (e.g., toluene) with a
known Rayleigh ratio.

The scattered light intensity produced by a particle is proportional to the product of
the weight-average molecular weight and the concentration of the particle.
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The appropriate molecular measurement weight range for one DLS is from a few
hundred g/mol to 500,000 for linear polymers and over 20,000,000 for proteins and near-
spherical polymers.

DLS evaluates the intensity of scattered light of different sample concentrations at a
single angle; this value is contrasted with the scattering caused by a standard (i.e., toluene).

2.3. Zeta Potential Theory

Zeta potential is an excellent way to evaluate the electrostatic stability of suspensions
by measuring the particle’s charge at the shared or slipping plane (Figure 5).
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Zeta potential is the electrical potential developed at the solid–liquid interface [40,75–
77,79–82] and depends on several factors [83]. Some factors depend on solvent parameters,
such as pH, conductivity, temperature, presence, type, and concentration of ions. These
parameters control particle mobility, including agglomeration, dispersion, coalescence,
coagulation, and separation [76]. pH is one of the most critical elements in a solution [84,85]
where the isoelectric point (IEP) is affected depending on the concentration of H+ and
OH− ions (Figure 6). Differences in the IEP in the same material indicate stability issues
where the colloidal system is less stable. The electric double layer’s (EDL) thickness
depends on the ion concentration and valency; a higher concentration compresses the
double layer. Increased ionic concentration boosts conductivity but can decrease particle
mobility; therefore, special care should be taken when choosing suspension parameters.

DLS can deduce zeta potential in suspension particles by measuring charged particles’
electrophoretic mobility. DLS uses laser Doppler velocimetry (LDV) to measure the parti-
cle’s velocity. LDV defines the particle’s velocity with zeta potential, first evaluating the
electrophoretic mobility (µe) (Equation (3)):

µe = V/E (3)

V = particle velocity (µm/s);
E = electric field strength (Volt/cm).
From the previous equation, replacing µe in Henry’s equation (Equation (4)):
εr = relative permitivity/(dielectric constant );
ε0 = permitivity of vacuum;
f (Ka) = Henry’s function;

= zeta potential;
η = viscosity.
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Zeta potential can be calculated using the following equation:

µe =2εr·ε0 f (Ka)/3η (4)

εr = relative permitivity/(dielectric constant);
ε0 = permitivity of vacuum;
f (Ka) = Henry’s function;
= zeta potential;

η = viscosity.
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If the electric double layer (EDL) is much smaller than the particle radius due to
larger particles < 1 µm in high-salt-concentration aqueous solutions of (10−2 M), f (Ka) is
equal to 1.5, modifying Henry’s equation to the Helmholtz–Smoluchowski (HS) equation
(Equation (5)).

µe = εr·(ε0 )/η (5)

When the thickness of the EDL is much larger than the particle radius due to smaller
particles (≤100 nm) in low salt concentrations (10−5 M), f (Ka) is equal to 1, and Henry’s
equation is modified as per the Huckel equation (Equation (6)).

µe =2εr·
εrε0

3η
(6)

It is always recommended to report the zeta potential value and its current pH. It
is a way of indicating the expected predominant particle charge; a low pH means the
particle’s positive charge, or vice versa. Zeta potential +/− 30 mV is generally accepted as
the general dividing line between stable and unstable suspensions. A value closer to zero
is less stable. Higher values of +/− 30 mV indicate stable dispersions. However, Kamble
et al. [76] describe good stability (Table 1) for suspensions with zeta potential between
+/− 40 and +/− 60.

Table 1. Suspension stability vs. zeta potential. Reproduced with permission from reference [76].

Assessment of Stability Zeta Potential (mV)

Flocculation of coagulation 0 to +/−5
Incipient instability +/−10 to +/−30
Moderate stability +/−30 to +/−40

Good stability +/−40 to +/−60
Excellent stability Greater than +/−60
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An important concept for evaluating the stability of dispersions is the isoelectric
point, the pH point where the colloidal system is least stable. Some other significant
effects under electrical fields are the electrokinetic effects. These effects depend on the
particle’s induced motion: electrophoresis, electroosmosis, streaming, and sedimentation
potential. Electrophoresis is the particle’s velocity while applying to an electric field.
Significant factors in this measurement are the electric field’s strength or voltage gradient,
the dielectric constant, the viscosity of the medium, and zeta potential.

It is important to reiterate that, for the most common Henry’s function in aqueous
media with a moderate electrolyte concentration (i.e., particles > 0.2 microns and 10−3

molar salt), the Smoluchowski approximation is 1.5. In systems with small particles in
low-dielectric-constant media, Henry’s function becomes 1.0.

3. DLS and Its Applications

DLS is a widely utilized technique in many scientific and industrial sectors where the
distribution of particle size and behavior of particles in solutions is crucial. With the recent
appearance of well-known lipid nanoparticle (LNP)-based products, such as the SARS-CoV-
2 vaccines from Pfizer, Inc.-BioNTech (BNT162b2), and Moderna, Inc. (mRNA-1273), its
application to nanoparticles in medicine is becoming more and more significant [11,86]. DLS
is crucial for the characterization and quality assurance of vaccines and treatments based
on nanoparticles. This article describes some fields where DLS has extensive applications.
Having the capacity to measure particle size and distribution, besides measuring zeta
potential and some other colloidal properties, such as molecular weight, makes DLS a
practical device for various applications.

3.1. Pharmaceutical Industry and Human Health

In the pharmaceutical industry, DLS has applications for formulating the develop-
ment of new medicaments, nanoparticle aggregation research, and protein characteriza-
tion [13,14,86]. For instance, DLS helps evaluate protein stability during the screening and
characterization of drug candidates in the development of biopharmaceuticals [14]. For
evaluating blood stability [87], zeta potential is a crucial metric in describing the electro-
static interaction between red blood cells in dispersed systems; therefore, it is critical to
avoid hemagglutination, which is highly important in blood transfusion [76] and blood
storage [88]. In some cases, there are applications in combination with other techniques,
like the use of Raman spectroscopy with DLS in a single platform for the characterization
of therapeutic proteins at high concentrations [13] to monitor protein aggregation. Simi-
lar studies mention DLS using gold nanoparticles (Au NPs) for biomolecular detection,
bioimaging, drug delivery, and photothermal therapy [89]. For instance, zeta potential can
be a practical guide when determining the equilibrium between the drug’s positive and
negative charges to ensure adequate uptake and release phenomena [76,90,91]. DLS is used
to evaluate gold nanorods–protein interaction, and its characterization demonstrates that
DLS is a valuable tool [87,92].

Particle size (PS) and particle size distribution (PSD) have wide applications in various
fields. Particle size is a crucial characteristic influencing cellular absorption, biodistribution,
and drug release profile [11]. For instance, controlling particle size in lipid nanoparticle
(LNP)-based products used in the manufacturing of SARS-CoV-2 vaccines from Pfizer,
Inc.-BioNTech (BNT162b2), and Moderna, Inc. (mRNA-1273) is a critical parameter [11,72].
Hassett et al., in mice experimentation [93], report that the hydrodynamic diameter of
LNPs affects their biodistribution, stability, and circulation rate across the body and their
cell absorption. LNPs act as delivery systems for mRNA vaccines, encapsulating and
introducing the mRNA antigen into cells. Lipids, the building blocks of these LNPs, self-
assemble into nanoscale particles to protect and insulate the delicate mRNA molecules.
The consistency and stability of these lipid nanoparticles are crucial to the vaccinations’
effectiveness [94,95] vaccinations’ effectiveness. Particle and protein aggregation is highly
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studied in the pharmaceutical sector, and DLS is a practical instrument that helps to control
this property.

Another instance of using DLS in the pharmaceutical industry is in manufacturing
magnetic nanoparticles, which have interesting medical applications for developing sensing
and diagnostic systems. Lim et al. studied the size distribution and colloidal stability of
magnetic nanoparticles (MNPs) using DLS [96]. The authors mentioned that MNP with
Fe0 and Fe3O4 can be an effective nanoagent to remove pollutants from water.

3.2. Material Science

The application of DLS in the characterization of colloids, nanoparticles, and polymers
in material science is extensive. Development and process control in the industries of
paints, pigments, food and beverages, cosmetics, ceramics, and personal care products are
some fields where DLS has some advantages over destructive tests, such as microscopic
imaging, electrical sensing (Coulter) counters, hydrodynamic or field flow fractionation,
disc centrifuge particle sizing, size exclusion chromatography, and scattering techniques,
among others [96,97]. Lim et al. [96], using DLS, studied size distribution and colloidal
stability of magnetic nanoparticles (MNPs). The authors contrasted DLS with transmission
electron microscopy (TEM) and dark-field microscopy [96], revealing both the advantages
and disadvantages of DLS in measuring the size of MNPs. Specifically, zeta potential has
applications in electrophoretic deposition (EPD) in the preparation of advanced materi-
als [98] and the separation of minerals using water, such as flotation, where the wetting
of the mineral surface is affected by the oriented water layers on the solid surface, as well
as the EDL to control the flotation process with the point of zero charge (PZC) as a critical
parameter [76].

3.3. Environmental Protection, Remediation, and Toxicology

Some applications of DLS in measuring particle size are in environmental protec-
tion. Cai H. et al. [99] applied ultrafiltration, DLS, pyrolysis, thermodesorption, and
thermochemolysis coupled to chromatography/mass spectrometry (GC-MS) to separate,
preconcentrate, quantify, and identify nanoplastics (Figure 7).
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cles on Earth’s surface, including air, water, or soil [100], and its applications in nanoecotox-
icology and environmental sciences. Tareq et al. mention interesting applications where
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DLS measurements detected nanomaterials’ presence in Tennessee’s river waters [101].
Even though the particle’s properties, such as size, vary according to the analytical mea-
surement method or equipment used [102,103], combining and comparing results from
other methods and determining the most reliable for your process is recommended.

Mylon et al. [51] used the technique of DLS to measure the aggregation kinetics of a
model virus, bacteriophage MS2, and identified the elements that make viruses unstable in
aquatic environments. Mylon et al. describe the significance of biophysical interactions
between viruses and their surfaces as a method to develop disinfection or viral eradication
techniques. Among other exciting applications of DLS analysis is producing biofuel from
algae to optimize the separation of algae mass from water; zeta potential plays an important
role where charged algae cells are generated in contact with water [76]. Our current
development and technological progress generate excessive nanoparticle releases into the
environment, demanding the close monitoring of air and water pollution. One option is
using DLS to detect nanoplastics in various products for human consumption [104].

Using DLS, Shahid et al. explained how to measure the hydrodynamic radius for
extracting heavy metals from an aqueous solution. The authors extracted Co+2 ions from
water using poly (N-isopropylacrylamide-acrylamide-methacrylic acid) p(NAM) as an
adsorbent [105].

Overall, DLS can be utilized to monitor water and air quality by analyzing suspended
particles and aggregates in water or air samples [106]. Moreover, DLS can be employed to
study suspended particles in soils or sediments [107]. It contributes to understanding soil
composition, structure, and possible environmental effects by determining particle sizes,
their distribution, and their interactions.

3.4. Food Science

DLS has applications in characterizing food colloids, emulsions, and suspensions.
Tosi et al. [108] used DLS to quantify particle/molecular sizes, particle size distribution,
and relaxations in complex fluids for food applications. They exposed the accuracy of this
quantification, which is critical in evaluating the toxicity and exposure level of nanoparticles
in foods. Evaluating quality, process control measures, and composition is beneficial in
producing milk products and their stability. The casein’s particle size in milk affects
its flavor. Large particle sizes tend to float up, causing phase separation (creaming). If
the particle size is too small, it flocculates. The electrostatic charge that the particles
carry is essential for the stability of the milk emulsion. Monitoring the particle size is
crucial to ensure milk satisfies consumer demands, legal requirements, and shelf-life
regulations [109].

DLS is widely used for research in food science, and it plays an essential role in the
characterization and evaluation of colloids, emulsions, and suspensions. Rao et al. [110]
described DLS as a faster and easier technique with lower limit detection to measure particle
size than other techniques. One of the advantages of DLS is that sample preparation is
minimal and noninvasive. Also, dynamic measurements in situ show immediate results.
However, a disadvantage is that concentration is a limiting factor in this technique since
the sample to be analyzed must be highly diluted to avoid multiple scattering.

Palm oil in water microemulsion is used as a delivery system for hydrophobic nutrients.
In an accelerated stability study on palm oil in water microemulsion for 28 days, DLS was
used to determine the stability of the microemulsion’s membrane. After 28 days, DLS
showed a reduction in particle size, which explains that the membrane suffered breakage,
creating smaller droplets; therefore, the stability decreased [111].

DLS has been used in the characterization of nanoencapsulated food ingredients.
In a study performed in encapsulated vitamins D3 and β-carotene in tripolyphosphate-
chitosomes (TPP-Ch), at three different dilutions (100×, 500× and 1000×), DLS shows that,
as dilution increases, aggregates decrease [108]. Esposto et al. [112] measured the encapsu-
lation efficiency of α-carotene, β-carotene, and phenolic compounds in liposomes, chitosan
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(Ch), and TPP-Ch. DLS results showed that β-carotene had the highest encapsulation
efficiency.

In summary, DLS is a useful analytical tool to characterize and evaluate food nanosys-
tems. Also, it gives an insight into the product’s physical properties and behavior that
ultimately will determine the food’s shelf life.

3.5. Toners, Inks, and Pigments

Another area where DLS plays an essential role due to controlled particle size and
PSD is in the printing industry. Manufacturing toners and inks requires close particle size
control to improve stability, printing quality, and shelf life. Inks and pigment dispersions
tend to sediment, coalesce, and flocculate due to particle size changes, primarily due to
particle agglomeration [113].

DLS is a widely used technique for characterizing toner particles in the toner industry.
A blend of polymer resin, colorants, and magnetic particles make up the small powder
known as toner used in photocopiers and laser printers.

DLS can assess the toner particle size distribution and track aggregation and size
changes over time. DLS measurements can help improve the formulation and manufac-
turing processes by giving information about the stability of toner suspensions. The zeta
potential of toner particles, a measurement of the electrostatic repulsion between particles
in a solution, can also be found via DLS. Their zeta potential can impact particle stability,
aggregation, and adhesion.

However, at the same time, there is a need to develop more environmentally friendly
pigments. Pandian et al. used DLS in their research to propose nanopigment colorants.
These pigments derive from pulp and paper industrial waste black liquor due to their
lignin content [114].

4. Particle Agglomeration Mechanisms and Their Control in Colloidal Systems

It is essential to understand the main stability forces to describe the possible mecha-
nism to control the agglomeration forces involved in a colloidal system.

Table 2 describes the significant forces involved in a colloidal system. Here, we can
summarize the major interaction forces among particles in suspension.

Table 2. Forces influencing the stability of NPs in liquid medium. Reproduced with permission from
reference [90].

Force Influence

van der Waals Short-range electromagnetic force between
NPs, attractive.

Electrical Double Layer
Electrical interaction between NPs due to the

overlap of electric double layer, typically
repulsive.

Hydration Force Interaction between water molecules on
hydrophilic NPs, repulsive nature.

Hydrophobic Force Attractive interaction between hydrophobic
NPs in water.

Steric, Electronic, and Electrostatic Forces

Surface coatings: inorganic, surfactants,
polymers, and polyelectrolyte on NP surfaces.
Polymers can form bridges leading to osmotic

forces for interpenetrate chains. Surface
coatings can have attractive or repulsive effects.

Vincent et al. mentioned that after the World War II, Russian researchers Derjaguin,
Landau, Verwey, and Overbeek in the Netherlands independently developed a theory that
explains particle interactions in dispersions. This theory, now called the DLVO theory, was
developed one hundred years after previous experiments [115]. The DLVO theory explains
the stability of aqueous particle suspensions through the interactions of van der Waals and
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electric double-layer forces, explaining how they are stable at low salt levels and unstable
at higher salt concentrations [57].

The theory behind the forces involved in the aggregation process is the DLVO model
(Figure 8).
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Figure 8. Parameters and variables in a colloidal system and their particle agglomeration performance
are explained using the DLVO (Derjaguin, Landau, Vervey, and Overbeek) theory (a). Two main
contributors to the total free energy per unit area are the additive forces of (Vvdw) van der Waals
and (Vdl) double-layer interactions (a). To evaluate the Vvdw forces (b), the Hamaker constant can be
measured using the Atomic Force Microscope (AFM), as described in (d). The Vdl forces (c) can be
defined using any of the two equations. At the same time, the ionic strength (f) can be measured to
replace the value in equation (e).

The DLVO theory is the theoretical basis of colloidal particle interactions and its
agglomeration performance in colloidal suspensions developed by Derjaguin, Landau,
Vervey, and Overbeek [115] Electric double layers, van der Waals, are the primary colloidal
forces in a colloidal system, but other forces intervene in colloids, such as hydration and
steric forces.

Two significant additive contributors, according to the DLVO theory, are:

VT = VvdW + Vdl (7)

VT = Total Free Energy;
VvdW = van der Waals Forces;
Vdl = Double-Layer Interactions.
Attractive van der Waals forces come from the atoms’ dipoles and the molecules’

rotation or fluctuations.
VvdW = − A12R

12hKβT
(8)

A12 = Hamaker constant, material 1 in medium 2;
R = Particle’s average radio;
h = Surface distances;
Kβ = Boltzman constant;
T = Temperature in Kelvin.
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Figure 9 depicts and locates the significant variables described in the next paragraph
involved in the DLVO model.
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Repulsive electrostatic interactions come from the double layers of each particle. We
can use Equation (9) or Equation (10).

Vdl =
2σ+σ−

∈0∈ K
Exp(−Kh) (9)

Vdl= 2π ∈0 ·∈ Rz2ln
(

1 + q−
h

K−1

)
/KBT (10)

σ+σ− = Surface charge density per unit area;
∈0 = Vacuum permittivity;
∈ = Water dielectric constant;
K−1 = Inverse Debye length.

K−1 =

(
KB ∈0∈
2q2NA I

)1/2
=

0.3 nm√
I

(11)

q = Elemental charge;
NA = Avogadro number;
I = Ionic strength;
KB = Boltzmann constant;
T = Absolute temperature.
Ionic strength:

I =
1
2 ∑ z2

i ci (12)

zi = valence of the ion type i;
ci= concentration in mol/L;
i = type of ions in solution.
However, besides the DLVO forces, there are non-DLVO forces in a colloidal system.

These could be hydration and hydrophobic forces related to water layer interactions and
entropic factors [47]. Entropic changes can also result in osmotic forces, as seen when
polymer-coated NPs interact via interpenetrating chains. Inter-particle repulsion is demon-
strated by NP surface coatings with surfactants, polymers, and polyelectrolytes through
steric, electronic, and electrostatic phenomena. An increase in temperature causes the
Brownian motion of an NP suspension to increase and the water shear to decrease, which
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encourages aggregation. Moreover, NP concentration affects the stability of emulsions and
is, therefore, one factor to consider in controlling the agglomeration rate; surface changes,
including steric, hydrophobic, magnetic, and hydration factors, impact NP aggregation.
Aggregation is influenced by potential surface manipulation; levels less than 20 mV may
result in aggregation [47]. As can be seen, the combination of several concepts, such as point
of zero charge (PZC), particle surface charge, particle surface coating, NP concentration
in the system, zeta potential (ZP), critical coagulation concentration (CCC), and particle
crystalline structure, can affect the aggregation rate in a colloidal system.

5. Particle Agglomeration Control in Chemically Processed Toner

Ataeefard et al. [116,117] mentions that emulsion aggregation offers the best results
for controlling agglomeration out of the four CPT toners (suspension polymerization,
dispersion polymerization, emulsion aggregation, and chemical milling). Moreover, this
paper states how increasing the agitation speed decreases particle size and narrows the
particle size distribution. The reasoning behind this conclusion is that higher turbulence
induces shear rates. The author recommends increasing the mixture speed during the acid
addition, dispersing the acid component as quickly and uniformly as possible. Andami
et al. [118] propose the use of in situ polymerization methods [119] (suspension, emulsion,
and mini emulsion) to control the microstructure of toner particles (particle size, particle
size distribution, and sphereness) with the energy level at a reasonable level in the presence
of a redox precursor. The authors described the superiority of mini-emulsion compared to
the other two methods, emphasizing the advantages of lower polymerization temperature
and higher conversion of mini-emulsion compared to suspension and emulsion polymer-
ization techniques. One interesting fact mentioned in this article is that using sodium
formaldehyde sulphoxylate (SFS) as a reducing agent (redox initiator) in the emulsion
polymerization method allowed the reaction temperature to be lowered down to 40 ◦C
compared to suspension polymerization with a temperature of 70 ◦C. A solvent-free redox
polymerization reaction provides a mild reaction condition responsible for high conver-
sion [120]. The mini-emulsion copolymerization was executed with similar conditions to
emulsion polymerization but at 55 ◦C using a cetylalcohol (CA) co-stabilizer. These three
in situ polymerization types have different nucleation mechanisms, microstructures, and
color characteristics. Out of the three mechanisms (micellar, droplet, and homogeneous
nucleation), droplet nucleation has the highest efficiency for manufacturing toner with a
spherical shape, appropriate size, and narrow size distribution (Figure 10).
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During this research, we identified some exciting topics using a redox initiator in
the emulsion polymerization and the mini-emulsion polymerization process to fabricate
chemically processed toner [5,122]. It opens the possibility of lowering the temperature
from 70 ◦C used in suspension polymerization to 40 ◦C and 55 ◦C for emulsion and mini
emulsion, along with a 28% and 22% increase in conversion [123].

Looking into options for redox initiators in emulsion and mini emulsion polymeriza-
tions, with possible applications in the manufacturing of chemically processed toner, we
found the following:

• Potassium persulfate and sodium persulfate. Potassium persulfate is the oxidation
agent, while sodium bisulfite is the reducing agent. The reaction between these two
compounds generates free radicals that initiate [121,124].

• Ammonium persulfate and sodium metabisulfite. Ammonium persulfate is the oxi-
dizing agent, while sodium metabisulfite is the reducing agent. The reaction between
these two compounds generates free radicals that initiate polymerization.

• Cerium(IV) ammonium nitrate can be used in mini-emulsion polymerization. Cerium(IV)
ammonium nitrate is the oxidizing agent and initiates polymerization at low tempera-
tures [118].

• Hydrogen peroxide and ferrous sulfate can be used in mini-emulsion polymerization.
Hydrogen peroxide acts as the reducing agent [118].

In practice, in the stage of acid addition, there are three combinations we need to
research: acid addition rate, high shear rate speed, and flow rate. These conditions must
be investigated to find the optimal sequence to increase yield and reduce particle size
distribution. Moreover, identifying the right reducing agent could increase the final output.

6. Conclusions and Future Remarks

From this deep dive into the literature on colloidal science and particle agglomer-
ation control using DLS, it is evident that great discoveries and new knowledge have
been achieved by researchers on this subject in recent years. Importantly, colloidal sci-
ence influences and constantly generates new knowledge from many fields [125], such
as medicine, the food industry, material science, and environmental protection, among
others. Furthermore, at the same time, DLS plays an essential role in better understanding
practical ways to control dispersion and suspension in our daily life tasks. Using DLS in
the industry and health sector allows more sectors to control colloidal suspensions easily.
However, finding the proper practical application of colloidal science in these processes
in our daily lives has some challenges. The kinetics of aggregation in colloidal systems is
complex, making it quite difficult to control and monitor the aggregation process, primarily
considering a broad spectrum of variables involved: particle concentration and its com-
position, the polydispersity of the colloidal system, solvent properties, temperature, pH,
and ionic strength, among others. DLS has limitations; for instance, sample preparation
interferes with the measurement, and thus, one must depend on extensive adjustments
to reach optimal experimental conditions. In addition, samples with high viscosity or
turbidity affect the sensitivity of DLS. Achieving the optimal experimental conditions and
adequately understanding the kinetics of the system under investigation are essential for
improving the control of particle agglomeration in a colloidal system. Going forward,
colloidal scientists must advocate their efforts to apply all the progress and improvements
in this field more practically.

Nevertheless, at the same time, research societies should vigorously publicize and
share innovations from colloidal knowledge that can improve the quality of life in industry
and daily human activities. DLS has more potential for practical applications than most
colloidal specialists know outside of their expertise. Also, there is an urgency to optimize
and dedicate more research to utilize DLS methods and techniques to apply them to
polydisperse solutions with high viscosity and a greater variety of temperatures. Moreover,
there is a possibility of improving DLS principles and applying them in higher concentrated
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dispersions for reactor batches to allow for in-line measurements including other variables
such as temperature, viscosity, and dispersion charge for more accurate measurements.

Overall, this review helps to close that gap and makes more people interested in
extending their analytical skills using DLS and expanding their colloidal knowledge.
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