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Abstract: Ultrasonic flowmeter is one of the most widely used devices in flow measurement. Tradi-
tional bulk piezoelectric ceramic transducers restrict their application to small pipe diameters. In
this paper, we propose an ultrasonic gas flowmeter based on a PZT piezoelectric micromachined
ultrasonic transducer (PMUT) array. Two PMUT arrays with a resonant frequency of 125 kHz are
used as the sensitive elements of the ultrasonic gas flowmeter to realize alternate transmission and re-
ception of ultrasonic signals. The sensor contains 5 × 5 circular elements with a size of 3.7 × 3.7 mm2.
An FPGA with a resolution of ns is used to process the received signal, and a flow system with
overlapping acoustic paths and flow paths is designed. Compared with traditional measurement
methods, the sensitivity is greatly improved. The flow system achieves high-precision measurement
of gas flow in a 20 mm pipe diameter. The flow measurement range is 0.5–7 m/s and the relative
error of correction is within 4%.

Keywords: MEMS; ultrasonic flowmeter; PMUTs array; PZT

1. Introduction

Flow is one of the important measurement parameters in modern production and life.
In people’s daily lives and industrial production activities, flow detection technology is an
interesting research topic [1]. According to different design principles and basic structures,
flowmeters are generally divided into three categories: mechanical type [2], electromagnetic
type [3], and ultrasonic type [4]. Among them, ultrasonic flowmeters are characterized by
high precision, high response speed, and high flow rate. Advantages such as reliability
and non-contact measurement [5] gradually win out, attracting a large number of usage
requirements. Coupled with the vigorous development of semiconductor technology,
electronic technology, and MEMS technology in recent years, ultrasonic flowmeters are
gradually developing towards miniaturization, integration, and intelligence [6–9].

The core component of an ultrasonic flowmeter is an ultrasonic transducer. The ultra-
sonic transducer can receive ultrasonic signals and convert them into electrical signals, or
convert electrical signals into ultrasonic signals and transmit them to the external medium.
Related research on ultrasonic transducers is promoting the development of the ultra-
sonic testing industry. Most of the ultrasonic transducers used in traditional ultrasonic
flowmeters are body piezoelectric transducers [10–13]. Due to limitations of manufacturing
technology, currently, commercially available body piezoelectric ultrasonic transducers
are relatively large; therefore, there are limitations. With the development of MEMS tech-
nology, silicon-based MEMS processing technology, and MEMS-sensitive film material
preparation technology, micromechanical ultrasonic transducers have been widely used
in various fields. Compared with traditional transducers, MUT has the characteristics
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of small size and high integration. According to the working mechanism, MUTs have
two types—piezoelectric MUTs (PMUTs) and capacitive MUTs (CMUTs). Compared with
CMUTs, PMUTs have higher capacitance, which means that the effect of system parasitic
capacitance on coupling and sensitivity is not as pronounced as CMUTs. Moreover, PMUTs
have lower electrical impedance, which can better match the supporting electronic circuits
and lower sensitivity parasitic capacitance [14,15]. Due to the different working mech-
anisms, PMUTs do not require high DC bias voltages such as CMUTs [16]. In addition,
PMUTs do not require the fabrication of extremely small gaps [17] under curved films in
order to achieve satisfactory sensitivity. The abovementioned advantages of PMUTs reduce
the susceptibility to fabrication precision and array inconsistency, which greatly simplifies
the complexity of the system [18]. PMUTs have successfully been demonstrated in several
applications such as rangefinders [10], solid defect detection [19], ultrasonic imaging [20],
and many other fields. PMUTs containing thin films based on AlN, ScAlN, and ZnO have
been widely studied, but they all have the disadvantage of low-emission sound pressure.
In this paper, a single crystal PZT film based on the magnetron sputtering method was
developed, which has the advantages of large emission sound pressure. Compared with
the PZT film processed using the sol–gel method, the magnetron sputtering method has a
higher film-forming speed and process controllability, which can realize rapid and accurate
film growth and produce a dense and high crystallite film structure. This method is suitable
for a variety of substrates. Moreover, the thickness, composition, and microstructure of the
film can be easily controlled, and the film is easy to produce in large sizes, which provides
an effective process choice for the preparation of high-performance thin film devices. In
previous reports, P.L.M.J. van Neer et al. [21] studied and verified the feasibility of PMUT-
based gas flowmeters. In this study, the team first matched the resonant frequencies of
the transmitting and receiving PMUTs by applying DC bias voltages to the transmitting
end and receiving end, respectively, and then installed the matched pair of PMUTs on the
inner wall of the pipe for testing. Zhu et al. [22] proposed an ultrasonic liquid flowmeter
based on AlN thin film PMUT arrays. Two 10 × 10 PMUT arrays were installed outside the
measured pipeline to measure the liquid flow in the pipeline without contacting the liquid.
Ding et al. [23] proposed a blood flowmeter using the pulse Doppler ultrasonic detection
method based on an AlN thin film PMUT for real-time monitoring of pulsatile blood flow
and flow direction. Xiu et al. [24] developed a gas flowmeter using a single PMUT array.
The PMUT array elements on a single array were grouped into transmitters and receivers,
and a complete flow sensor was constructed using the cross-correlation method and cosine
interpolation method. The system reflects changes in flow rate through the recorded TOF.
Gao et al. [25] designed an ultrasonic flowmeter based on ScAlN PMUTs, which is suitable
for small-diameter pipe applications and can be used for pipes with a diameter of 2 mm.

In this paper, a small pipe diameter flow measurement system based on a PZT PMUT
ultrasonic transducer is proposed, which realizes the Magnetron sputtering preparation of
a single-crystal PZT thin film PMUT, and increases the length of sound channel through
the design of pipe shape, so as to effectively improve the measurement accuracy. The
two PMUT arrays are mounted outside the tube wall and are therefore isolated from
the gas under measurement. In order to improve the receiving performance of the gas
flow measurement system, a signal conditioning circuit at the ultrasonic receiving end
is designed, including a charge amplification circuit, a bandpass filter circuit, and an
analog-to-digital conversion circuit. In order to meet the frequency, amplitude, and other
requirements of the PMUT device for the excitation signal. The signal generator and
transmitting circuit of the ultrasonic transmitting end are designed. In order to achieve
high-precision measurement of ultrasonic time-of-flight difference, the FPGA peripheral
circuit and internal measurement logic are designed. Finally, the ultrasonic time-of-flight
test system verified that the PMUT device has good transceiver performance. In the DN
20 pipeline, the designed flow measurement system achieved flow detection of 0.5–7 m/s.
In the measurement results, the corrected relative error was about 4%.
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2. Measurement Principle

If a pair of ultrasonic transducers are placed opposite each other and their center line
is not perpendicular to the flow velocity of the fluid medium, then during the propagation
of ultrasonic waves, its propagation speed will be affected by the component of the fluid
flow velocity in the direction of ultrasonic wave propagation [26]. When the propagation
direction of ultrasonic waves is consistent with the direction of the fluid flow velocity
component, its propagation speed is increased, and the ultrasonic wave flight time from
transmission to reception is shortened. Accordingly, when the ultrasonic wave propagation
direction is opposite to the direction of the fluid flow velocity component, its propagation
speed is reduced and the ultrasonic time of flight from transmission to reception becomes
longer, forming a downstream countercurrent ultrasonic flight time difference. Based on
the condition that the propagation speed of ultrasonic waves in the static medium in this
environment is known, the current flow rate of the fluid can be calculated through this time
difference. Thus, the flow rate of the pipe is obtained.

The schematic diagram of flow measurement using the transit-time method is shown
in Figure 1a. In the pipeline under test, ultrasonic transducer A and ultrasonic transducer
B are installed on both sides of the pipeline at an oblique angle. This structure can be used
to measure gases [27] and liquids [28]. The center distance between the two transducers
is L, and the center line between the two intersects with the central axis of the pipe. The
angle is θ. The pipe is filled with a gas medium with a flow rate of v. The velocity direction
is shown in the figure. Next, define the direction in which the sound wave is emitted from
ultrasonic transducer A to ultrasonic transducer B as the downstream direction, and record
the ultrasonic time of flight as tdown; the direction in which the sound wave is emitted from
ultrasonic transducer B to ultrasonic transducer A is the countercurrent direction. Finally,
the ultrasonic time of flight can be recorded as tup.
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In Figure 1a, the component of the flow velocity of the medium in the pipeline in the
direction of the line connecting the centers of the two transducers is vcosθ. After the sound
velocity components are superimposed, the ultrasonic signal propagation speed along and
against the flow and the counter flow propagation speed are, respectively:

cdown = c0 + v cos θ (1)

cup = c0 − v cos θ (2)

In the formula, c0 is the propagation speed of ultrasonic waves without medium flow,
and cdown and cup represent the propagation speed of downstream sound waves and the
propagation speed of countercurrent sound waves, respectively. Based on this, the sound
wave propagation time during downstream and countercurrent can be obtained:

tdown =
L

c0 + v cos θ
(3)
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tup =
L

c0 − v cos θ
(4)

From Equations (3) and (4) we can obtain:

v =
L

2 cos θ

(
tup − tdown

tuptdown

)
(5)

Using the time difference method, the fluid flow velocity v can be measured by simply
obtaining tup and tdown. After obtaining the fluid flow velocity, the instantaneous flow rate
of the fluid can be calculated based on the diameter of the measured pipe:

Q = vπ

(
D
2

)2
(6)

Among them, D is the diameter of the pipe in the measurement section, Q is the
instantaneous flow rate of the fluid in the pipe, and the unit is m3/s.

The test accuracy of traditional flow detection methods will be affected by the diameter
of the pipe. As the pipe diameter becomes smaller, the acoustic path of the transducer
becomes shorter, placing higher accuracy requirements on the signal processing hardware
circuitry. In order to extend the propagation path of ultrasonic waves and thereby improve
the sensitivity of the gas flowmeter and the detection accuracy of TOF, a flowmeter structure
is used to measure liquids [29], as shown in Figure 1b. Installing two PMUTs at both ends of
the pipe to be measured allows ultrasonic waves to propagate directly along the pipe where
the gas flows, increasing the difference between the downstream propagation time and the
countercurrent propagation time, thus improving the sensitivity of the flowmeter. At the
same time, since the acoustic path is not limited by the diameter of the pipe, appropriately
increasing the length of the acoustic path can effectively improve the sensitivity of flow
measurement to meet different application requirements. At the same time, this method is
also more suitable for measuring fluid flow in small pipes.

3. The Design of the PMUT Array
3.1. Acoustic Transducer Design and Fabrication

In order to improve the performance of the PMUT and achieve better transmitting
and receiving effects, a PMUT array is designed. The PMUT structure is shown in Figure 2.
The PMUT device consists of 25 PMUT vibration elements, and all vibration elements
form a 5 × 5 PMUT array; the top electrodes of the 25 vibrating elements are connected
together and lead out as the top electrode of the device. The bottom electrode of the
device is connected to the Pt electrode material under the PZT piezoelectric layer. The
substrate of the device is an SOI wafer, and a cavity is formed on the back of the device
via etching. When an alternating current signal of a certain amplitude and frequency is
applied to the PMUT device through the top electrode and the bottom electrode, 25 PMUTs
vibrate at the same time, and the ultrasonic waves generated by all the vibration elements
are superimposed and then emit ultrasonic waves to the external medium, a 5 × 5 array
element type structure. The structure can greatly increase the energy of ultrasonic waves
emitted by the PMUT device; when the PMUT is used as a receiving device, the electrical
displacement caused by the vibration of 25 PMUTs is superimposed on the extraction
electrode, thereby improving the signal output capability of the device.

The PMUT is simulated using COMSOL multiphysics 13.0 software. Figure 3a shows
the mode shape of the 5 × 5 PMUT arrays at the resonant frequency. All elements have
consistent mode shapes. Figure 3b shows that the output acoustic wave of a single PMUT
is omnidirectional, and Figure 3c shows the Z-axis directivity of the PMUT arrays. The
directivity of the PMUT arrays in the Z-axis direction is much higher than the sound
pressure intensity in any other direction.
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Figure 3. (a) Vibration mode shape of the PMUT arrays. (b,c) The sound field distributions of a single
PMUT array and a 5 × 5 PMUT array, respectively.

This article uses MEMS processing technology to prepare the designed PMUT device.
The key preparation process flow is shown in Figure 4. The preparation process is described
as follows: Select an SOI wafer composed of a 5 µm silicon device layer, 1µm buried silicon
oxide, and a 500 µm silicon substrate. Physical vapor deposition technology was used to
deposit a 100 nm buffer layer, 100 nm pt bottom electrode, 1 µm PZT piezoelectric layer,
and 100 nm Pt top electrode on the SOI wafer. The top electrode is patterned using reactive
ion etching (RIE). The bottom Mo electrode is exposed through ion beam etching (IBE) to
form a through-hole design, which provides conditions for the electrical connection of the
bottom electrode of the PMUT device. Deposit 200 µm of Au and form connecting lines to
connect each micro-element in parallel, and deposit the pads of the PMUT array. Finally,
deep reactive ion etching (DRIE) is used to etch the silicon substrate, and the etching of the
back cavity accurately defines the diameter of the PMUTs, forming the vibrating membrane
structure of the PMUT device.
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3.2. Characterization

Figure 5 shows an optical microscope image of a 5 × 5 PMUT array. The dimensions
of the fabricated 10 × 10 array are approximately 3.7 × 3.7 mm2. A total of 25 PMUT
micro-elements are connected through Au wires to form a parallel array element structure,
and the diameter of the Pt top electrode is 364 µm. The piezoelectric thin film device was cut
longitudinally and SEM electron microscopy scanning was performed on its cross-section.
The results are shown in Figure 6. From the figure, you can see that the diameters of the
five longitudinally arranged PMUT element cavities are 518 µm, 525 µm, 520 µm, 523 µm,
and 518 µm, respectively, which is not much different from the designed 520 µm cavity
diameter, indicating that the process consistency is high and ensures the high performance
of the device.
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The mechanical characteristics of PMUT devices are specifically reflected in their
vibration characteristics. In order to analyze the vibration characteristics of PMUT devices,
laser Doppler vibration (LDV) testing was performed on the PMUT vibration element as
follows: Set the scanning frequency range to 100–150 kHz and apply a sine wave signal
with a peak value of ±5 V to the PMUT device. The measurement results are shown in
Figure 7. The resonant frequencies of different vibration elements have certain deviations
compared with the theoretical design. After testing and analyzing the chip, it was found
that this deviation was caused by the MEMS process. There are several main reasons. First
of all, although the buried oxide layer of SOI is selected as the cutoff layer for back cavity
etching, the large depth-to-width ratio of the back cavity results in poor consistency in deep
silicon etching, resulting in uneven thickness of the vibration film. Secondly, this design
achieves stress relief by patterning the film, which may cause uneven stress release in the
film, thereby affecting the vibration state of the device. Therefore, there will be a certain
deviation in the resonant frequency of devices of the same design, but the overall resonant
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frequency point range remains at 120–130 kHz, based on which the passband of the filter
circuit in the signal conditioning circuit can be determined.
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To test the electrical characteristics of the designed PMUT device, extract its impedance
and phase, and then analyze its electromechanical coupling coefficient. Use a vector net-
work analyzer to test the electrical characteristics of the PMUT device, set the scanning
frequency to 100–135 kHz on the network analyzer setting interface, scan and test its scatter-
ing parameter (S) parameter, and convert the S parameter into an impedance characteristic
curve. The test results are shown in Figure 8. The series resonance frequency of the device
is f s = 122.85 kHz and the parallel resonance frequency is f p = 125.82 kHz. The effective
electromechanical coupling coefficient k2

t ≈ 5.68% of the PMUT device designed in this
article was calculated. It shows that the acoustic transducer device designed in this article
has good electromechanical performance.
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3.3. Transmission Performance

The manufactured PMUT device was tested for ultrasonic time-of-flight determination.
An ultrasonic echo test system was built as shown in Figure 9. The transmitter device
PMUT A was connected to the output cable of the signal generator, and the output signal
of the receiver device PMUT B was introduced. Next, amplify the filter circuit board;
the signal generator provides the device with a sinusoidal AC signal with a frequency of
125 kHz and an amplitude of ±5 V, and the oscilloscope displays the excitation signal and
the conditioned PMUT signal.
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As shown in Figure 10, the red part is the 125 kHz sine wave excitation signal TX.
Under the excitation of TX, a clear and stable ultrasonic signal RX at the receiving end
can be observed. In the first few signal periods, the amplitude of the ultrasonic signal
RX is relatively large. Low, with continuous signal excitation, the amplitude gradually
increases, reaching a maximum value of 2.4 V at the tenth signal peak, and then gradually
attenuates. The time difference ∆t between the excitation signal and the ultrasonic signal is
the ultrasonic time-of-flight measurement result. Changing the separation distance between
PMUT A and PMUT B will also change the TOF.
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Since the front-end signal amplitude of the received ultrasonic signal is low and is
easily affected by interference signals, it is relatively difficult to directly detect TOF. Select
the fifth peak of the ultrasonic signal as the detection object, and set the corresponding
voltage detection threshold according to its voltage amplitude. Then, compensate the
measurement time according to the sinusoidal period of the ultrasonic signal to obtain
the ultrasonic flight time. The results show that the PMUT device produced in this article
can complete the emission of ultrasonic signals under corresponding signal excitation;
combined with the amplification filter circuit, the PMUT device can receive ultrasonic waves
near its resonant frequency point and obtain a clear and complete ultrasonic voltage signal.

4. Experiment Results and Discussion

As shown in Figure 11, the circuit system mainly consists of two PMUT acoustic
transducers, a transceiver switching circuit, a signal receiving module, a signal driving
module, and an FPGA timing and logic control module. Combine the PMUT device
with the signal conditioning circuit and the FPGA circuit to build an ultrasonic gas flow
measurement system. After the system is powered on, under the control of the counting
and time difference measurement module, the DDS signal generator implemented inside
the FPGA generates digital signals containing drive signal information. The value is then
sent to the DAC module through the FPGA external interface. The DAC module then
converts the digital value into an analog voltage signal with an amplitude of ±5 V and a
frequency of 125 kHz to excite the transmitter PMUTs and drive the transmitter PMUTs to
transmit ten ultrasonic signals. After a period of time, the ultrasonic signal is received by
the receiving end PMUTs. After amplification and filtering, an ultrasonic voltage signal that
is easier to identify and detect is obtained. The ultrasonic voltage signal is then converted
into a digital signal through the ADC module and transmitted to the FPGA. The internal
control module obtains the ultrasonic flight time. Complete the time-of-flight measurement
in the downstream stage; after the downstream time-of-flight measurement is completed,
switch the sending and receiving relationship, repeat the measurement, and obtain the
time-of-flight difference at the current flow rate. After calculation, the current gas flow rate
in the pipeline is obtained.
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the PCB with silicone, bound to the PCB pad through gold wire, and then fixed at both
ends of the acoustic path. The distance between the two ultrasonic transducers is 100 mm,
and the diameter of the 3D-printed fluid pipe is 20 mm. The flow test was conducted at a
temperature of 15 ◦C and a humidity of 50%. The speed of sound under this temperature
and humidity condition is 341 m/s. When the fluid medium is stationary, the time-of-
flight of the ultrasonic wave from transmitting to receiving is approximately 294.118 µs.
Every time the medium flow speed increases by 0.1 m/s, the time-of-flight difference
between downstream and countercurrent increases by about 250 ns. The ultrasonic gas
flow measurement system is shown in Figure 12.
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Figure 12. Ultrasonic gas flow measurement system.

After the ultrasonic flow measurement system is built, the gas flow in the pipeline
is changed and measured multiple times. By comparing the downstream flight time and
the countercurrent flight time, the ultrasonic time-of-flight count difference was obtained.
Finally, the count difference was converted into a time difference and the current mea-
surement value was calculated from the data. A standard anemometer (Xinste HT9829,
Dongguan, China) was used for synchronous measurement, and the measured value was
used as the standard value. The resolution of the anemometer is 0.01 m/s, the measurement
range is 0.1–25.0 m/s, and the accuracy is 1% of the anemometer range.

Thirteen groups of flow rates were selected in the range of 0–7 m/s, and each group
of flow rates was measured six times. The measurement results are shown in Figure 13.
This repeated experiment found that there is a certain error between the fluid flow rate
measured using the flow measurement system built in this article and the standard value.
This error floats within a certain numerical range. Through analysis, it is believed that this
error is caused by circuit delay and PMUT installation accuracy.
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Since PMUTs are not chip-level packaged, the devices are easily disturbed by the
external environment, which in turn affects the measurement accuracy and measurement
range of the system. There is still room for improvement in the measurement accuracy of
the designed flow measurement system. According to the flow measurement principle
of the transit time method, it can be determined that the fluid flow rate in the pipeline is
proportional to the count difference. Based on the obtained data, a first-order linear fitting
is performed on the flow rate-count difference, and the result is shown in Figure 14. It can
be seen from the fitting curve in the figure that there is a good linear relationship between
the gas flow rate in the pipeline and the count difference recorded by the FPGA, which is
in line with the experimental expectations.
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After compensating the error, retake the measurement point within the measurement
range for measurement, and obtain the relative error of the measurement results as shown
in Figure 15. Within the measurement range of 0.5–7 m/s, the maximum error is 0.17 m/s,
and the maximum relative error is 4%.
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Based on the above experimental results and analysis, this system implements an
ultrasonic flow measurement system based on PZT thin film PMUTs. The parameter
comparison with other flowmeters of the same type is shown in Table 1. The developed
MEMS gas flowmeter shows the advantage of miniaturization in terms of pipe diameter. A
gas flow velocity measurement range of 0.5–7 m/s was achieved. The research results have
a certain value. However, due to the impact of packaging and installation, the accuracy of
the system still needs to be further improved. And subsequent research on ASIC circuits
can further optimize the errors caused by the circuit.

Table 1. Parameter comparison with other flowmeters.

Fluid Type Measurement
Range

Absolute
Deviation

Relative
Deviation

This work Gas 0.5–7 m/s 0.17 m/s 4%
Ref [21] Gas 0–2 m/s 0.1 m/s 5%
Ref [22] Liquid 0.17–1.13 m/s / 3%
Ref [24] Liquid 0–0.28 m/s / 5%
Ref [29] Gas 0.15–3.2 m/s 0.12 m/s 3.9%

5. Conclusions

In summary, this article takes the PZT piezoelectric ultrasonic transducer as the core
and describes a small diameter gas flow system based on the time difference method: the
final prepared transducer array consists of 5 × 5 PMUT microelements. Composed, the
resonant frequency of the array is about 125 kHz, the size is 3.7 × 3.7 mm2, and the elec-
tromechanical coupling efficiency is about 5.68%. Taking the prepared PMUT device as the
sensing core and using the time difference method gas flow measurement as the application
design circuit system, including signal receiving circuit, signal transmitting circuit, FPGA
design, etc., combine the system circuit and oscilloscope and other instruments to conduct
flight time verification of the PMUT device. The experiment and test results show that
the prepared PMUT device has good transceiver performance. Finally, an ultrasonic gas
flow measurement system was built to achieve high-precision measurement of gas flow in
DN 20 pipe diameter. The flow rate measurement was 0.5–7 m/s, the maximum error was
about 0.17 m/s, and the relative error was about 4%. Future work will focus on volumetric
flow measurement for smaller pipe diameters.
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