
Citation: Yin, J.; Zhou, Z.; Lou, L. A

Novel Nondestructive Testing Probe

Using AlN-Based Piezoelectric

Micromachined Ultrasonic

Transducers (PMUTs). Micromachines

2024, 15, 306. https://doi.org/

10.3390/mi15030306

Academic Editor: Viviana Mulloni

Received: 22 January 2024

Revised: 12 February 2024

Accepted: 20 February 2024

Published: 23 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

micromachines

Article

A Novel Nondestructive Testing Probe Using AlN-Based
Piezoelectric Micromachined Ultrasonic Transducers (PMUTs)
Jiawei Yin 1,2, Zhixin Zhou 1,2 and Liang Lou 1,2,*

1 School of Microelectronics, Shanghai University, Shanghai 201800, China
2 The Shanghai Industrial µTechnology Research Institute, Shanghai 201899, China
* Correspondence: liang.lou@sitrigroup.com

Abstract: Ultrasonic nondestructive testing (NDT) usually utilizes conventional bulk piezoelectric
transducers as transceivers. However, the complicated preparation and assembly process of bulk
piezoelectric ceramics limits the development of NDT probes toward miniaturization and high fre-
quency. In this paper, a 4.4 mm × 4.4 mm aluminum nitride (AlN) piezoelectric micromachined
ultrasonic transducer (PMUT) array is designed, fabricated, characterized, and packaged for ultra-
sonic pulse–echo NDT of solids for the first time. The PMUT array is prepared based on the cavity
silicon-on-insulator (CSOI) process and packaged using polyurethane (PU) material with acoustic
properties similar to water. The fabricated PMUT array resonates at 2.183 MHz in air and at around
1.25 MHz after PU encapsulation. The bandwidth of the packaged PMUT receiver (244 kHz) is wider
than that of a bulk piezoelectric transducer (179 kHz), which is good for axis resolution improvement.
In this work, a hybrid ultrasonic NDT probe is designed using two packaged PMUT receivers and
one 1.25 MHz bulk transmitter. The bulk transmitter radiates an ultrasonic wave into the sample, and
the defect echo is received by two PMUT receivers. The 2D position of the defect could be figured
out by time-of-flight (TOF) difference, and a 30 mm × 65 mm detection area is acquired. This work
demonstrates the feasibility of applying AlN PMUTs to ultrasonic NDT of solids and paves the way
toward a miniaturized NDT probe using AlN PMUT technology.

Keywords: ultrasonic nondestructive testing; piezoelectric micromachined ultrasonic transducers;
time of flight; bandwidth

1. Introduction

Ultrasonic testing has been widely adopted in industrial nondestructive testing (NDT)
for its excellent penetration capability, large detection area, low cost, and rapid detec-
tion. Conventional bulk piezoelectric transducers are often employed as transceivers in
ultrasonic testing for their high output sound pressure. However, bulk ultrasonic probes
are difficult to apply in some space-limited scenarios because of their large size. Even
worse, the complex “dice-and-fill” process of conventional ultrasonic phased arrays limits
the downscaling of an array pitch, which prevents the development of high-frequency
applications [1].

Fortunately, micromachined ultrasonic transducers (MUTs) have significant advan-
tages over conventional bulk piezoelectric transducers in terms of miniaturization and
integration. According to their working principle, MUTs can be divided into piezoelectric
micromachined ultrasonic transducers (PMUTs) and capacitive micromachined ultrasonic
transducers (CMUTs). Compared with CMUTs, PMUTs have the advantages of low bias
voltage, good linearity, and low energy loss.

Lead zirconium titanate (PZT) and aluminum nitride (AlN) are commonly used piezo-
electric materials in PMUTs. PZT PMUTs tend to have better transmission performance due
to the high piezoelectric coefficient of PZT, while AlN PMUTs feature better reception per-
formance because of AlN’s low dielectric coefficient, even though it has a low piezoelectric
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coefficient. Nowadays, AlScN attracts more attention for its relatively high piezoelectric
coefficient [2,3]. Moreover, both AlScN and AlN are CMOS compatible, which is more
convenient in integration with circuits toward miniaturization [4]. PMUTs have many ap-
plications in the gas and fluid domains: in-air range detection [5,6], MEMS hydrophone [7],
underwater communication [8], underwater wireless power supply [9], ultrasonic flowme-
ter [10], Doppler blood flowmeter [11], and fingerprint sensor [12–14]. Several studies on
utilizing PMUTs for solid internal inspection have been conducted. Z. Xing et al. designed
and fabricated PZT PMUTs for solid thickness measurement [15]. W. Ji et al. designed and
implemented an NDT imaging system based on a PZT PMUT array [16]. Although PZT
PMUTs have superior transmission performance compared with AlN PMUTs, the output
sound pressure of PZT PMUTs is still lower than that of conventional bulk piezoelectric
transducers. Thus, the imaging and testing area is limited, and the SNR of the defect
echo is low [16]. M. Kabir et al. employed AlN PMUTs as acoustic emission (AE) sensors
to monitor the structural health of solids by receiving the elastic waves excited by the
generation of defects [17]. The AE NDT method can monitor the generation progress of
defects in solids but cannot detect the defects that already exist. Solid inner flaws could
excite the second harmonic of the incident ultrasonic wave due to the nonlinear effect, and
H. Kazari et al. designed and fabricated AlN PMUTs to receive the second harmonic to
detect internal defects [18]. Both AE and nonlinear acoustic NDT methods based on AlN
PMUTs reported in previous work [17,18] are especially susceptible to noise interference,
and the precise localization of defects is hard to achieve.

In this paper, a 4.4 mm × 4.4 mm AlN PMUT array is designed, fabricated, and
characterized. The PMUT array is encapsulated as an ultrasonic testing receiver by a
polyurethane (PU) material. In the pulse receiving experiment, the −3 dB bandwidth of
the reported PMUT receiver is better than that of conventional piezoelectric transducers.
A wide bandwidth is of great importance for improving the axis resolution of pulse–
echo detection. In addition, a conventional bulk piezoelectric transducer is utilized as
the transmitter to radiate ultrasonic waves into the solid sample, and the defect echo is
received by PMUT receivers. Meanwhile, multiple receivers are introduced to achieve 2D
defect localization by time-of-flight (TOF) difference. Thanks to the excellent transmission
performance of the conventional transducer and the sensitive reception performance of
PMUT, the pulse–echo NDT method reported in this paper can detect defects at a depth of
100 mm.

2. Design and Fabrication of AlN-Based PMUT NDT Sensor
2.1. PMUT Model Fabrication and Characterization

The fundamental structure of PMUTs is a laminate consisting of an upper electrode,
a piezoelectric thin film, and a bottom electrode. Figure 1a depicts the structure of the
PMUT fabricated in this paper, which consists of an AlN piezoelectric layer sandwiched
by two Mo electrode layers, a Si passive layer, buried oxide, Al connection wires, and a
SiO2 dielectric layer. When an AC voltage is applied to the electrodes, the composite layer
vibrates periodically due to the inverse piezoelectric effect and radiates ultrasonic waves
into the medium. When the incident ultrasonic wave deforms the composite layer, an
electric potential difference is generated between electrodes by the piezoelectric effect.

Unlike conventional bulk piezoelectric transducers whose resonant frequency is only
related to material properties and bulk thickness, PMUTs vibrate in the flexural mode,
and the resonant frequency of the PMUTs depends on piezoelectric material properties,
laminate thickness, and diaphragm size. For circular diaphragm PMUTs, the first-order
resonant frequency can be calculated by the following Equation (1) [5]:

fr =
0.47t

√
E′/ρm

r2 (1)

where t is the total thickness of the composite laminate, E′ is the average plate Young’s
modulus, ρm is the average density of the vibrating diaphragm, and r is the radius of the
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PMUT cavity. The resonant frequency of the transmitter used in this work was 1.25 MHz,
and the resonant frequency of PMUTs should be around 1.25 MHz after PU encapsulation
to obtain excellent receiving sensitivity. Finite element method (FEM) simulations were
performed in COMSOL Multiphysics to find the appropriate geometric parameters of the
PMUT with the desired performance. The PU encapsulation material has similar properties
to water, so we chose water as the package material in COMSOL simulations. Based
on SITRI’s fabrication experience, a 1 µm AlN piezoelectric layer, 0.2 µm Mo electrodes,
and a passive layer consisting of 5 µm Si and 1 µm SiO2 were adopted to compromise
fabrication capability and device performance. With the thickness of the AlN piezoelectric
layer increasing, the etching process becomes more and more difficult, and the problem of
incomplete etching was posed accordingly. For a fixed material and thickness of each layer,
the resonant frequency of the PMUTs is determined by the cavity size. Considering the circle
diaphragm, a 2D rotational symmetry model was employed for simulation optimization.
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Figure 1. (a) Structure of the PMUT. (b) Cross-sectional view of the FEM simulation model. (c) Simu-
lation results of first-order resonant frequency in air and water with different radiuses.

The simulation results are shown in Figure 1c, the inset is the simulated first-order
resonant mode. The resonant frequency of the PMUT in liquid decreases due to the
mass loading effect introduced by the liquid medium [19]. According to the resonant
frequency–radius spectrums plotted in Figure 1c, a PMUT with a 110 µm radius circular
diaphragm resonates at 2.25 MHz in air and at 1.25 MHz when placed in water. Based
on the simulation results, the radius of the cavity was selected as 110 µm. The geometry
parameters of the designed PMUT are listed in Table 1. Furthermore, previous research
indicates that PMUTs could achieve optimal performance when the top electrode coverage
is 70% [1]. Additionally, in order to achieve better receiving sensitivity, an 18 × 18 PMUT
array was designed with all elements parallel connected.

Table 1. Geometric parameters of designed PMUT.

Material Top Mo AlN Bottom Mo Si SiO2 Cavity

Radius (µm) 77 - - - - 110
Thickness (µm) 0.2 1 0.2 5 1 -

The fabrication process flow of the PMUT array is shown in Figure 2. The process flow
started from a custom CSOI (cavity silicon-on-insulator) wafer with a 5 µm silicon passive
layer and 1 µm buried oxide as shown in Figure 2a. First, a 50 nm AlN seed layer was
deposited. Then, 0.2/1/0.2 µm Mo/AlN/Mo were deposited by physical vapor deposition
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(PVD) under low temperature (<400 ◦C) in Figure 2b. And then, the top Mo electrode
was patterned by reactive ion etching (RIE) for the designed top electrode coverage in
Figure 2c. Afterward, the SiO2 dielectric layer was deposited by plasma-enhanced chemical
vapor deposition (PECVD), and the electrical vias were defined by RIE as in Figure 2d.
Subsequently, the Al layer was deposited by PVD and patterned by dry etching to form
reliable electrical connecting wires as in Figure 2e. At the end of the process flow, the
SiO2/AlN/Mo/Si stack was etched to achieve 5 µm wide isolation trenches as in Figure 2f.
By etching isolation trenches, the residual stress within the piezoelectric layer induced
by fabrication processes could be released [20], and the PMUT performance would be
optimized. The optical image of the fabricated PMUT array is shown in Figure 2g.
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Figure 2. (a–f) Fabrication process flow of the PMUT array. (g) Optical image of the fabricated
PMUT array.

The electrical characteristics of the fabricated PMUT array were measured by an
impedance analyzer (E4990A, Keysight Technologies, Santa Rosa, CA, USA). The impedance
properties of the PMUT array in air are depicted in Figure 3a. According to the IEEE Stan-
dard [21], the effective electromechanical coupling coefficient (keff

2) of the PMUT array
could be calculated by the following Equation (2):

ke f f
2 =

fa
2 − fr

2

fa
2 (2)

where fr is the resonant frequency, and fa is the anti-resonant frequency. From the impedance–
frequency spectrum, the resonant frequency of the PMUT array was 2.183 MHz, and the
anti-resonant frequency was 2.203 MHz. The calculated effective electromechanical coeffi-
cient was 1.8%. The electromechanical properties of PMUTs reported in previous works are
listed in Table 2 for comparison, which shows that the PMUT array reported in this paper
had great electromechanical performance.
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Figure 3. Electromechanical characterization of the PMUT array. (a) Measured electrical impedance
in air. (b) Measured mechanical vibration performance in air. (c) Measured mechanical vibration
performance in deionized water.

Table 2. Comparison of effective electromechanical coupling coefficient between PMUT array pre-
pared in this paper and previous work.

Author Piezoelectric Layer Chip Size Resonant
Frequency keff

2

J. Ling et al. [22] 1 µm PZT 15 mm × 7.5 mm 0.753 MHz 1.82%
K. Zhu et al. [23] 1 µm AlN - 0.484 MHz 1.54%

E. Ledesma et al. [24] 0.6 µm AlN - 4.866 MHz 1.14%
Y. Gao et al. [10] 1 µm AlSc10N 2.8 mm × 2.8 mm 1.996 MHz 1.38%
Z. Shao et al. [25] Bimorph 1 µm AlN - 133 kHz 3.03%
Q. Wang et al. [2] 1 µm AlSc15N - 17 MHz 1.9%

This work 1 µm AlN 4.4 mm × 4.4 mm 2.183 MHz 1.8%

The mechanical vibration properties were characterized by a laser Doppler vibrometer
(MSA-600, Polytec GmbH, Waldronn, Germany). The displacement–frequency spectrums
of the same PMUT element in air and deionized water are depicted in Figure 3b,c, and the
insets are the first resonant mode of the PMUT. In air, the first-order resonant frequency
of the PMUT was 2.2925 MHz, and the −3 dB bandwidth was 5.3 kHz. When immersed
in deionized water, the resonant frequency of the PMUT decreased to 1.2206 MHz, and
the −3 dB bandwidth expanded to 33.84 kHz, because of the mass loading effect [19].
The in-water −3 dB bandwidth of the PMUTs prepared in this paper is larger than that
(20.3 kHz) in previous work [10]. The quality factor (Q) of the PMUTs is defined by the
following Equation (3):

Q =
fr

BW−3dB
(3)
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The Q in air was 432, and it dropped to 36 in deionized water. According to the
characterization results, the PMUT array prepared in this paper had low Q and a wide
−3 dB bandwidth when working in water. The acoustic properties of PU encapsulation
material are similar to water, and the packaged PMUT sensor also had a wide bandwidth.

2.2. PMUT Package and 2D Defect Localization

The PMUT array chips were first fixed to the printed circuit boards (PCBs) using an
adhesive. The electrical connections between the PMUT chip and the PCB were conducted
through wire bonding. Afterward, the PCB with the PMUT array chip was packaged in an
acrylic plastic housing and covered by a protecting layer. To better protect the PMUT arrays
and achieve good coupling between the sample and the PMUT chip, a polyurethane (PU)
material was employed as an encapsulation and acoustic impedance matching medium.
The acoustic impedance of PU is about 1.57 MRayl, which is close to that of water and
common NDT coupling agents. One conventional bulk piezoelectric transducer (as a
transmitter) and two packaged PMUT receivers were assembled in one acrylic plastic
housing to produce a hybrid NDT probe. The structure of the hybrid ultrasonic NDT probe
is shown in Figure 4a, and Figure 4b is the optical image of the assembled probe. The
geometry size of the produced hybrid probe was 42 mm × 14 mm × 10 mm, which is
smaller than conventional bulk double-crystal probes.
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The position of the defect could be determined by the TOF difference between two
different receivers. Figure 4c illustrates the theory of 2D defect localization. The ultrasonic
wave radiated into the sample by the bulk piezoelectric transducer will be reflected by the
inner defect and received by the PMUT receivers. The TOF of Receiver A and Receiver B is
tA and tB, and the longitudinal sound velocity in the sample is c (c ≈ 6000 m/s); we then
have the following:

l1 = c × tA (4)

l2 = c × tB (5)

x2 + y2 = d2 (6)
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(x − a)2 + y2 = (l2 − d)2 (7)

(x + a)2 + y2 = (l1 − d)2 (8)

where l1 and l2 are the propagation distance of the ultrasonic wave between the trans-
mitter and the receiver, and a is the horizontal distance between the transmitter and the
receiver. Circles with the positions of Receiver A and Receiver B as the centers, with
l1 − d and l2 − d as radiuses, have two intersections. And d could be derived from the
Equations (4)–(8) above:

d =
l12 + l22 − 2a2

2(l1 + l2)
(9)

And then, the intersections of these two circles could be figured out. The intersection
of the two circles under the X-axis is the location of the defect.

2.3. Ultrasonic Testing Simulation

The propagation progress of the ultrasonic wave from the transmitter to the receiver
was modeled and simulated in COMSOL Multiphysics 6.0. The model was divided into
two parts: one for an ultrasonic wave propagating in the solid, being reflected by the
defect and transmitting into the matching layer, and the other for an ultrasonic wave being
received by the PMUT from the matching layer.

The first simulation model (Acoustic–Solid Interaction, Time Explicit) is depicted in
Figure 5a. The sample was a 100 mm × 100 mm aluminum square containing one circular
hole with 2 mm diameter at a depth of 50 mm. The transmitter was a plastic block to
simulate the cover of the conventional piezoelectric probe. The encapsulation layer of
the PMUT was modeled as a water matching layer surrounded by an absorbing layer. A
Gaussian-pulse normal velocity was applied at the surface of the sample to simulate the
ultrasonic wave radiated by the transmitter. Figure 5b illustrates the pressure distribution
in the solid sample when the ultrasonic wave is reflected by the defect. And then, the
ultrasonic pulse will be reflected by the defect and incident into the matching layer. The
sound pressure in the matching layer was acquired by a COMSOL probe.
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The second simulation model (Pressure Acoustics, Time Explicit) is shown in Figure 5c.
The PMUT was placed in a semicircle water domain covered by a perfect matching layer.
A line source with sound pressure acquired in the first part was placed 1 mm above
the PMUT. The PMUT was modeled as a laminate consisting of Mo electrodes, an AlN
piezoelectric layer, a Si vibrating layer, and buried SiO2. Figure 5d presents the distribution
of sound pressure in the water medium. The normal excitation velocity and received
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signals of defects located at 50/75/100 mm depth are depicted in Figure 5c. The TOF of the
50/75/100 mm defect was 18.27/26.14/32.36 µs.

3. Results and Discussion
3.1. Ultrasonic Testing Experiment

The setup of the ultrasonic testing experiment and test sample are shown in Figure 6.
A conventional bulk piezoelectric transducer with a 1.25 MHz resonant frequency was em-
ployed as the transmitter. A three-cycle sine wave with 1.25 MHz frequency and 6 Vpp am-
plitude was generated by a function generator (33600A, Keysight Technologies, Santa Rosa,
CA, USA). Then, the burst signal was amplified 25 times by a voltage amplifier (WMA-300,
Falco Systems, Katwijk aan Zee, The Netherlands) to drive the transmitter. Furthermore,
6061 aluminum alloy cubes with 2 mm diameter holes located 50/73/97 mm deep were
prepared as test samples. The output signals of the PMUT receivers were amplified and
denoised by a front analog processing circuit (30 dB, −3 dB width, 272 kHz–2.2 MHz). Af-
terward, the received signals were displayed and acquired by an oscilloscope (DSOX2014A,
Keysight Technologies, Santa Rosa, CA, USA). A gel ultrasonic matching agent was coated
between the sensors and test samples for coupling.

Micromachines 2024, 12, x FOR PEER REVIEW 8 of 12 
 

 

Figure 5. Propagation simulation. (a) Schematic of the first simulation model. (b) Pressure distribu-
tion in solid sample. (c) Schematic of the second simulation model. (d) Sound pressure distribution 
in matching layer. (e) Excitation and defect echo from different depths. 

The second simulation model (Pressure Acoustics, Time Explicit) is shown in Figure 
5c. The PMUT was placed in a semicircle water domain covered by a perfect matching 
layer. A line source with sound pressure acquired in the first part was placed 1 mm above 
the PMUT. The PMUT was modeled as a laminate consisting of Mo electrodes, an AlN 
piezoelectric layer, a Si vibrating layer, and buried SiO2. Figure 5d presents the distribu-
tion of sound pressure in the water medium. The normal excitation velocity and received 
signals of defects located at 50/75/100 mm depth are depicted in Figure 5c. The TOF of the 
50/75/100 mm defect was 18.27/26.14/32.36 µs. 

3. Results and Discussion 
3.1. Ultrasonic Testing Experiment 

The setup of the ultrasonic testing experiment and test sample are shown in Figure 
6. A conventional bulk piezoelectric transducer with a 1.25 MHz resonant frequency was 
employed as the transmitter. A three-cycle sine wave with 1.25 MHz frequency and 6 Vpp 
amplitude was generated by a function generator (33600A, Keysight Technologies, Santa 
Rosa, CA, USA). Then, the burst signal was amplified 25 times by a voltage amplifier 
(WMA-300, Falco Systems, Katwijk aan Zee, The Netherlands) to drive the transmitter. 
Furthermore, 6061 aluminum alloy cubes with 2 mm diameter holes located 50/73/97 mm 
deep were prepared as test samples. The output signals of the PMUT receivers were am-
plified and denoised by a front analog processing circuit (30 dB, −3 dB width, 272 kHz–2.2 
MHz). Afterward, the received signals were displayed and acquired by an oscilloscope 
(DSOX2014A, Keysight Technologies, Santa Rosa, CA, USA). A gel ultrasonic matching 
agent was coated between the sensors and test samples for coupling. 

 
Figure 6. Setup of the ultrasonic testing experiment. 

The acquired signal of a 50 mm deep defect directly under the transmitter is depicted 
in Figure 7a. In the experiment, the transmitter was not an ideal ultrasonic wave source, 
and the emission crosstalk became much more severe than that simulated by COMSOL 
Multiphysics. Although the received signal was denoised by the front analog bandpass 
circuit, there was still much noise that could not be canceled by traditional denoising 

Figure 6. Setup of the ultrasonic testing experiment.

The acquired signal of a 50 mm deep defect directly under the transmitter is depicted
in Figure 7a. In the experiment, the transmitter was not an ideal ultrasonic wave source,
and the emission crosstalk became much more severe than that simulated by COMSOL
Multiphysics. Although the received signal was denoised by the front analog bandpass
circuit, there was still much noise that could not be canceled by traditional denoising
methods. As a result, the SNR of the defect echo was poor (13.14 dB), and the accuracy and
resolution of the detection were affected.

Wavelet denoising is a suitable conditioning method for ultrasonic echo signals [26].
Based on the wavelet transform theory, the original signal was decomposed into many
wavelet bases, and noise signals with features different form the ultrasonic pulse were
eliminated. The ultrasonic pulse was kept and reconstructed as a denoised signal. The
acquired signal was postprocessed with wavelet denoising using MATLAB’s Wavelet
Signal Denoiser tool (R2021a). The wavelet denoised signal is also depicted in Figure 7a.
After wavelet denoising, the SNR of defect echo was 33.52 dB, which is greatly improved
compared with the original signal. From the wavelet denoised signal, the TOF of the defect
echo was 16.64 µs whereas the simulated TOF was 18.27 µs, which is caused by the model
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deviation. When the transmitter is not directly above the defect, the TOFs of the defect
echo received by Receiver A and Receiver B are different. The relative position of the defect
can be figured out by the difference in the TOFs. The received signals of defects located at
different relative positions are shown in Figure 7b–d.
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For the 50 mm deep defect, the hybrid NDT probe was moved horizontally across
5 mm, and the signal received by Receiver A and Receiver B is depicted in Figure 7b. The
defect echo received by Receiver A arrived at 16.53 µs with an amplitude of 78 mVpp, and
the defect echo received by Receiver B arrived at 17.02 µs with an amplitude of 57 mVpp.
The vertical distance between the transmitter and the defect was calculated to be 49.07 mm,
and the horizontal distance was 5.38 mm. For the 73 mm deep defect located 10 mm to the
left of the transmitter, tA was 24.30 µs and tB was 24.88 µs, and the amplitude of the defect
echo received by Receiver A and Receiver B was 76 mVpp and 68 mVpp, as depicted in
Figure 7c. The vertical distance was calculated to be 72.53 mm, and the horizontal distance
was 9.25 mm. For the 97 mm deep defect located 15 mm to the left of the transmitter, tA
was 32.12 µs and tB was 32.82 µs; the amplitude of the defect echo received by Receiver A
and Receiver B was 72 mVpp and 51 mVpp, as shown in Figure 7d. The vertical distance
was calculated to be 95.50 mm, and the horizontal distance was 14.69 mm. With the vertical
and horizontal distance increasing, the TOF differences between Receiver A and Receiver
B become more obvious. Compared with the simulated signal, severe electromagnetic
feedback was found during 0–10 µs, which could cause about a 30 mm blind zone.

The horizontal detection range of the reported NDT probe is limited by the sound
beam width of the transmitter and the ultrasonic wave attenuation of propagation and
reflection. When the horizontal shift distance exceeds 15 mm, the outer sensor can barely
receive the defect echo, and the horizontal range of the NDT probe prepared in this paper
is around 30 mm.
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3.2. Pulse Receiving Experiment

Pulse receiving experiments are performed to study the receiving performance of
the PMUT receiver. The schematic of the receiving experiments is illustrated in Figure 8a.
One conventional bulk piezoelectric transducer with 1.25 MHz resonant frequency was
employed as the transmitter. In the experiment, the transmitter and receiver were placed on
two sides of a 4 cm thick 6061 aluminum alloy cube. The transmitter was excited by a five-
cycle sine wave signal with an amplitude of 150 Vpp amplified by a voltage amplifier. The
received signals were acquired by the oscilloscope and are shown in Figure 8c. The pulse
signal received by the PMUTs was amplified and denoised by a preconditioning circuit. A
conventional piezoelectric probe without conditioning circuits was also employed as the
receiver for comparison. The sensors and the alloy cube were coupled by an ultrasonic
matching agent.
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From the time domain, the pulse signal received by the PMUT sensor arrived at
7.19 µs, and the pulse signal received by the conventional bulk probe arrived at 6.86 µs due
to the difference in thickness between the matching layers. The amplitude of the defect
echo received by the PMUT sensor was 1.29 Vpp and that of the conventional bulk probe
was 0.83 Vpp. Furthermore, better reception sensitivity will be acquired by using AlScN
PMUTs as receivers because of AlScN’s higher piezoelectric coefficient [2,3]. For the PMUT
receiver, the ultrasonic pulse is reflected by the PMUT chip and PCB, and the reflected
wave transmits to the interface of the matching layer and sample. Then, the ultrasonic
pulse is reflected by the sample, and a second echo is generated.

Moreover, a fast Fourier transform (FFT) of the received pulse was conducted to ana-
lyze the frequency components. The normalized amplitude–frequency spectrum is plotted
in Figure 8d. The −3 dB bandwidth of the PMUT receiver (244 kHz) was 36.3% wider
than that of the conventional bulk transducer (179 kHz). The PMUT receiver had better
bandwidth, and the spectrum concentrated around 1.25 MHz, whereas the signal received
by the bulk piezoelectric probe had some extra high-frequency noise. Bulk piezoelectric
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probes are often designed with additional damping blocks to achieve high damping and
large bandwidth; however, the PMUT receiver prepared in this paper is packaged without
any damping blocks. The bandwidth of the PMUT receiver fabricated in this paper was
significantly better than the PMUT sensor prepared for AE detection in previous work [17].
In all, the PMUT receiver reported in this paper had better bandwidth and tiny size com-
pared with a conventional NDT bulk piezoelectric transducer, which is essential for the
miniaturization and integration of high-axis-resolution NDT detection systems.

4. Conclusions

In this paper, a 1.25 MHz hybrid ultrasonic pulse–echo NDT probe employing AlN
PMUT arrays as receivers and a conventional bulk transducer as the transmitter is ini-
tiatively reported. The PMUT’s electromechanical characterization and pulse receiving
experiments indicate that the packaged PMUT receiver has a wider bandwidth (244 kHz)
than a bulk piezoelectric transducer (179 kHz), which is crucial for axis resolution improve-
ment in ultrasonic testing. The 2D position of the defect is detected through TOF difference,
and a 30 mm × 65 mm detection area is acquired. This work demonstrates the feasibility
of applying AlN PMUTs to ultrasonic nondestructive evaluation and will promote the
miniaturization and integration of ultrasonic NDT systems. In the future, employing AlScN
PMUTs as transceivers will further improve the sensitivity and integration of ultrasonic
NDT systems for their better performance.
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