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Abstract: Chemical instability of liquid-repellent surfaces is one of the nontrivial hurdles that
hinders their real-world applications. Although much effort has been made to prepare chemically
durable liquid-repellent surfaces, little attention has been paid to exploit the instability for versatile
use. Herein, we propose to create hydrophilic patterns on a superhydrophobic surface by taking
advantage of its chemical instability induced by acid solution treatment. A superhydrophobic
Cu(OH)2 nanoneedle-covered Cu plate that shows poor stability towards HCl solution (1.0 M) is
taken as an example. The results show that 2.5 min of HCl solution exposure leads to the etching
of Cu(OH)2 nanoneedles and the partial removal of the self-assembled fluoroalkyl silane molecular
layer, resulting in the wettability transition from superhydrophobocity to hydrophilicity, and the
water contact angle decreases from ~160◦ to ~30◦. Hydrophilic dimples with different diameters are
then created on the superhydrophobic surfaces by depositing HCl droplets with different volumes.
Afterwards, the hydrophilic dimple-patterned superhydrophobic surfaces are used for water droplet
manipulations, including controlled transfer, merging, and nanoliter droplet deposition. The results
thereby verify the feasibility of creating wettability patterns on superhydrophobic surfaces by using
their chemical instability towards corrosive solutions, which broadens the fabrication methods and
applications of functional liquid-repellent surfaces.
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1. Introduction

Bio-mimic superhydrophobic surfaces have drawn rapidly increasing research interest
because of their great significance for versatile applications such as self-cleaning [1,2],
chemical detection and sensors [3–6], liquid droplet/gas bubble manipulation [7–11],
icephobicity [12–16], immiscible liquid separation [17–19], enhanced heat transfer [20–22],
and anti-corrosion [23–25]. However, most superhydrophobic surfaces suffer from chemical
instability in harsh conditions like highly concentrated acidic/alkaline/salty solution
immersion, organic solvent invasion, thermal treatment, UV irradiation, and active species
exposure [26–28]. The chemical instability usually results in the loss of superhydrophobicity
to varying degrees due to interfacial chemical process-induced surface chemistry and/or
morphology change, which could obviously shorten the lifespan of superhydrophobic
surfaces and thus be commonly considered one of the major limitations for their real-world
applications. As a result, great efforts have been made to fabricate chemically durable
superhydrophobic surfaces, and much progress has been achieved in recent years [27,28].

Although chemically stable superhydrophobic surfaces are crucial in some cases, such
as chemical shielding and anti-corrosion [29–31], external stimuluses triggered chemical in-
stabilities are sometimes more desired, especially in the construction of functional surfaces
with (super)hydrophilic–superhydrophobic patterns or reversible wettability [28,32–34].
Surfaces with extreme wettability patterns are widely used in various applications such
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as enhanced water harvesting, spontaneous liquid transport, etc. [28,35]. For example,
Bai et al. [36] took the advantage of the chemical instability of superhydrophobic TiO2
coatings upon UV exposure to prepare star-shaped superhydrophilic patterns on superhy-
drophobic surfaces, which were used to realize efficient water harvesting by integrating
the water collection strategies of both desert beetles and spider silk. By using a similar
patterning method, Ghosh et al. [37] prepared wedge-shaped superhydrophilic patterns
on superhydrophobic TiO2 surfaces and realized high-rate, pumpless liquid transport on
the open substrates. Xu et al. [38] reported selective UV irradiation-induced superhy-
drophilic patterns on an octadecytrichlorosilane-modified superhydrophobic silica coating
and demonstrated its potential application towards microgravity biosensing. Plasma
contains active species, such as high-energy electrons, metastable particles, etc., so it can
always initiate surface chemistry and/or texture changes and thus, cause instability (i.e., hy-
drophilization) of superhydrophobic surfaces [32]. For example, Huang et al. [39] used the
chemical instability of a superhydrophobic surface towards plasma treatment to fabricate
superhydrophilic patterns on the superhydrophobic surface, which was further used for un-
derwater spontaneous pumpless transportation of organic liquids. Liu et al. [40] fabricated
hydrophilic patterns on a superhydrophobic surface by micro-plasma jet treatment and
reported its versatile ability to control water adhesion. Additionally, Liu et al. [41] showed
that a superhydrophobic Cu mesh could be completely converted to be superhydrophilic
after being immersed in tetrahydrofuran for 5 min, which facilitated subsequent reversible
oil/water separation. Therefore, the chemical instability of superhydrophobic surfaces
towards external stimuluses is not always a drawback for their applications; making in-
genious use of the instability can provide additional possibilities for constructing special
functional surfaces [28].

Immersion in an acidic/alkaline/salty solution, triggering chemical corrosion, can
sometimes change the surface morphology and/or surface chemistry of superhydropho-
bic surfaces, thereby changing their surface wettability (i.e., chemical instability) [42–45].
Although some works involving pH-responsive switchable super-wettability have been
reported [43–45], they were limited to smart surface fabrication or reversible oil/water sep-
aration, indicating that the full exploitation of their chemical instability for beneficial usage
was largely insufficient. In this paper, we took a superhydrophobic Cu(OH)2 nanorod-
covered Cu surface, which was unstable towards HCl solution exposure, as an example to
demonstrate the feasibility of creating wettability patterns by using this chemical instability.
Chemical etching by an HCl solution (1.0 M, 2.5 min) turned the superhydrophobic surface
into a hydrophilic one, and the related mechanism of the wettability transition was stud-
ied. Hydrophilic dimple-patterned superhydrophobic surfaces were then prepared and
employed to realize water droplet manipulation, such as transfer, merging, and deposition.

2. Materials and Methods

Copper plates (3 × 4 × 0.1 cm3) were bought from Huaru copper Co., Ltd. (Guangzhou,
China). Analytical-grade ethanol, HCl, NaOH, and (NH4)2S2O8 were supplied by Tian-
jin Kemiou Chemical Reagent Co., Ltd. (Tianjin, China). 1H,1H,2H,2H-Perfluorodecy-
ltriethoxysilane (fluoroalkyl silane, FAS) with 97% purity was purchased from Alfa Aesar
(Haverhill, MA, USA).

A superhydrophobic surface on a copper substrate was fabricated according to a
previously reported method [46]. Briefly, a copper plate was firstly polished mechanically
using 1000# and 2000# abrasive paper and then ultrasonically cleaned in sequence in
HCl (0.1 M), alcohol, and deionized water. Then, the cleaned copper plate was placed
into an aqueous solution containing NaOH (2.5 M) and (NH4)2S2O8 (0.1 M) for 5 min to
construct micro/nano structures. Then, the substrate was taken out and washed with
abundant ultrapure water. After drying with blowing air, the sample was immersed into
1 wt% ethanol solution of FAS for 1 h to lower the surface energy. Then, the plate was
washed with ethanol and dried at 90 ◦C. Finally, the copper surface was imparted with
superhydrophobicity.
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The instability of the obtained superhydrophobic Cu surface was triggered by an
HCl (1.0 M) solution, and the chemical instability was characterized by the water contact
angles (WCAs) of the surface after being exposed to the HCl solution for different times
(0–5 min). Hydrophilic dimple patterns were fabricated by depositing HCl (1.0 M) droplets
with different volumes (0.2–5.0 µL) on the as-prepared superhydrophobic Cu surfaces for
2.5 min. After reaching the specific reaction time, the residual liquid was removed by
absorbent paper, and the surfaces were washed with deionized water and then blow-dried
at room temperature.

The WCAs of the sample surfaces were measured by an optical contact angle meter
(AST-VCM Optima, Billerica, MA, USA) at room temperature. The 3D morphology and
corresponding cross-sectional profile were recorded by a confocal laser scanning microscope
(CLSM, Carl Zeiss LSM 700, Jena, Germany). The surface morphologies and corresponding
chemical compositions of the samples were observed by scanning electron microscope (SEM,
SUPRA 55 SAPPHIRE, Oberkochen, Germany) at an accelerating voltage of 15 kV. The
surface chemical groups were analyzed by Fourier transform infrared spectrophotometer
(FTIR, JASCO, Tokyo, Japan). The surface chemistries were also characterized by X-ray
photoelectron spectroscopy (XPS, Thermo ESCALAB 250Xi, Waltham, MA, USA) with a
monochromatic Al Kα (1486.6 eV) X-ray beam, and the C 1s peak at 284.8 eV was used as
reference. The spot size was 400 µm, and the pass energy and energy step size of the full
spectrum scan were, respectively, 100 eV and 1.0 eV, while those of the C 1s high-resolution
spectrum were 50.0 eV and 0.1 eV, respectively. An X-ray diffractometer (XRD, Bruker AXS
D8 Discover, Bremen, Germany) with an X-ray source of Cu Kα (λ = 1.5418 Å) was used to
observe the crystal-phase structure of the samples; the scanning rate was 2◦/min.

3. Results and Discussion

The as-prepared superhydrophobic Cu surface possessed excellent water repellence
with a water contact angle (WCA) of 160◦, and the solid–liquid interfacial adhesion was
negligible when it was pressed to make contact with a water droplet (5.0 µL), as shown in
Figure 1a. By contrast, as illustrated in Figure 1b, if the superhydrophobic substrate was
moved up and contacted an HCl droplet (1.0 M, 5.0 µL), obvious interfacial adhesion could
be observed when the substrate was moved down, and the HCl droplet was even dragged
down from the liquid-feeding outlet and then tightly adhered on the surface, demonstrating
locally damaged water repellence of the surface upon HCl droplet exposure. The HCl
solution-induced chemical instability of the superhydrophobic surface was further studied
by measuring the WCA of samples that were immersed in HCl for different durations.
Figure 1c shows the influence of immersion time on the WCA of the superhydrophobic
surface. It can be seen that the WCA decreased with the immersion time in HCl, and the
surface lost its superhydrophobicity after several seconds of chemical etching. Finally, the
WCA stabilized at ~30◦ after immersion for 150 s, the surface turned its color to bronze,
and the deposited water droplet spread rather than beaded up on the etched surface, as
depicted in Figure 1d, indicating complete loss of the water repellence by exposing the
surface to the corrosive HCl solution.

Taking advantage of the HCl-induced chemical instability of the superhydrophobic
surfaces, hydrophilic patterns can be constructed on the surfaces. Here, we propose to
create hydrophilic dimple patterns on superhydrophobic Cu surfaces by depositing HCl
droplets on the surface to trigger localized chemical etching, as illustrated in Figure 2a.
Figure 2b–f show the surface morphology characterizations of the dimple pattern prepared
by using a HCl droplet with volume of 0.2 µL. As depicted in Figure 2b,c, the CSML
image and the corresponding cross-sectional profile clearly showed that a circular dimple
with diameter of ~390 µm and depth of ~3 µm was obtained on the superhydrophobic
surface. It is widely known that when a water droplet is deposited on a superhydrophobic
surface, a circular liquid–solid–vapor composite contacting the interface can be built.
Here, the placed HCl droplet-triggered chemical corrosion occurred at the HCl-Cu(OH)2
contact area and finally created a dimple pattern with a round shape. Figure 2d–f show
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SEM images of the hydrophilic dimple-patterned superhydrophobic surface with different
magnifications. It can be clearly seen that the as-prepared superhydrophobic Cu surface
(i.e., the unetched area in Figure 2d) was covered with numerous nanorods and some
flower-like microstructures, as can be observed in Figure 2e. By contrast, after being etched
by an HCl droplet, the nanorods and flower-like microstructures were obviously destroyed
and replaced by closely packed irregular particles with sizes in a range from hundreds
of nanometers to several micrometers (Figure 2f). Zooming into these irregular particles
revealed that they were decorated with nano-scale granules.
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Figure 3 shows the surface chemistries of the original and HCl-etched areas on the
superhydrophobic Cu surface. Figure 3a shows the FTIR spectra of the two areas, and the
bands around 1139, 1211, and 1241 cm−1 were attributed to the –CF stretching vibrations
of the –CF2 and –CF3 groups [47]. The weak bands at 779 cm−1 were assigned to the
Si–O–CH2CH3 groups of the FAS molecules [48], while the emergence of peaks around
894 cm−1 were related to the stretching vibrations of the Si–O–Si bonds [47]. The Si–O–
CH2CH3 groups in the FAS molecule were transformed into Si–OH groups due to the
hydrolysis reaction in ethanol solution [49,50]. When the rough Cu substrate was immersed
in the ethanol solution of FAS, a second hydrolysis reaction between the Si–OH groups
and the surface –OH groups occurred to form Si–O–Cu bonds, which enabled successful
self-assembly of the FAS molecules on the Cu surface. Some adjacent self-assembled FAS
molecules underwent further dehydration and condensation reactions to form Si–O–Si
bonds, leading to the formation of a denser fluorosilane network to impart the rough Cu
surface with superhydrophobicity [48,49]. It can be observed that after HCl etching, the
intensities of these peaks decreased, especially those originating from the FAS molecules,
indicating that the self-assembled FAS coating was partially removed.
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Figure 3b depicts the XPS spectra of the superhydrophobic and HCl-etched areas, and
elements of Cu, C, O, F, and Si could be detected. The relative atomic percent of element F
was measured to be 20.8% at the original superhydrophobic area, which originates from
FAS molecules and contributes to the formation of superhydrophobicity. After HCl etching,
the surface F decreased to 4.17%, Cu reduced from 14.74% to 7.61%, and O decreased
from 26.74% to 15.78%. Notably, Cl with a content of 4.97% was detected in the HCl-
etched area. According to the high-resolution C 1s spectra shown in Figure 3c, the peaks
assigned to the −CF2 and −CF3 groups of the FAS molecules were markedly detected on
the superhydrophobic area [31], while the corresponding peaks for the HCl-etched area
could hardly be observed; that is, the peak intensities were greatly weakened after HCl-
induced corrosion. Figure 3d shows the XRD patterns of the original superhydrophobic
area and HCl-etched area. It can be seen that, besides the diffraction peaks at 2θ = 43.3,
50.4, 74.1, and 89.9◦, respectively attributed to face-centered cubic Cu planes of (111), (200),
(220), and (311) (JCPDS card No. 04-0836) that originated from the Cu substrate, new
orthorhombic-phase Cu(OH)2 planes of (021) at 23.7◦, (002) at 34.0◦, (111) at 35.8◦, (041, 022)
at 38.0◦, (130) and 39.7◦, and (150, 132) at 53.2◦ (JCPDS card No. 80-0656) were detected,
confirming the well-known alkali-assisted oxidation of Cu to generate Cu(OH)2 [46,51]:

Cu + 4NaOH + (NH4)2S4O8 → Cu(OH)2 + 2Na2SO4 + 2NH3↑ + 2H2O (1)

In comparison, these diffraction peaks of Cu(OH)2 disappeared after HCl etching, while
three new characteristic peaks corresponding to CuCl planes of (111) at 28.6◦, (220) at 47.5◦,
and (311) at 56.3◦ (JCPDS card No. 06-0344) were observed. It is commonly known that
neutralization happens when Cu(OH)2 contacts HCl, as described in the following equation:

Cu(OH)2 + 2HCl → CuCl2 + 2H2O (2)

Then, the generated CuCl2 could partly etch the exposed Cu substrate with the
assistance of HCl, which was finally reduced to CuCl and precipitated on the Cu sub-
strate [52,53]:

CuCl2 + Cu → 2CuCl↓ (3)

According to the above results, we could conclude that NaOH-assisted surface ox-
idation generated Cu(OH)2 micro/nano rough structures on the Cu substrate, and the
subsequent immersion in FAS successfully triggered the formation of an F-containing
monolayer with low surface tension; the obtained surface thereafter possessed superhy-
drophobicity [46,54]. However, when HCl solution invaded, the Cu(OH)2 nanorods were
chemically etched and partially washed away, as well as the self-assembled FAS layer,
which resulted in the content decrease in surface Cu, O, and F. Therefore, the HCl-etched
area lost its superhydrophobicity and showed hydrophobicity, which enabled us to con-
struct hydrophobic patterns on the superhydrophobic Cu surface by using its chemical
instability towards HCl.

We then examined the influence of the volume of the deposited HCl droplet (VHCl,
0.2–5.0 µL) on the diameter of the obtained dimple (D); the results are depicted and fitted in
Figure 4. It can be seen that the diameter of the obtained dimple grew almost linearly with
the increase in VHCl. For example, when the VHCl was as small as 0.2 µL, a dimple with a
diameter of 0.38 ± 0.02 mm could be obtained. Smaller HCl droplets could hardly generate
observable dimples due to their rapid evaporation. When the VHCl was increased to 1.0 µL,
the dimple diameter was about 0.47 ± 0.01 mm, and it increased to 0.91 ± 0.03 mm when
the VHCl was 5.0 µL. According to the linear fitting of the experimental data (the correlation
coefficient R2 = 0.99), the dimple diameter, D, could be estimated as follows:

D = 0.375 + 0.111VHCl (4)
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Programmable liquid droplet manipulations, including controllable transfer and depo-
sition, have been widely explored on wettability-patterned surfaces [55–58]. Here, we tested
water droplet manipulations on the HCl etching-patterned hydrophilic/superhydrophobic
surface. Figure 5 shows water droplet transfer by hydrophilic dimple-patterned super-
hydrophobic substrates. Figure 5a illustrates the schematic diagram of the pre-designed
patterned surfaces, consisting of one hydrophilic dimple on each superhydrophobic sub-
strate. As shown in the image in Figure 5b, a water droplet (5 µL) was initially pre-deposited
at position A of the superhydrophobic surface; positions B and C were patterned with
hydrophilic dimples with diameters of 0.62 mm and 0.81 mm, respectively. Figure 5c,d
depict that an upward movement of the lower substrate enabled the contact between the
droplet and dimple B, and then the droplet adhered to the upper substrate via dimple B
when the lower plate was moved down. As can be seen in Figure 5e–h, when the hanging
droplet came in contact with dimple C on the lower plate, it was grabbed by the dimple and
then re-deposited onto the lower substrate, i.e., the droplet was transferred from position A
to C. It could be observed that some liquid was left on the hydrophilic dimple B after the
transfer, and its volume was estimated to be ~0.03 µL. Although the liquid deposition by the
hydrophilic dimple was inevitable, the as-prepared patterned surface herein could be used
for water droplet transfer after taking the dimple-diameter-dependent and quantifiable
volume loss into consideration.

Figure 6 shows water droplets merging by using the as-prepared hydrophilic dimple-
patterned superhydrophobic surfaces. As can be seen from Figure 6a, water droplets #1
(7.0 µL) and #2 (4.0 µL) were, respectively, deposited at position A (superhydrophobic area)
and position B (a hydrophilic dimple with diameter of 0.81 mm); positions C and D on
the upper plate were a hydrophilic dimple (diameter 0.62 mm) and a superhydrophobic
area, respectively. Figure 6b–d show that after the two droplets came in contact with
the upper plate at positions C and D, the subsequent downward movement of the lower
plate enabled the capture of droplet #1 by the upper plate due to the high adhesion of
dimple C, while droplet #2 remained at dimple B because the adhesion of position D, the
original superhydrophobic surface, was extremely low. Then, horizontal and subsequently
perpendicular movement of the lower substrate enabled the merging of droplets #1 and #2,
resulting in the formation of a new droplet #(1 + 2) at dimple B, as depicted in Figure 6d–f.
It has to be noted that a slight volume loss (~0.03 µL) of droplet #1 was observed at position
C during the merging, which should be taken into consideration in terms of quantitative
droplet merging. Consequently, we could envision that the proposed chemical instability-



Micromachines 2024, 15, 329 8 of 12

induced patterned superhydrophobic surfaces could be potentially used for droplet-based
micro-reactors [59].
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(a) the schematic diagram of the employed substrates; (b–h) the image sequences showing the water
droplet (5 µL) transfer from position A to C via dimple B; the black dotted arrows indicate the
direction of movement of the lower substrate.
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Figure 6. (a–f) Merging of water droplets 1 and 2 by hydrophilic dimple-patterned superhydrophobic
substrates; the black dotted arrows indicate the moving direction of the lower substrate, A and B
respectively indicate the superhydrophobic position and the hydrophilic dimple with diameter of
0.81 mm on the lower substrate, C and D represent the hydrophilic dimple with diameter of 0.62 mm
and the superhydrophobic area on the upper substrate, respectively.

The deposition of nanoliter-sized droplets is important in many chemical and biomed-
ical droplet-based microfluidic applications, such as fluorescence detection [55] and high-
throughput cell screening [60]. We show here the nanoliter water deposition by the as-prepared
hydrophilic dimple-patterned superhydrophobic surface, which is schematically illustrated
in Figure 7a. As can be seen in Figure 7b, a water droplet (1.5 µL) attached to a needle was
initially positioned on the superhydrophobic area of the patterned surface. When the substrate
was horizontally moved with a velocity of ~0.6 mm/s, the droplet remained quasi-spherical
in shape until it adhered to the dimple. Afterwards, the droplet gradually deformed and
broke, leaving a tiny droplet deposited on the dimple. According to the schematic diagram in
Figure 7c, the deposited water could be roughly considered as a spherical crown intercepted
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from a sphere with radius of R to estimate its volume. The intercepted area’s diameter (d) and
height (h) of the spherical crown could be experimentally measured from the recorded images.
According to the Pythagorean theorem, we know that:

x2 + y2 = R2 (5)

(R − h)2 + (d/2)2 = R2 (6)
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The volume of the deposited water, Vd, can be described as:

Vd =
∫ R

R−h
πx2dy (7)

According to Equations (5)–(7), the volume of the deposited water can be expressed as:

Vd =
πh(3d2 + 4h2)

24
(8)

According to Equation (8), the deposited water droplet in Figure 7b was calculated
to be ~20 nL. Then, we prepared hydrophilic dimples with different diameters by using
HCl droplets with varying volumes (Figure 4) and studied the influence of the dimple
diameter on the volume of the deposited droplet. As shown in Figure 7d, the volume of
the deposited droplet increased with the growth in dimple diameter within the examined
regime, and a volume as low as 10.5 ± 1.1 nL could be deposited on the dimple with a
diameter of 0.37 ± 0.02 mm. Besides droplet-based microfluidic applications, quantifiable
droplet deposition can also be used to estimate the liquid loss during droplet transfer and
merging, as depicted in Figures 5 and 6.

4. Conclusions

In summary, we reported a simple method to create hydrophilic patterns on a superhy-
drophobic Cu surface by using HCl solution-triggered chemical instability. A 2.5 min HCl
exposure led to the etching of surface micro/nano structures and partial removal of the
FAS molecular layers, enabling the treated superhydrophobic area to be hydrophilic. Based
on this HCl-induced chemical instability, we prepared hydrophilic dimples with diameters
of 0.38–0.91 mm by depositing HCl droplets with volumes of 0.2–5.0 µL on the superhy-
drophobic surfaces. Typical applications, such as controlled droplet transfer, merging, and
nanoliter droplet deposition, have been demonstrated on the hydrophilic dimple-patterned
superhydrophobic surface. These results demonstrated the feasibility of creating wetta-
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bility patterns on superhydrophobic surfaces by using their chemical instability towards
corrosive solutions, which could enrich the fabrication methods of liquid-repellent surfaces
with patterned wettability and promote their applications in droplet manipulation.
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