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Abstract: Cell models play a crucial role in analyzing the mechanical response of cells and quantifying
cellular damage incurred during micromanipulation. While traditional models can capture the overall
mechanical behavior of cells, they often lack the ability to discern among distinct cellular components.
Consequently, by employing dissipative particle dynamics, this study constructed a triangular
network-like representation of the cell membrane along with cross-linked cytoskeletal chains. The
mechanical properties of both the membrane and cytoskeleton were then analyzed through a series
of simulated mechanical tests, validated against real-world experiments. The investigation utilized
particle-tracking rheology to monitor changes in the mean square displacements of membrane
particles over time, facilitating the analysis of the membrane’s storage and loss moduli. Additionally,
the cytoskeletal network’s storage and loss moduli were examined via a double-plate oscillatory
shear experiment. The simulation results revealed that both the membrane and cytoskeleton exhibit
viscoelastic behavior, as evidenced by the power-law dependency of their storage and loss moduli
on frequency. Furthermore, indentation and microinjection simulations were conducted to examine
the overall mechanical properties of cells. In the indentation experiments, an increase in the shear
modulus of the membrane’s WLCs correlated with a higher Young’s modulus for the entire cell.
Regarding the microinjection experiment, augmenting the microinjection speed resulted in reduced
deformation of the cell at the point of membrane rupture and a lower percentage of high strain.

Keywords: cell model; DPD; bulk rheology; indentation; cell penetration; cytoskeleton

1. Introduction

Cell micromanipulation involves the precise control of a micropipette’s movement
within a microscopic field for manipulating cells or early-stage embryos. This technique
encompasses various procedures, including nuclear transfer, microinjection, cytoplasmic
extraction, and the introduction of exogenous genes. Emerged in the 1990s, robotic mi-
cromanipulation has significantly advanced interdisciplinary research in engineering, life
sciences, and biomedical fields [1]. In contrast to manual procedures, robotic microma-
nipulation plays a pivotal role in standardizing operations, enhancing success rates, and
reducing operational costs. Irrespective of manual or robotic micromanipulation meth-
ods, cells undergo observable mechanical deformations when subjected to external forces,
causing irreversible structural damage to cellular components like the cell membrane and
cytoskeleton (e.g., membrane tearing or cytoskeletal fracture) [2–4] and significantly im-
pacting cell developmental rates. For instance, despite the advantages of standardized
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procedures and the high success rates—up to 95%—in robotic nuclear transfer, blastocyst
rates remain at around 20%, and the live birth rate is less than 1% [5]. Hence, research in
robotic micromanipulation must aim to automate operations while minimizing cell damage.

Studying cell models is crucial to analyzing cellular mechanical responses, quantifying
intracellular strain and cell damage, and optimizing operational techniques. Many studies
have shown that mechanical strain can affect cell viability and that short-term and high-
strain mechanical loading can cause apoptosis. In our prior work, we used internal strain
as a criterion for quantifying cell damage in a microinjection experiment [5]. However,
we lacked three-dimensional information on cell deformation. The existing methods did
not support us in performing the real-time three-dimensional scanning of cells. Although
there are methods to calculate cell deformation by injecting fluorescent markers into cells,
the latter are damaged in the process. Therefore, developing cell models is an effective
tool to analyze cell deformation in three dimensions. Traditional modeling approaches
treat cells as continuous entities, employing spring-damping models to simulate cellular
responses under varying loading conditions [6,7]. Ref. [6] built an approximate linear
model for oocytes utilizing two springs and two dampers; the results, validated against
actual experiments, accurately reflected the cell deformation induced by aspiration. How-
ever, while suitable for analyzing the microscopic mechanical characteristics of cells, these
models cannot differentiate among distinct cell components, each with unique mechanical
properties at the microscale. For example, the zona pellucida of oocytes, composed of gly-
coprotein filaments, is considered to exhibit incompressible elastic properties [8], while the
cytoplasm is believed to act as a viscous, non-Newtonian fluid [9]. Therefore, subcellular
component modeling serves as a valuable tool for analyzing the mechanical properties of
cellular components from an intermediate perspective between the micro- and nanoscales.

Dissipative particle dynamics (DPD) is a mesoscopic simulation method based on
statistical mechanics that serves as a bridge between nanoscale and microscale simulations.
DPD not only preserves certain atomic details of the system but also overcomes the spatial
and temporal limitations of nanoscale simulations. As a result, it provides a valuable
theoretical framework for unraveling the mechanical properties of subcellular structures.
Prior studies, particularly those involving red blood cells, have extensively focused on
modeling the cell membrane. These investigations have primarily considered the phos-
pholipid bilayer structure of the cell membrane while omitting molecular intricacies, yet
capturing the microscopic mechanical properties of cells [10,11]. In our preceding work, we
characterized the cell membrane as a viscous material and modeled it using a viscoelastic
membrane model that considered the viscosity, bending resistance, and incompressibility
of the cell. This model involved a triangular mesh, wherein each vertex corresponded to a
DPD particle [12].

In contrast, modeling the cytoskeleton poses greater complexity, as it encapsulates the
local mechanical characteristics of the cell. The cytoskeleton is commonly perceived as a
highly dynamic network of F-actin filaments interconnected by cross-linked proteins. Ex-
perimental observations suggest that the behavior of cross-linked F-actin at high oscillation
frequencies is primarily governed by thermal fluctuations, leading to the power-law depen-
dency of the storage modulus (G′) and loss modulus (G′′) on the frequency. Furthermore,
the network displays an elastic response at low frequencies. The authors in [13] analyzed
the dynamics of transient cross-linking networks, proposing a semi-phenomenological ap-
proach to elucidating network behavior at low to medium frequencies. Another study [14]
simulated a network comprising individual actin monomers and actin cross-linking pro-
teins (ACPs) using Brownian dynamics. This analysis focused on unraveling the unfolding
patterns of cross-linking proteins and assessing the impact of diverse constraints on network
responses. However, existing simulation studies still grapple with achieving a dynamic
cytoskeletal network that accurately mirrors the intricate rheological responses observed in
experiments and replicates the viscoelastic properties evident in real-world scenarios.

Parameter determination and model validation play pivotal roles in cell modeling,
often necessitating cell mechanics measurement experiments. These experiments frequently
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encompass techniques such as Atomic Force Microscopy (AFM)-based nanoindentation, mi-
cropipette aspiration, microrheology, microfluidics, magnetic tweezers, or optical tweezers.
For instance, in nanoindentation experiments, force–indentation curves are obtained and
fitted to determine the Young’s modulus of the simulated cell. Another critical validation
experiment is microinjection. Constructing the simulation environment for microinjec-
tion allows for the observation of cell deformation at varying penetration speeds, with
intracellular strain being commonly calculated as a cell damage indicator.

In this study, we developed a cell model using DPD which comprises a triangular
network-like representation of the cell membrane and cross-linked cytoskeletal chains.
We scrutinized the mechanical properties of both the membrane and the cytoskeleton
through a series of simulated experiments, which were subsequently validated against
physical experiments. Initially, to analyze the membrane’s storage and loss moduli, a
particle-tracking rheology experiment was conducted by monitoring the mean square
displacements of membrane particles over time. Subsequently, a double-plate oscillatory
shear experiment was employed to assess the storage and loss moduli of the cytoskeletal
network. The simulation results indicate that both the membrane and the cytoskeleton ex-
hibit viscoelastic behavior, as demonstrated by the power-law dependency of their storage
and loss moduli on frequency. Furthermore, we conducted indentation and microinjection
simulations mimicking real experiments to analyze the mechanical properties of whole
cells, comprising the simulated cell membrane and cytoskeleton. In the indentation experi-
ment, forces were recorded as the probe approached the cell, facilitating the derivation of
force–indentation curves for the determination of Young’s modulus. Additionally, we in-
vestigated the impacts of varying membrane parameters, including the shear modulus (µ0),
the bending stiffness (kbending), and the maximum length (lmax), on the force–indentation
curves. For the microinjection experiment, we constructed a DPD environment mirroring
the actual microinjection platform, featuring a holding micropipette, a cell, and a microin-
jection micropipette. The analysis centered on observing cell deformation at different
microinjection speeds. The intracellular strain distribution within the simulated cell was
plotted and compared with visually observed results from the actual experiment, utiliz-
ing metrics like Jensen–Shannon (JS) divergence, the Jaccard similarity coefficient, and
Bhattacharyya distance.

The remainder of this paper is structured as follows: Section 2 describes the DPD
method and the cell membrane and cytoskeleton models. This section elucidates the
simulated mechanical testing conducted on these two components, including the the-
oretical framework behind particle-tracking rheology for the membrane and the bulk
rheology approach for the cytoskeleton. Additionally, it outlines the setup procedures for
two distinct cell mechanics models—the indentation model and the cell microinjection
model—alongside the setup protocols for the actual experiments associated with these
models. Section 3 details the outcomes derived from the particle-tracking rheology of the
membrane, focusing on the mean square displacements (MSDs) of membrane particles
over time, along with the determined storage and loss moduli of the membrane. It also
presents the analytical findings related to the bulk rheology of the cytoskeletal network,
which were derived from the stress curves obtained at varying shear strain frequencies.
Moreover, this section analyzes the stress amplitude and phase difference concerning the
applied shear strain. Finally, it includes discussions on the results stemming from the
indentation experiment, delineating the force–indentation curves associated with different
critical membrane parameters, and the outcomes of the microinjection experiment, focusing
on the cell deformation observed at different microinjection speeds. Section 4 discusses the
findings of the study, while Section 5 serves as the conclusion of this paper.
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2. Materials and Methods
2.1. Dissipative Particle Dynamics and Cell Model
2.1.1. Dissipative Particle Dynamics

The DPD method, a mesoscopic statistical mechanics approach, finds widespread
use in simulating intricate fluids and biological tissues. This system ensures momentum
conservation and adheres to Newton’s equation of motion. Within the DPD framework,
individual particles represent multiple molecules, and interactions among non-bonded
particles are categorized into three types: conservative force (FC

ij ), dissipative force (FD
ij ),

and random force (FR
ij ). These interactions operate solely within the defined cutoff radius

(rc). The conservative force embodies a soft repulsion and is mathematically expressed as

FC
ij =

{
aij

(
1 − rij

rc
)r̂ij rij < rc

0 rij ≥ rc
(1)

where r̂ij = rij/|rij| represents the directional vector between both particles and aij is the
repulsion strength between particles i and j. The dissipative and random forces, which are
interlinked via the fluctuation–dissipation theorem, are defined as

FD
ij = −γωD(rij) < vij, r̂ij > r̂ij (2)

where ωD is a weight function that describes the decreasing dissipative force as the distance
between the particles increases, vij = vi − vj describes the relative speed between the two
particles, and γ is the friction coefficient.

FR
ij = σωR(rij)

ϵij√
dt

r̂ij (3)

where σ is the random force coefficient, ωR and ωD are weight functions related to distance
rij, ϵij is a random variable following a normal distribution with a zero mean and unit
variance ϵij = ϵji, and the directions of dissipative force FD

ij and random force FR
ij are also

along the directional vector between particles i and j. These weight functions must satisfy
the condition

ωD(rij) = [ωR(rij)]
2 =

{
(1 − rij)

2, rij < rc
0, rij ≥ rc

σ2 = 2γkBT
(4)

2.1.2. Cell Membrane

The cell membrane primarily consists of a phospholipid bilayer, housing various types
of membrane proteins integrated onto its surface. In this model, the cell membrane is
depicted as a triangular network [15], and the vertices are interconnected through worm
chains (WLCs).

This model considers several factors: the elastic energy (Uelastic), the bending resistance
(Ubending), and the volume (Uvolume) and surface area (Uarea) constraints. Additionally, it
incorporates a dissipative force and a random force applied to the springs connecting two
particles, aiming to describe the viscoelastic nature of the membrane [12,16].

U = Uelastic + Ubending + Uarea + Uvolume (5)

The shear modulus (µ0) of each WLC is expressed as

µ0 =

√
3kBT

4plmaxx0
(

x0

2(1 − x0)
3 − 1

4(1 − x0)
2 +

1
4
) +

√
3kp(m + 1)

4lm+1
0

(6)
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where x0 is the ratio of the spring’s equilibrium length to the maximum length ( l0
lmax

) , kp is
the spring constant, m is a user-specified exponent, p is the persistence length, and kBT is
the energy unit. p and kp control the overall stiffness of the cell membrane and are related
to µ0 and lmax.

2.1.3. Cytoskeleton

The cell cytoskeleton comprises three primary classes of elements—microtubules,
actin filaments, and intermediate filaments—differing in size and protein composition.
With the involvement of various auxiliary proteins, these filaments interconnect to cre-
ate a complex three-dimensional cytoskeletal network, significantly influencing both the
mechanical properties and the biological functions of a cell. In our approach, we aimed
to replicate its mechanical phenomena rather than delving into specific biomechanical
reactions or interpreting cellular characteristics at a molecular level. Within the model,
each filament represents real filament bundles, without differentiation among actin fila-
ments, microtubules, and intermediate filaments. Each filament is composed of particles
connected by harmonic bonds. These filaments are cross-linked via actin cross-linking
proteins (ACPs). Each particle on the filaments can bind with an ACP, while an ACP can
link up to two filament particles. Adjacent particles on the filaments are restricted by two
harmonic potentials:

Ubond = kbond(r − r0)
2

Uangle = kangle(θ − θ0)
2 (7)

where kbond is the spring constant; kangle is the bending stiffness; and r and θ are the length
of a spring and the angle between two springs, respectively. In addition to the two-body
potential and three-body potential regulated by the harmonic law, the interaction between
the filament particles and ACP particles involves a four-body potential, utilized to portray
the twist between two interconnected filaments mediated by an ACP.

Ubending = ∑
j∈1...Nd

kb
[
1 − cos

(
θj − θ0

)]
(8)

The single-bond polymerization/depolymerization model was first proposed by
Bell [17]. Furthermore, Dembo et al. [18] developed a formula to calculate the polymeriza-
tion/depolymerization rate, utilizing the Boltzmann distribution to account for affinity. We
applied this model to delineate the polymerization/depolymerization occurrences between
filaments and ACPs, as well as between filaments and membrane. A bond can form at a
rate of kon when the distance between the free ligand and the receptor is sufficiently close.
Conversely, if the length of the existing bond exceeds the breaking distance, it breaks at the
rate of ko f f :

kon/o f f = k0
on/o f f e

(−σon/o f f (l − l0)2

2kBT
) (9)

where l describes the instantaneous distance between the free ligand and the receptor, and
k0

on and k0
o f f represent the bonding and dissociation rates when the distance between the

free ligand and the receptor is l0. The ACP particle forms a bond with neighboring filament
particles with a probability of Pon:

Pon/o f f =

{
1 − e−kon/o f f ∆t l < don/o f f

0 l ≥ don/o f f
(10)

In DPD simulations, the above stochastic model has been widely utilized to investigate
varying adhesion behaviors (bond formation) between healthy RBCs or between RBCs in
sickle cell disease and macrophages in blood flow [19,20], the phenomenon of thrombus
formation caused by platelet aggregation [21], and the adhesion dynamics of white blood
cells in shear flow [22].
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The process of assembling different components within the cell model was performed
as follows: Non-intersecting filaments of varying lengths were randomly generated, and a
specific concentration of ACPs was introduced into the cell space. This facilitated the ran-
dom amalgamation of filaments and ACPs, forming a network characterized by substantial
cross-linking. Subsequently, this network was integrated into the cell membrane model,
culminating in the combination of membrane particles and cytoskeletal particles, mirroring
the cross-linking process between filament and ACP particles. Finally, dihedral angle
constraints were incorporated into the cytoskeleton model to achieve the ultimate model.
These values were established by referencing previous work [12]. Furthermore, certain
parameter adjustments were made to suit the requirements of the new model (Table 1).

Table 1. Parameters used in the simulation.

Notation Parameter Physical Value Simulation
Value Source

rc Cell radius 120 µm 8 [12]
kBT Energy scale 4.1164 × 10−21 J 1 [12]
kv Volume constant - 7.5 × 103 [12,22–24]
ka Area constant - 7.5 × 103 [12,22–24]
kd Local area constant - 300 [12,16]
Na Actin number - 2698 -
L f Filament length - 0.5–2.5 -

Na f Actin number on filament - 3–11 -
k f Filament spring constant 0.092 N/m 8 × 104 [12,22,23]

k f bend Filament bending stiffness 4.025 × 10−16 J 350 [12,22,23]
NA ACP number - 1000 -
kA ACP spring constant 0.0092 N/m 8 × 103 [12,22,23,25]

k f−A ACP–filament bending stiffness 6.325 × 10−16 J 550 [12,16,22,23]
kt ACP–filament torsion stiffness 4.7 × 10−16 J 470 [12,16,22,23]
k0 Zero-force unbinding rate 78 s−1 26 × 10−4 [12,16,23]
don Binding distance - 0.25 [12,23]
do f f Unbinding distance - 0.25 [12,23]
σo f f Switch strength for cytoskeleton 3.5 × 10−4 µm 3.5 × 10−4 [12]
σo f f Switch strength for cell 10−4 µm 10−4 [12]

2.1.4. Particle-Tracking Rheology of Membrane

Particle-tracking rheology, which finds extensive application in biophysical settings,
involves the introduction of small particles or droplets into fluids or cells to monitor
their motion using lasers or cameras [26,27]. When measuring the modulus of the cell
membrane, we analyzed it as a separate component and applied the particle-tracking
rheology employed in the study of red blood cells to explore the membrane’s capacity to
elastically store energy and dissipate stress as heat. A specific set of membrane particles was
chosen, and their mean square displacements (MSDs) over time were recorded, expressed as

⟨∆r(t)2⟩ = ⟨|r(t + t0)− r(t0)|2⟩ (11)

where t is the time and ⟨|r(t + t0)− r(t0)|⟩ represents the MSDs of these particles.
To derive the storage modulus (G′) and the loss modulus from the MSDs, we utilized

an approximate method [28], outlined as:

G∗(s) ≈ kBT

πa⟨∆r(t)2⟩Γ[1 + χ(s)]

∣∣∣
s= 1

t

(12)
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where s represents the Laplace frequency, kB represents the Boltzmann constant, a is the
particle radius, Γ is a gamma function, and χ(s) represents the slope of ⟨∆r(t)2⟩ in the
log–log scale plot.

χ(s) ≡ d ln⟨∆r(t)2⟩
d ln t

|s= 1
t

(13)

The storage modulus (G′) and the loss modulus (G′′) were computed using the follow-
ing expressions:

G′(s) = |G∗(s)| cos(
πχ(s)

2
)

G′′(s) = |G∗(s)| sin(
πχ(s)

2
)

(14)

Following the article [29], we performed curve fitting with a second-degree polynomial
to analyze the slope at high frequencies in the log–log plot of frequency versus modulus.
The same curve-fitting method was used in the of bulk rheology of the cytoskeleton as
detailed in the next subsection.

2.1.5. Bulk Rheology of Cytoskeleton

After conducting mechanical tests on the membrane, we proceeded with rheological
studies concerning the cytoskeletal network. Through shear oscillation experiments, it
was possible to measure the elastic modulus (G′) and viscous modulus (G′′) of the cellular
cytoskeleton. These moduli provided crucial information about the mechanical properties
of the cell cytoskeleton, such as its resistance to stress and how it dissipated energy. Through
these experiments, we could observe how the behavior of the cell cytoskeleton changed at
different frequencies, thus gaining a deeper understanding of its response across different
time scales. For shear rheology, a two-plate model was utilized to define the sample’s
rheological behavior. This involved placing the sample between two parallel plates, with
the lower plate being fixed and the upper plate being capable of moving parallel to the
lower plate to exert a shear force [30].

γ =
s
h

(15)

where γ is the strain, s is the displacement of the upper plate, and h is the distance between
two plates. The rate of shear is

γ̇ =
dγ

dt
(16)

Subsequently, we assessed the viscoelasticity of the sample via oscillatory shear tests. This
entailed exerting sinusoidal shear strain at an oscillation frequency ( fs) and maximum
strain (γ0) onto the upper plate. When the strain was controlled within a narrow range, the
stress response curve (τ) over time t resembled a sinusoidal curve, mirroring the applied
sinusoidal strain’s frequency.

γ(t) = γ0 sin(2π fst) (17)

Through the analysis of the stress–strain curve, we evaluated the viscoelastic moduli.
The storage shear modulus (G′) contributes to a material’s elasticity, while the loss modulus
(G′′) contributes to its viscosity [25].

|G∗( fs)| =
|τ|
|γ|

|G′( fs)| = |G∗( fs)| cos ϕ

|G′′( fs)| = |G∗( fs)| sin ϕ

(18)

where ϕ is the phase delay between strain and stress, whose value ranges between 0 and π
2 .

A value of 0 indicates no delay, signifying a purely solid elastic material, while a value of π
2

suggests a purely fluidic material.
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In the simulation, we fully relaxed the polymerized cytoskeletal network under pe-
riodic boundary conditions. After stabilizing the system temperature, we immobilized
the particles within 5% of the cytoskeletal network’s height at the bottom. By applying
sinusoidal strain in the shear direction and varying the frequency, we obtained multiple
sets of results after 10 cycles of strain application. Subsequently, the responsive shear stress
curve was fitted to derive the amplitude and phase angle for computing the storage and
loss modulus.

2.2. Cell Mechanics Models
2.2.1. Indentation Model

An indentation model was devised within the DPD environment to investigate the
mechanical attributes of the cell model, encompassing its two components. In this model,
both the substrate and probe were constituted of DPD particles. Given that the probe’s
stiffness exceeded that of the samples being measured, the simulation established the
probe as a rigid body. Initially, the substrate was immobilized in its starting position,
and the cell was positioned atop the substrate, permitting the cell to achieve complete
relaxation. Simultaneously, a conical indenter was situated above the cell, inclined at an
angle of 18◦. Once the cell reached a fully relaxed state, constant speed was imparted
to the probe, causing it to approach the cell. As the probe made contact with the cell,
deformation ensued. Our recordings captured both the displacement of the probe and the
load at the probe’s center of mass, forming the basis for a force–indentation curve. It is
essential to note that the probe’s displacement was regarded as akin to the displacement of
the piezoelectric scanner in the actual experimental setup. Adjustments were made to the
membrane parameters, including the shear modulus (µ0), the bending stiffness( kbending),
and the maximum length (lmax). These adjustments aimed to explore their respective
impacts on the force–indentation curves.

2.2.2. Cell Microinjection Model

In the simulation, we replicated the cell microinjection DPD environment by mir-
roring the features of the real microinjection platform. This environment predominantly
comprised a holding micropipette, a cell, and a microinjection micropipette. Both the
holding and microinjection micropipettes were simplified as hollow cylinders constituted
of DPD particles. The interaction between the particles of the holding and microinjection
micropipettes was disregarded. Arranged along the y-axis, the holding and microinjection
micropipette particles were fixed, allowing the cell to fully relax within this setup. To
account for the intricate fluid dynamics surrounding and within the holding micropipette
during aspiration, the negative pressure in the holding micropipette was simplified into a
force field, attracting the membrane particles into the micropipette. As the aspiration pro-
cess commenced, the cell approached the holding micropipette and underwent deformation
due to the negative pressure’s influential force field. Once the aspiration process stabilized,
we saved the current simulation state and initiated movement of the microinjection mi-
cropipette. Given that the cell membrane constituted a network comprising numerous WLC
bonds, each bond was subject to a distinct stretching force during membrane deformation.
We considered a bond to be broken when its length exceeded twice the equilibrium length.
Upon this occurrence, the simulation halted, and the simulation data were exported.

We applied the continuum finite strain theory to compute cell deformation [31,32].
The distance vector between particle i and its neighboring particle j is given by

dji ≡ xj − xi

d0
ji ≡ x0

j − x0
i

(19)

where d0
ji represents the distance vector in the reference configuration, dji represents the

distance vector in the current configuration, and Ni is the set of neighboring particles. To
acquire a local affine transformation (Ji), we computed
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dji → d0
ji, ∀j ∈ Ni

∑
j∈Ni

|d0
ji Ji − dji| = 0 (20)

This can be expressed as

Ji = ( ∑
j∈Ni

d0T
ji dji)

−1 ∑
j∈Ni

d0T
ji dji (21)

where Ji is the deformation gradient tensor. By using polar decomposition, Ji is decomposed
into two matrices, namely, R and U. We define the strain (E) as

Ji = RU

E = U − I
(22)

where I is the identity matrix. We interpret the main diagonal element of E as the tension-to-
original-length ratio. To ascertain consistency between experimental and simulation results,
we plotted the experimental strain as a histogram, denoted as distribution P0. The simulation’s
histogram was denoted distribution P1. Metrics such as Jensen–Shannon (JS) divergence,
the Jaccard similarity coefficient, and Bhattacharyya distance were employed to analyze the
consistency degree between the experimental and simulation strain distributions.

Additionally, the DPD parameters (Table 2) used in simulation were cross-referenced
with those in earlier work.

Table 2. Conservative parameters (aij), amplitudes of dissipative force (γ), and cutoff radius (Rc).
The interaction between the holding micropipette and the microinjection micropipette is ignored.

Membrane Actin ACP Probe Substrate Holding Micropipette Microinjection Micropipette

1 100/45/0.5 100/45/0.5 100/45/0.5 100/65/0.25 100/65/0.25 30/65/0.5 100/65/0.25
2 - 100/65/0.25 100/65/0.25 100/65/0.25 100/65/0.25 100/65/0.5 100/65/0.25
3 - - 100/65/0.25 100/65/0.25 100/65/0.25 100/65/0.5 100/65/0.25

2.3. Experiments
2.3.1. Cell Preparation

Ovaries were obtained from a slaughterhouse and promptly transported to our lab-
oratory within 2 h of collection. They were stored in a thermos flask containing sterile
saline in a temperature range of 35–37 ◦C. The experimental procedures were reviewed and
approved by the Animal Care and Use Committee of Nankai University on 15 March 2015.
Cumulus–oocyte complexes (COCs) ranging in diameter from 2 to 6 mm were extracted
from follicles using a disposable syringe. These complexes were then cultured in a matu-
ration medium within an incubator set to an atmosphere of 5% CO2 and 95% humidified
air. The maturation medium consisted of TCM199 (with Earle’s Salts; Gibco, Grand Island,
NY, USA) supplemented with 10% porcine follicular fluid (PFF), 0.1 mg/mL cysteine,
0.065 mg/mL penicillin, 10 ng/mL epidermal growth factor (EGF), 10 IU/mL equine chori-
onic gonadotropin (eCG; Intervet Pty. Ltd., Boxrneer, Australia), and 10 IU/mL human
chorionic gonadotrophin (hCG; Intervet Pty. Ltd.).

2.3.2. AFM Indentation

The AFM experiment was conducted using a Bioscope Resolve AFM system (Bruker,
Billerica, MA, USA), which integrated an inverted optical microscope (Nikon Eclipse Ti2,
Tokyo, Japan), a CCD camera, an SPM head functioning as a detector–probe assembly
for accurate probe positioning, and a base plate. The probe featured an approximate
tip radius of 20 nm and a length of approximately 175 µm, with a spring constant of
0.07 N/m. AFM indentation was performed on the oocytes positioned on a polylysine-
coated slide. The imaging mode employed was PeakForce QNM in fluid, allowing for the
direct control of the peak normal force and minimizing lateral force on the probe. Prior to



Micromachines 2024, 15, 431 10 of 19

the experiment, the probe’s spring constant underwent calibration using the AFM thermal
noise module. The determination of the Young’s moduli of the oocytes was accomplished
through the approach–retraction mode. During the approach stage, aided by the optical
microscope, the probe gradually approached the cell surface. Upon contact with the cell
surface, indentation occurred, causing the cantilever to deflect, reflecting the force applied
to the probe. Subsequently, the retraction stage initiated as the deflection or the ramp size
reached the specified value, leading to the probe being lifted away from the cell.

2.3.3. Cell Microinjection

The cell microinjection experiments were carried out using a self-customized NK-
MR601 micromanipulation robot system, assembled on an inverted microscope (Nikon
ECLIPSE Ti2, Tokyo, Japan). This system featured an X-Y stage with a 100 mm × 100 mm
moving range, a positioning resolution of ±0.1 µm, and a maximum speed of 2 mm/s. It
comprised two self-developed X-Y-Z three-degree-of-freedom micromanipulation arms
responsible for positioning the microinjection and holding micropipettes. As part of
the experimental setup, a syringe provided aspiration pressure, delivering a negative
pressure of −3∼0 kPa and a positive pressure of 0∼200 kPa. Visual inspection during
microinjection was facilitated by a CCD camera (W-V460, Panasonic, Osaka, Japan), while
image acquisition, data processing, and motion control were handled by a host computer.
The holding pipettes utilized in the experiment were crafted from a borosilicate glass
tube with an outer diameter of 1 mm and an inner diameter of 0.6 mm. These pipettes
were manufactured by using an instrument (MODEL P-97, Sutter Instrument, Novato,
CA, USA) and then forged into micropipettes with openings ranging from 50 to 80 µm by
using a forging instrument (MF-900, Narishige, Amityville, NY, USA). The opening was
smoothed by melting it with an alcohol lamp. The images of oocytes were acquired with
a 10× objective lens at a spatial resolution of 0.625 µm. During the experimental process,
the culture dish containing the cells was placed on the system stage. The microinjection
micropipette and holding micropipette were positioned using the two operating arms,
adjusted to the same focal plane. Negative pressure was applied through the holding
micropipette to aspirate the cell, and the micropipette was injected at a controlled speed
towards the cell’s central axis until the cell membrane was ruptured. The speed of the
microinjection micropipette was set to 10, 30, and 50 µm/s. Visual data from the experiment
were collected using a vision-based method to measure the strain inside the cells.

3. Results
3.1. Particle-Tracking Rheology of Membrane

In the simulation, we analyzed 40 particles on the cell membrane for particle-tracking
rheology and monitored their mean square displacements (MSDs) over time. The particle
movements on the cell membrane gradually stabilized, reaching a consistent state after
0.1 s (Figure 1A). Utilizing the MSD curve, we computed the storage modulus (G′) and the
loss modulus (G′′) at various Laplace frequencies under room temperature conditions, as
illustrated in Figure 1B. The results show a continuous increase in both storage and loss
moduli with the increase in frequency. At lower frequencies, the elastic component (storage
modulus) dominates, while at higher frequencies, the viscous component (loss modulus)
surpasses the elastic contribution. Additionally, the storage and loss moduli of the cell
membrane exhibit a weak power-law relationship at higher frequencies, approximated as
G ∼ s0.85. These observations collectively suggest that our cell membrane exhibits typical
viscoelastic material properties.
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Figure 1. Storage and loss moduli of the cell membrane. (A) MSDs of the particles over time.
(B) Storage modulus (G′) and loss modulus (G′′) calculated from the MSDs. The dashed line represents
the simulation results, whereas the solid line represents the corresponding polynomial fitting.

3.2. Bulk Rheology of the Cytoskeletal Network

In the simulation, we subjected the three-dimensional cytoskeletal network to sinu-
soidal shear strain with a 2% amplitude across various frequencies ( fs). The cytoskeletal
network’s elastic characteristics arise from the utilization of harmonic potential energy
within the cross-linked filaments, whereas its viscous properties stem from both the dissipa-
tive force and the interlacing of cytoskeleton filaments. Analyzing stress curves generated
at different shear strain frequencies allowed us to determine stress amplitude and phase
differences concerning the applied shear strain (Figure 2A). Subsequently, we calculated
the storage modulus and loss modulus of the cross-linked cytoskeletal network (Figure 2B).

Figure 2. Bulk rheology of the cytoskeletal network. (A) Shear stress at a shear strain frequency
of 3 Hz. It is evident that the resultant shear stress has the same periodicity as the applied shear
strain, which was fitted with a sine function to obtain the amplitude and phase angle. (B) Storage
and loss moduli of the cytoskeletal network at different frequencies. The x-shaped symbol indicates
the storage modulus of the bulk rheology, which corresponds to the amount of energy that can be
stored by the cytoskeletal network for reversible deformation. The o-shaped symbol denotes the loss
modulus, which corresponds to the energy lost due to irreversible deformation. It can be observed
that both moduli exhibit a weak power-law relationship with frequency at higher frequencies.

At lower frequencies, the deformation behavior is predominantly influenced by the
elastic properties. As the frequency escalates, the loss modulus surpasses the storage
modulus at approximately tens of Hertz, indicating a transition in the cytoskeletal network
towards fluidic properties. This shift might be attributed to the filaments being stretched
for longer at lower frequencies, allowing them to have adequate time for recovery from
deformation. During this phase, the energy loss due to particle friction within the net-
work remains relatively minimal. However, at higher frequencies or shorter timescales,
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deformed filaments cannot adequately recover, leading to increased energy loss through
particle friction and a consequent substantial increase in the loss modulus. Additionally,
we observed a weak power-law relationship between the storage and loss moduli and the
frequency G ∼ fs

0.75, demonstrating the nonlinear mechanical properties of the cytoskele-
ton model. This characteristic evidences the viscoelastic semi-polymer network nature of
the cytoskeleton model, aligning with the theoretical predictions outlined in [25,33–36].

3.3. Indentation Experiment

In the indentation simulation, we developed a probe comprising roughly 3000 DPD
particles and directed it toward the cell (Figure 3A). Upon interaction between the probe
and the cell, the cell initiated deformation, leading to the generation of elastic force that
acted in opposition to the probe. As the probe progressed, the force applied to it increased
due to the increasing number of WLC bonds engaged in elastic deformation. To fit the
force–indentation curve using the Sneddon model, we selected a section of the curve
(0.4–0.8 µm in Figure 3B) exhibiting a large slope. The Young’s modulus was determined to
be 17.96 kPa, showing a slight deviation of approximately about 2% from the experimental
result (17.63 ± 5.10 kPa) [37].

Figure 3. Indentation experiment. (A) Experimental setup. (B) Force–indentation curve. The Sneddon
model was fit using a two-point method selecting the large-slope portion of the curve.

We further explored the effects of the shear modulus (µ0), the bending stiffness
(kbending), and the maximum length (lmax) on the elastic properties of the cell membrane.
We set the shear modulus to µ0 = 5, 50, 100, or 300 and conducted the indentation experi-
ments, as shown in Figure 4. Under the influence of high shear modulus, the slope of the
force–indentation curve tended to increase, meaning that the force imposed on the probe in-
creased. The possible reason was that the shear modulus (µ0) affected the tensile properties
of the cell membrane that related to the elastic force generated by the WLC bonds.

We further investigated the impact of the shear modulus (µ0), the bending stiffness
(kbending), and the maximum length (lmax) on the elastic properties of the cell membrane. We
set the shear modulus to µ0 = 5, 50, 100 or 300 and conducted the indentation experiments.
Higher shear modulus values resulted in an increase in the slope of the force–indentation
curve, indicating an elevated force applied to the probe. This effect may be attributed to the
influence of the shear modulus on the tensile properties of the cell membrane, particularly
concerning the elastic force produced by the WLC bonds.

In the simulation, we observed the impact of different bending stiffness values (kbending)
on the elastic properties of the cell. At shallow indentation depths (≤0.5 µm), a higher
kbending corresponded to a greater indentation force. However, as the depth increased, this
effect gradually diminished. The influence of kbending also varied concerning µ0. When
µ0 ≤ 50, a larger kbending led to a higher Young’s modulus; however, this relationship
was not evident when µ0 ≥ 50. We set lmax = 0.6, 0.8, 1.0, or 1.2 while maintaining the
initial length of the WLCs constant to examine its role in the cell’s minor deformation. We
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observed nearly identical force–indentation curves for the same kbending, indicating that the
contribution of lmax to the elastic modulus was negligible during minor deformations.

Figure 4. Change in the elastic properties of cells under different membrane parameters. Force–
indentation curves for different values of µ0 = 5, 50, 100, or 300 and kbending = 65 (A) or
kbending = 100 (B). (C) The relationship between Young’s modulus and µ0 for kbending = 65 or 100.
(D) Force–indentation curves for different values of lmax and kbending.

3.4. Microinjection Experiment

At the start of the simulation, the cell experienced deformation caused by a force
field simulating negative pressure, resulting in a section of the cell being drawn into the
aspiration micropipette, as depicted in Figure 5a. Once the aspiration stabilized, the mi-
croinjection micropipette commenced its movement toward the cell. Gradually, as the
micropipette penetrated to a shallow depth, the entire cell underwent compression along
the micropipette’s direction of movement. Continuing penetration led to substantial local
deformation at the interaction point with the micropipette. Notably, the membrane in this
area experienced noticeable stretching. As the micropipette reached a specific depth, the
membrane bonds surpassed their designated length, resulting in the rupture of the cell
membrane. We isolated the cytoskeleton component and specifically analyzed its strain dur-
ing microinjection, as depicted in Figure 5b. Two image sets illustrate the strain magnitude
at various penetration depths. The initial set of images portrays the cytoskeleton’s defor-
mation at a shallow penetration depth, while the subsequent set illustrates deformation
during deeper micropipette penetration. The regions of deformation, indicated by higher
strain in blue, were primarily concentrated around the microinjection site. With increased
penetration depth, the strain consistently increased, and the extent of deformation also
increased progressively (Figure 5c).
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Figure 5. Microinjection experiment simulation. (a) Two stages (initiation of microinjection (upper)
and some time later (below)) of microinjection. (b) Strain heatmaps of the two stages. (c) Magnitude
distribution of strain in microinjection direction.

We attribute the varying strain observed in cells responding to different micropipette
injection speeds to the strain-rate dependency of biological tissue materials. At lower
speeds, cells showed more pronounced deformation, suggesting higher flexibility of bio-
logical structures when subjected to slower impacts. Conversely, at higher speeds, cells
exhibited rigid characteristics, indicating a stiffening response. This dual behavior reflects
their nonlinear response to external stimuli at different speeds. To further examine the
strain-rate dependence phenomenon, we conducted three sets of experiments. In the sec-
ond and third sets, the micropipette penetration speeds were three times and five times
that of the first set, respectively (Figure 6). As the penetration speed increased, the extent
of cell deformation upon contact with the micropipette decreased. For instance, in the third
experiment set, the cell region farther from the micropipette showed minimal deformation.
Additionally, the degree of deformation at the moment of rupture decreased at higher
speeds, resulting in a smaller proportion of large strain.

It is important to note differences in strain calculation methods between the simu-
lation and the actual experiment. In the simulation, strain was directly computed from
a three-dimensional point cloud, whereas in the experiment, strain was derived from
two-dimensional images. Additionally, the simulation randomly selected cytoskeleton
particles for strain calculation, while in the images, the selected feature points were uni-
formly distributed (by using optical flow estimation). Within the three-dimensional point
cloud, we opted for the cross-section near the cell’s center and projected the points onto
a two-dimensional plane to compute strain in the penetration direction (Figure 7). To
compare simulation and experimental results for cells penetrated at a speed of 10 µm/s,
we utilized a histogram as a metric. By comparing the strain distributions, we observed a
prominent peak in the low-strain region within the range of [−0.4, −0.2]. Upon plotting the
strain histogram, we used the metrics Jaccard similarity coefficient, Bhattacharyya distance,
and JS divergence to gauge similarity between simulation and experimental distributions.
The Jaccard similarity coefficient yielded a value of 0.655, while Bhattacharyya distance and
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JS divergence were 0.0272 and 0.0267, respectively. These values suggest that our model
effectively captured deformation patterns akin to those observed in the experiments.

Figure 6. Analysis of microinjection simulation strain. (a,d,g) Strain generated at an injection speed
of 2000 µm/s. (b,e,h) Stain generated at an injection speed of 6000 µm/s. (c,f,i) Strain generated at an
injection speed of 10,000 µm/s.
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Figure 7. Comparison of strain calculation between simulation (above) and actual experiment
(below). The penetration speed was 10 µm/s for both the simulation and actual experiment. In the
simulation, we selected the cross-section near the center of the cell and mapped the points onto a
two-dimensional plane. A histogram was used as a metric for comparing the results.

4. Discussion

Micromanipulation induces intracellular strain altering cell viscoelasticity, potentially
reducing developmental potential. Optimizing micromanipulation procedures requires an
interactive cell micromanipulation model for intracellular strain analysis. Here, we used
the DPD method to construct a cell model encompassing cell membranes and cytoskeleton.
To validate this modeling approach, we conducted mechanical tests: particle-tracking
microrheology for the cell membrane and shear oscillation for the cytoskeleton. Both
experiments generated storage and loss modulus curves at varying frequencies, revealing
time-dependent viscoelasticity and a weak power-law relationship between modulus
and frequency. Differing from our prior work, this study adopted a higher-precision
cell membrane model and increased the density of the cytoskeleton. The cytoskeletal
network had stronger connectivity and could more effectively simulate cell deformation
and mechanical response. Meanwhile, we carried out more experiments to study the
mechanical properties of each component. We studied the viscoelastic behavior of the
cell membrane by analyzing the particle-tracking rheology and verified the power-law
dependency of the cytoskeleton model on frequency through the oscillatory shear test. In
addition, we discussed the mechanical response of cells with different parameters, such as
the lmax of WLCs, the shear modulus (µ), and the bending stiffness (kbending).

We established a nanoindentation simulation, evaluating overall cell elastic proper-
ties. By plotting force–indentation curves and applying the Sneddon model, we obtained
Young’s modulus (17.96 kPa vs. 17.63 kPa for simulation vs. experiment, respectively).
We examined which membrane parameters had the most significant impact on the elastic
properties by adjusting their value and observing the changes in the force–indentation
curves and Young’s moduli.

Additionally, a microinjection experiment studied cell deformation during injection.
Using finite strain theory, we calculated normal strain in the injection direction, quanti-
tatively comparing results with the actual experiment. The investigation of micropipette
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injection speed’s influence on intracellular strain revealed varied cell deformation patterns.
These variations correspond to typical viscoelastic traits of biological tissues, demonstrating
strain rate dependency in their responses. Our model replicated the observed phenomena,
showing increased injection speed correlated with smaller strain at membrane rupture.

In this cell model, the construction of the cell membrane followed our established
method, whereas the cell cytoskeleton underwent improvements from our previous work.
Both components remained phenomenological models; for instance, the cell membrane did
not consider biological macromolecules on its surface. The randomly generated coarse-
grained cytoskeletal filaments exhibited non-uniform spatial distribution, resulting in
inconsistent mechanical properties across various locations. In our future studies, we aim
to model the cell cytoskeleton at a finer scale and integrate it into our mesoscopic model
after coarse-graining. This approach will enhance the accuracy of cytoskeleton modeling at
the mesoscopic level.

Our upcoming work involves additional microscale experiments to further validate our
models, including microfluidic experiments and cell transport studies. We plan to delve into
changes in viscoelasticity linked with variations in cytoskeleton parameters, such as actin
filament concentration, filament length, cross-linker concentration, and polymerization
parameters. Furthermore, we aim to refine our cell modeling by incorporating additional
components, such as cell nuclei and polar bodies.

5. Conclusions

In this study, we developed a cell model comprising a triangular network-like cell
membrane and cross-linked cytoskeletal chains. We separately explored the mechanical
properties of the membrane and cytoskeletal network through a series of simulated me-
chanical testing experiments. By using particle-tracking rheology, we recorded the mean
square displacements of the membrane particles over time and subsequently computed
the storage and loss moduli of the membrane. Additionally, we conducted a double-plate
oscillatory shear experiment on the cytoskeletal network to analyze its storage and loss
moduli. The results demonstrate that both the membrane and cytoskeleton exhibit vis-
coelastic characteristics, given their storage and loss moduli dependencies on frequency
(s0.85 and s0.75). Furthermore, we conducted indentation and microinjection simulations
to mimic actual experiments and analyze the mechanical properties of whole cells. In the
indentation experiment, we recorded probe displacement and load at the probe’s center of
mass, generating force–indentation curves. We varied membrane parameters and examined
their effects on force–indentation curves. In the microinjection experiment, we studied
cell deformation and intracellular strain distribution under varying microinjection speeds.
We compared the resulting strain distribution with visual inspection data from the actual
experiment by using metrics like Jensen–Shannon (JS) divergence, the Jaccard similarity
coefficient, and Bhattacharyya Distance.
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