
Citation: Ren, J.; Jiang, H. Compliance

and Kinetostatics of a Novel

2PRS-2PSS Compliant Parallel

Micromanipulator: Modeling and

Analysis. Micromachines 2024, 15, 526.

https://doi.org/10.3390/mi15040526

Academic Editor: Sukho Park

Received: 14 March 2024

Revised: 8 April 2024

Accepted: 12 April 2024

Published: 14 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

micromachines

Article

Compliance and Kinetostatics of a Novel 2PRS-2PSS Compliant
Parallel Micromanipulator: Modeling and Analysis
Jun Ren * and Hui Jiang

Hubei Key Laboratory of Modern Manufacturing Quantity Engineering, School of Mechanical Engineering,
Hubei University of Technology, Wuhan 430068, China; 102100014@hbut.edu.cn
* Correspondence: renjun@mail.hbut.edu.cn

Abstract: A novel 2PRS-2PSS (P represents the prismatic pair, R represents the revolute hinge, S
represents the spherical hinge) compliant parallel micromanipulator with two translational DOFs
and two rotational DOFs is presented, and its compliance model and kinetostatic model are se-
quentially developed and analyzed. Initially, an analytical model used to describe the compliance
of this micromanipulator was developed using the compliance matrix method (CMM). Through a
comparison with finite element analysis, the accuracy of this analytical model is confirmed, and the
influence of various dimensional and structural parameters on the compliance behavior is investi-
gated. Subsequently, the micromanipulator is treated as an equivalent spring system, allowing for the
derivation of its governing equation based on the established compliance model. From this equation,
a kinetostatic model relating input forces to output displacements is derived. Validation of this model
is performed by comparing analytical results with finite element simulations under specific motion
trajectories, revealing a maximum relative error of 6.18%. This close agreement verifies the accuracy
of the kinetostatic model. Finally, the impact of the parameters of the flexure hinge on the mapping
matrix is examined to offer insights into minimizing undesired displacements, providing valuable
guidance for optimizing the micromanipulator’s performance.

Keywords: compliant parallel micromanipulator; flexure hinge; compliance modeling; kinetostatic
modeling

1. Introduction

In recent years, fields such as biology, medicine, and industrial assembly have been
moving toward smaller operating objects and higher precision requirements. Examples
include cell injection, microsurgery, and fiber optic docking. There is an increasing demand
for micromanipulators with excellent performance [1,2]. Traditional rigid manipulators,
due to issues like clearance, friction, and backlash in their mechanisms, have made it diffi-
cult to meet the high-precision requirements of micromanipulation systems. In contrast,
micromanipulators based on compliant parallel mechanisms utilize the deformation of
flexure hinges to transmit motion, effectively addressing these issues. They also offer
advantages such as high stiffness and compact structure, enabling high-precision manipu-
lations [3–8]. Therefore, it has attracted a large number of scholars to conduct research on
micromanipulators based on compliant parallel mechanisms with various configurations.

Compliance plays a crucial role in the design and analysis of compliant parallel
mechanisms, as it serves as a key performance metric. The study of the kinematics and
dynamics of compliance mechanisms relies on the foundation provided by the compliance
model [9–11]. Zhang et al. [12] conducted research on an integrated compliant redundant
parallel mechanism for the XY micro-adjustment of photolithography projection lens optical
components. They employed the compliance matrix method to calculate the compliance of
individual limbs within the mechanism, including output compliance, input compliance,
and the input–output ratio of the system. Li et al. [13] proposed a novel piezoelectric-
driven XY micro-motion platform. They used the compliance matrix method to establish
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the compliant model of the mechanism and conducted static and dynamic analyses. Mishra
et al. [9] examined a 6-DOF serial-parallel compliant micromanipulator built on a Stewart
platform featuring a displacement amplification structure. By applying the compliance
matrix method, they developed a compliance model for the mechanism and investigated
the impact of various parameters on its compliance. Ren et al. [14] proposed the design of a
novel n-4R-compliant parallel micro-pointing mechanism. They utilized the compliance
matrix method to develop a compliance model for the mechanism and investigated how
different parameters affected the compliance model.

In addition to compliance, kinetostatics is another indispensable area of research
for compliant parallel mechanisms. The kinetostatic model of these mechanisms serves
as the foundation for motion control and significantly aids in studying the reduction of
parasitic displacement within the mechanism. It is widely acknowledged that compliant
parallel mechanisms offer advantages such as high precision, the absence of friction, the
absence of backlash, and a compact structure due to the utilization of flexure hinges.
However, analyzing the kinetostatics in a compliant parallel mechanism presents greater
challenges compared to a rigid one, primarily due to the inherent relationship between
kinematics and the elasticity in flexure hinges. This coupling necessitates a comprehensive
modeling approach that extends beyond traditional kinematics or statics analysis [15]. In
the past few decades, researchers have devised numerous techniques and methodologies
to model the kinetostatics model of compliant mechanisms, such as the pseudo-rigid-body
model, Castigliano’s second theorem, compliance matrix method, elastic beam theory,
etc. [16]. Midha et al. [17] analyzed the fixed-oriented compliant beam with an inflection
point by utilizing the concept of a pseudo-rigid-body model and improved the calculation
accuracy by setting the inflection point. Ni et al. [18] established the kinematic, static,
and dynamic models of the compliant piezoelectric micro-cracker based on the three-
stage amplification by using the pseudo-rigid-body model method. Wadikhaye et al. [19]
analyzed the input and output stiffness of the serial motion XYZ scanner by utilizing
Castigliano’s second theorem and estimated the first natural frequency and the travel
range of the scanner using the input–output stiffness. Dong et al. [20] developed a bridge
amplifier and established a motion-statics model based on the compliance matrix method
and a dynamics model based on the Lagrange method for the mechanism. Wang et al. [21]
developed a kinetostatic model utilizing the Cosserat rod theory. The proposed model
aimed to minimize positioning errors resulting from external loads. Ren et al. conducted a
series of studies on compliant parallel mechanisms. In one study [14], they designed an
n-4R-compliant micro-pointing mechanism and developed its kinetostatic model using the
compliance matrix method. They investigated the impact of parameters on the kinetostatic
mapping matrix. In a subsequent study [22], Ren et al. designed a novel 3PSS/S-compliant
micro-turntable. They established the kinetostatic model of the mechanism using both the
compliance matrix method and the pseudo-rigid-body model method. The two models
were then compared in terms of accuracy. More recently, Ren et al. [23] introduced a
generalized 3-PSS-compliant parallel micro-motion platform. They focused on investigating
the compliance and kinetostatic models of this platform. Ling et al. [24] proposed a
semi-analytical matrix displacement method for modeling the kinetostatics of compliant
mechanisms. This method is particularly useful for complex compliant mechanisms that
comprise serial-parallel substructures. Based on the work of Ling et al., Arredondo-Soto
et al. [25,26] combined various methods from other literature to derive a more general
approach for kinetostatic modeling. They used this approach to establish the relationship
between input force/displacement and the displacement of the mobile platform for a 3-RRR
spherical-compliant parallel mechanism.

Currently, there is limited research on 4-DOF-compliant parallel mechanisms. The
4-DOF parallel mechanism offers broader application possibilities compared to mechanisms
with fewer degrees of freedom (less than 4-DOF). Simultaneously, the 4-DOF parallel mech-
anism features a simpler structure and lower control complexity compared to its 6-DOF
counterpart. Therefore, this paper presents a novel 4-DOF 2PRS-2PSS compliant parallel



Micromachines 2024, 15, 526 3 of 21

micromanipulator. The compliance model and kinetostatic model of the micromanipulators
are sequentially developed and analyzed. Firstly, the compliance matrix of a single flexure
hinge is computed, followed by deriving the compliance of the PSS branch and PRS branch
separately. Subsequently, the overall compliance model of the mechanism is constructed
using the compliance matrix method, and its accuracy is verified through finite element
simulation. The study then investigates the effects of variations in both the dimensional
parameters of the mechanism and the structural parameters of the flexure hinges on the
overall compliance. Secondly, the mechanism is simplified as an equivalent spring system.
The governing equation of this equivalent spring system is derived from the previously
established compliant model. By utilizing this governing equation, the kinetostatic model
of the mechanism is formulated. The accuracy of the kinetostatic model is validated by
comparing analytical calculations with finite element simulations of the specified motion
trajectory of the mechanism. Finally, the impact of the structural parameters of the flexure
hinges on the mapping matrix of the kinetostatic model is analyzed.

2. Structure of 2PRS-2PSS Compliant Parallel Micromanipulator

The 2PRS-2PSS compliant parallel micromanipulator is a 4-DOF micromanipulation
platform with two translational and two rotational degrees of freedom. As shown in
Figure 1a, it consists of a mobile platform, a fixed platform, two symmetrically arranged
PRS branches, and two symmetrically arranged PSS branches. The links of each branch are
connected to the mobile platform through flexure spherical hinges. The links of each PRS
branch are connected to the prismatic pair through flexure revolute hinges, while the links
of each PSS branch are connected to the prismatic pair through flexure spherical hinges.
To enhance the compliance and adaptability of the mechanism, an equivalent compliant
prismatic pair consisting of eight flexure revolute hinges is employed. The flexure revolute
hinges that connect to the link have the same structure as the eight flexure revolute hinges,
but their structural parameters are different.
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Figure 1. (a) Structure of the micromanipulator; (b) structural parameters and coordinate systems of
the micromanipulator.

The structural parameters and coordinate system of the mechanism are set as shown
in Figure 1a. The length of the links is denoted as l. The radius of the circle formed by
the rotation centers of the four hinges connected to the equivalent compliant prismatic
pair is defined as the fixed platform radius, Ra, with the center of the circle denoted as
O’. The radius of the circle formed by the rotation centers of the four hinges connected
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to the mobile platform is defined as the mobile platform radius, Rb, with the center of
the circle denoted as O. The assumption is made that the radius of a fixed platform is
always larger than that of the mobile platform. The mechanism utilizes four piezoelectric
ceramics for actuation. By controlling the inputs of these actuators, the mobile platform can
generate movement along the x and z axes and rotation around the x and y axes. Therefore,
the micro-manipulator can achieve position adjustments in the x and z directions during
operation, while also having the capability to adjust the orientation angles around the x
and y axes simultaneously.

3. Modeling and Analysis of the Compliance of the 2PRS-2PSS Compliant
Parallel Micromanipulator

The organization of this section is as follows. Firstly, the compliance model of the
micromanipulator is developed using the compliance matrix method. Secondly, the compli-
ance model is validated through finite element simulation to ensure its accuracy. Finally, the
impact of some structural parameters on the overall compliance of the micromanipulator
is analyzed.

3.1. Compliance Matrix Method

The compliance matrix method considers the flexure hinge as a compliant element
while treating other parts as rigid bodies. During the process of compliance modeling,
the flexure hinge is regarded as a multi-dimensional hinge, and the overall compliance
model of the mechanism is obtained through coordinate transformations. Therefore, the
compliance matrix method offers higher accuracy and wider applicability.

Under the condition that one end of the flexure hinge is fixed, deformation will be
generated by exerting the forces and moments at the free end of the flexure hinge. Under the
assumption of small elastic deformations, the principle of linear superposition holds, mean-
ing that the deformation of the flexure hinge in each direction can be calculated by summing
the individual deformations caused by each applied force or moment. Assuming the forces
and moments are represented as F = [fx, fy, fz, mx, my, mz]T, and the corresponding linear
displacements and angular displacements are represented as X = [δx, δy, δz, θx, θy, θz]T, the
compliance matrix of a single flexure hinge is defined as C. The relationship between the
input forces and displacements at the end of the hinge is defined as follows [27]:

X = CF (1)

3.2. Compliance Matrix of Single Flexure Hinge or Compliant Element

Before calculating the overall compliance of the micromanipulator, the compliance
of a single flexure hinge used in the mechanism should be calculated first. The 2PRS-
2PSS compliant parallel micromanipulator employs flexure spherical hinges and flexure
revolute hinges, so the compliance of these two types of hinges needs to be calculated
separately. Additionally, the equivalent prismatic pair is treated as a compliant element,
and its compliance is calculated through the compliance matrix method.

Figure 2a illustrates the structural parameters and coordinate frame configuration
of the flexure revolute hinge. In this figure, rR, w, and tR represent the cutting radius,
width, and minimum thickness of the flexure hinge, respectively. Based on its structural
characteristics, it can be observed that this hinge exhibits significant compliance in the
rotation around the x-axis and can be used as a single-degree-of-freedom revolute hinge.
The compliance matrix of the flexure revolute hinge can be expressed as Equation (2) [25],
and the formulas for calculating the compliance matrix CR can be found in Appendix A.
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The structure parameters and coordinate frame setting of the flexure spherical hinge
are shown in Figure 2b, where rS and tS represent the cutting radius and minimum thickness
of the flexure hinge, respectively. It has three degrees of freedom for rotation around the
x, y, and z axes and can be used as a universal joint. The compliance matrix of this hinge
is denoted as CS and its representation method is consistent with Equation (2), and the
formulas for calculating the compliance matrix CS can be found in Appendix A.

CR =



Cδx , fx 0 0 0 Cδx ,my 0
0 Cδy , fy 0 Cδy,mx 0 0
0 0 Cδz , fz 0 0 0
0 Cθx , fy 0 Cθx ,mx 0 0

Cθy , fx 0 0 0 Cθy ,my 0
0 0 0 0 0 Cθz ,mz


(2)

The structure of the equivalent compliant prismatic pair is shown in Figure 3. The
prismatic pair consists of four identical branches, each of which includes two flexure
revolute hinges. These branches are named P-branch i. The flexure revolute hinges used
here have the same structure as described in Figure 2a but with different dimensional
parameters. The cutting radius, width, and minimum thickness of the flexure revolute
hinge used here are expressed as rP, wP, and tP, respectively. The structural parameters a, b
and c in the equivalent compliant prismatic pair represent the distance of the symmetrical
branch, the distance of the adjacent branch and the length of the connecting rod connecting
the two flexure revolute hinges on a single branch, respectively. To facilitate the subsequent
modeling of overall compliance, the compliance of the equivalent compliant prismatic
pair is modeled at coordinate system P-xyz to form local compliant elements. Thus, the
compliance of P-branch 1 and 2 can be calculated as follows:

CP
Pbm =

2

∑
n=1

TP
PmnCP

RPmn

(
TP

Pmn

)T
, m = 1, 2 (3)

TP
Pmn =

[
RP

Pmn RP
PmnPP

Pmn
0 RP

Pmn

]
(4)

where TP
Pmn is an adjoint transformation matrix that represents the transformation of the

compliance matrix from the local coordinate system, Pmn-xyz, to the reference coordinate
system, P-xyz. m represents the branch number, and n represents the position of the
hinge on the branch. Defining the rotation transformation matrix, RP

Pmn, and the position
transformation matrix, PP

Pmn, their specific expressions are as follows:

RP
Pmn =

cγcβ cγsβsα − sγcα cγsβcα + sγsα
sγcβ sγsβsα + cγcα sγsβcα − cγsα
−sγ cγsα cγcα

, PP
Pmn =

 0 h3 −h2
−h3 0 h1
h2 −h1 0

 (5)
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where α, β, and γ represent the angle of rotation around the x, y, and z axes, respectively. s
and c represent sin and cos, respectively. The elements h1, h2, and h3 in PP

Pmn represent the
positions of local coordinates in the reference coordinate system; their coordinate form is
h = (h1, h2, h3). The parameters of the adjoint matrix of the coordinate transformation in
the prismatic pair are constructed as shown in Table 1.
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Table 1. Parameters of the transformation matrix in the equivalent prismatic pair.

Transformation Matrix h1 h2 h3 α β γ

TP
P11 −0.5a 0 −(rP + 0.5tP) π/2 0 π/2

TP
P12 −(0.5a + b + 2rP) 0 −(rP + 0.5tP) π/2 0 π/2

TP
P21 −0.5a 0 −(3rP + 1.5tP + c) π/2 0 π/2

TP
P22 −(0.5a + b + 2rP) 0 −(3rP + 1.5tP + c) π/2 0 π/2

According to the principles of stiffness and compliance superposition in series-parallel
hybrid mechanisms [27], it is known that the overall compliance of the equivalent prismatic
pair at the coordinate P-xyz is as follows:

CP =

( 4

∑
m=1

CP
PBm

)−1
−1

(6)

The structure and structural parameters of the local branch are similar, so the com-
pliance of P-branch 3 and P-branch 4 in the reference coordinate system P-xyz can be
obtained by rotating the compliance of P-branch 1 and P-branch 2. The compliance matrix
is as follows: {

CP
PB3 = T3

1CP
PB1
(
T3

1
)T

CP
PB4 = T4

2CP
PB2
(
T4

2
)T , T3

1 = T4
2 =

[
Rz,π

Rz,π

]
(7)

3.3. Compliance Modeling of Single Branch

In general, it is meaningful to discuss the compliance of a compliant mechanism only
when it is uniformly discussed in the same coordinate system [27]. Since the 2PRS-2PSS
compliant parallel micromanipulator consists of PRS and PSS branches, the compliance of a
single branch should be calculated first. The structures of branch 1 and branch 2 are shown
in Figure 4. The compliance of the flexure hinge needs to be unified into the reference
coordinate system first. Taking branch 1 (PSS branch) and branch 2 (PRS branch) as an
example, the conversion Equation (8) describes the process of unifying the compliance of
the flexure hinge on the branch to the reference coordinate system O-xyz.
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where TO
Oij is the transformation matrix of 6 × 6, which shows that the compliance ma-

trix is transformed from the local coordinate system, Oij-xijyijzij, to the global coordinate
system, O-xyz. The rotation transformation matrix is denoted as RO

Oij, and the translation

transformation matrix is denoted as PO
Oij. Subscript i represents the number of branches

in the mechanism, and j represents the position index of the flexure hinge or compliance
element on the branch, following the numbering rules shown in Figure 4.
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When the flexure hinges or compliant elements are connected in series, the compliance
is superimposed [27]. Therefore, the compliance of branch 1 and branch 2 in the reference
coordinate system can be obtained as follows:{

CO
B1 = CO

P11
+ CO

S12
+ CO

S13

CO
B2 = CO

P21
+ CO

S22
+ CO

S23

(9)

3.4. Compliance Model of the Micromanipulator

According to the principles of stiffness and compliance superposition in series-parallel
hybrid mechanisms [27], the compliance of the 2PRS-2PSS compliant parallel micromanip-
ulator can be determined as follows:

C2PRS−2PSS =

( 4

∑
i=1

CO
Bi

)−1
−1

(10)

where C2PRS-2PSS represents the total compliance of the 2PRS-2PSS compliant parallel
micromanipulator, and CO

Bi denotes the compliance of each individual branch within the
reference coordinate system.
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Due to the symmetry of the mechanism, the compliance matrix of branch 3 and branch
4 can be easily obtained by performing coordinate transformations on the compliance
matrix of branch 1 and branch 2, as shown in Equation (11).{

CP
PB3 = T3

1CP
PB1
(
T3

1
)T

CP
PB4 = T4

2CP
PB2
(
T4

2
)T , T3

1 = T4
2 =

[
Rz,π

Rz,π

]
(11)

where T3
1 and T4

2 are the adjoint transformation matrix and Rz,π is the rotation transfor-
mation matrix, indicating that the compliance matrix rotates 180◦ around the z-axis of the
reference coordinate system, O-xyz. The related parameters of the adjoint matrix of the
overall compliance coordinate transformation of the mechanism are listed in Table 2. In this
table, θ represents the angle between the links and the z-axis of the reference coordinate
system, and its value can be expressed as follows:

θ = arcsin
(

Ra − Rb
l + 2rS

)
(12)

Table 2. Parameters of the transformation matrix in the mechanism.

Transformation Matrix x y z α β γ

TP
P11 0 Ra + rS sin θ −(l + 3rS) cos θ 0 0 π

TP
P12 0 Ra + rS sin θ −(l + 3rS) cos θ −θ 0 π

TP
P21 0 Ra + rS sin θ rS cos θ −θ 0 π

TP
P22 Ra + rS sin θ 0 −(l + 3rS) cos θ 0 0 π/2

TP
P22 Ra − rS sin θ 0 −(l + 3rS) cos θ −θ 0 π/2

TP
P22 Rb − rS sin θ 0 rS cos θ −θ 0 π/2

3.5. Verification of Effectiveness of the Compliance Model

To validate the accuracy of the compliance model, finite element analysis is conducted
in this section. Table 3 outlines the dimensional parameters of the mechanism, as well
as the structural parameters of the flexure hinges utilized. The total compliance can be
expressed by Equation (13). Substituting the parameters (listed in Table 3) into Equation
(10), one can obtain the analytical results of the compliance of the 2PRS-2PSS compliant
parallel micromanipulator.

C2PRS−2PSS =



Cδx , fx 0 0 0 Cδx ,my 0
0 Cδy , fy 0 Cδy,mx 0 0
0 0 Cδz , fz 0 0 0
0 Cθx , fy 0 Cθx ,mx 0 0

Cθy , fx 0 0 0 Cθy ,my 0
0 0 0 0 0 Cθz ,mz


(13)

Table 3. Structural parameters of 2PRS-2PSS compliant parallel micromanipulator.

Item Values (mm) Item Values (mm) Item Values (mm)

Ra 40 rR 3.75 c 1
Rb 25 tR 0.5 rP 3.75
l 52.5 w 5 tP 0.5

rS 3.75 a 20 wP 8
tS 1 b 10
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The compliance model of the 2PRS-2PSS compliant parallel micromanipulator un-
derwent validation using the commercial software ANSYS 19.2, affirming the precision
of the analytical findings. To optimize computational efficiency and accuracy, the flexure
hinge was discretized into tetrahedral meshes with a size of 0.5 mm, while the remaining
components were segmented into tetrahedral meshes with a size of 3 mm. The material
parameters pertaining to the flexure hinge are listed in Table 4.

Table 4. Material parameters of the flexure hinge.

Type of Hinge Material Density (kg/m3) Young’s Modulus (GPa) Poisson Ratio

Spherical hinge CuBe2 8000 128 0.3
Revolute hinge 65 Mn 8000 206 0.3

By comparing the compliance elements on the main diagonal between the analytical
results and the finite element results, the relative errors are calculated and summarized
in Table 5. The results show that the relative errors for the six main compliances of the
compliance matrix are all below 7.2%. This high level of consistency indicates the accuracy
of the established theoretical compliance model. The discrepancies between the analytical
and finite element results can be attributed to the following factors: (1) errors in the
compliance model of individual flexure hinges; and (2) theoretical modeling is carried
out based on the assumption that all components except for the flexure hinges are rigid.
However, in the finite element simulation, these ‘rigid’ components simulated their rigid
behavior by being set with larger stiffness values. Thus, even if their stiffness is set to be
sufficiently large, they may still undergo slight deformations.

Table 5. Error comparison of overall compliance.

Compliance An FE Relative Error

Cδx , fx (m/N) 0.00006483 0.00006668 2.77%
Cδy , fy (m/N) 0.00000545 0.00000587 7.13%
Cδz , fz (m/N) 0.00000072 0.00000069 3.43%

Cθx ,mx (rad/N) 0.00272024 0.00263453 3.25%
Cθy ,my (rad/N) 0.00806618 0.00805665 0.12%
Cθz ,mz (rad/N) 0.00822998 0.00864432 4.79%

3.6. Analysis of Compliance Performance of 2PRS-2PSS compliant Parallel Micromanipulator

When designing compliant parallel mechanisms, it is necessary to consider various
performance indicators such as compliance, stiffness, and accuracy, etc. And different
application scenarios have different requirements for these performances. For applications
that require strong adaptability and sensitivity to external disturbances, greater compliance
is beneficial. However, for applications that demand high precision and stiffness, it is
necessary to control compliance to ensure the stability and accuracy of the mechanism.
Therefore, analyzing the influence of parameters in the mechanism on compliance is
essential [28].

In this section, the compliance model established in Section 3.4 is used to analyze
the compliance of the micromanipulator. Here, Cδ and Cθ are defined as translational
compliance and rotational compliance, respectively. The parameters related to compliance
and their variation ranges are listed in Table 6, and parameters rS and rR are always the
same, so we unified their symbols as r. The variation in overall compliance with these
parameters is shown in Figure 5.
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Table 6. Variation range in the parameters of the micromanipulator.

Item Variation Range (mm) Item Variation Range (mm)

l 30~60 w 4~10
Ra 35~55 tR 0.3~0.7

r (rS, rR) 2.5~5 tS 0.7~1.3
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From Figure 5, we can draw the following conclusions: (1) in translational compliance
Cδ, Cδx,fx is always the largest and most affected by parameter changes, while Cδz,fz is always
the smallest. At the same time, in rotational compliance Cθ , Cθx,mx is always smaller than
Cθy,my. (2) The structural parameters of the flexure hinges have a more significant influence
on Cδ and Cθ compared to the dimensional parameters of the mechanism. Consequently,
when designing the mechanism, it is suggested that the structural parameters of the flexure
hinges be adjusted with priority to achieve the desired compliance in the micromanipulator.
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Apart from the influence of these mentioned parameters, it is sometimes necessary to
understand the way the micromanipulator compliance scales with the defining geometric
diameters. Given the utilization of flexure hinges in the mechanism, there are two possible
scaling scenarios: scaling only the dimensional parameters of the mechanism (represented
by the scaling coefficient e1) or simultaneously scaling both the dimensional parameters of
the mechanism and the flexure hinge parameters (represented by the scaling coefficient e2).
The variations of the mechanism’s compliance with the scaling coefficients e1 and e2 are
shown in Figures 6 and 7, respectively. It can be observed from Figure 6 that Cδ and Cθ are
directly and inversely correlated with the scaling coefficient e1, respectively. Comparatively,
Cδx,fx is greatly affected, Cδy,fy is less affected, while Cδz,fz is almost unaffected, as shown
in Figure 6a. It is also noted from Figure 6b that the overall decrease of Cθx,mx, Cθy,my,
and Cθz,mz is generally gradual. It can be seen from Figure 7 that both Cδ and Cθ are
inversely correlated with the scaling coefficient e2. And Figure 7a exhibits the same feature
as Figure 6a in that Cδx,fx is greatly affected, Cδy,fy is less affected, while Cδz,fz is almost
unaffected. Compared to Figure 6b, Cθ in Figure 7b decreases more sharply in the range
with smaller proportion coefficients.
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4. Kinetostatic Modeling of 2PRS-2PSS compliant Parallel Micromanipulator

The force–displacement relationship at the center point of the end-effector platform
can be easily obtained by the compliance model. However, the input force and output
displacement of 2PRS-2PSS compliant parallel micromanipulation exist in different coordi-
nate systems. Therefore, it is of vital necessity to establish the kinetostatic model of this
micromanipulation.
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4.1. Kinetostatic Modeling under Single Input Force

To achieve the output displacements of the mobile platform, four input forces are
exerted at the center point of the bottom surface of the equivalent prismatic pairs, as shown
in Figure 8a. The local coordinate systems are established at this center point, allowing
us to obtain the local generalized input forces as follows: Fi = [fi,x, fi,y, fi,z, mi,x, mi,y, mi,z],
i = 1, 2, 3, 4. The value of i denotes system Fi-xFiyFizFi. The displacement of the center
point of the mobile platform relative to the global coordinate system O-xyz is expressed as
follows: U2PRS-2PSS = [δx, δy, δz, θx, θy, θz]. Under the assumption of linear deformations,
the force–displacement mapping relationship of the mechanism can be determined using
the principle of superposition.
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To facilitate the kinetostatic modeling, we simplify the 2PRS-2PSS compliant parallel
micromanipulator as an equivalent spring system, as presented in Figure 8b,c. Note that the
concept of equivalent stiffness can also be found in [27,29]. Since the same branches of the
mechanism are symmetrically arranged, only branch 1 and branch 2 are taken for analysis.
The input forces applied to these two branches are denoted as F1 and F2, respectively.
Correspondingly, the resulting displacements are U1 and U2, respectively. Then, the elastic
deformation of the system can be described by the governing equation (Equation (14)) based
on Hooke’s law. The stiffness matrices in Equation (14) are computed by Equation (15).
It should be noted that the stiffness matrix in Equation (15) can be calculated by using
Equations (8) and (10), as shown in Equations (18) and (19).[

(KOO)Fi
KOFi

KFiO KFi Fi

][
Ui
UFi

]
=

[
FO
Fi

]
(14)



(KOO)Fi
= KO

BiB + (C2PRS−2PSS)
−1 − KBi

KFi Fi = KFi
BiA + KFi

BiB

KOFi = −
(
TO

O
)−T

KO
BiB

(
TFi

O

)−1

KFiO = −
(

TFi
O

)−T
KO

BiB
(
TO

O
)−1

(15)

where

TO
O = I6×6, TFi

O =

[
RFi

O PFi
OTFi

O
03×3 RFi

O

]
(16)
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where

PFi
O =

 0 −zi −yi
zi 0 xi
yi −xi 0

, RFi
O = I3×3, i = 1, 2 (17)

 KO
B1A =

(
CO

P11

)−1
, KO

B1B =
(

CO
S12

+ CO
S13

)−1

KO
B2A =

(
CO

P21

)−1
, KO

B2B =
(

CO
R22

+ CO
S23

)−1 (18)


KFi

BiA =

(
TFi

O
(
KO

BiA
)−1
(

TFi
O

)T
)−1

KFi
BiB =

(
TFi

O
(
KO

BiB
)−1
(

TFi
O

)T
)−1 , i = 1, 2 (19)

In Equation (15), the superscripts O and Fi associated with each stiffness matrix denote
that the stiffness matrix is defined with respect to the coordinate frames O-xyz and Fi-
xFiyFizFi, respectively. In Equations (16) and (17), the symbol I represents the unit matrix,
and xi, yi, and zi denote the position coordinates of the local coordinate system Fi-xFiyFizFi
in the reference coordinate system.

Since there is no force applied to the mobile platform, FO in Equation (14) can be set to
0, which yields the following:

Ui = CTOFi · Fi, i = 1, 2 (20)

where
CTOFi = −

(
(KOO)Fi

− KOFi K
−1
Fi Fi

KFiO

)−1(
KOFi K

−1
Fi Fi

)
, i = 1, 2 (21)

Then, the kinetostatic model of this micromanipulator under a single input force is
obtained by Equation (20).

4.2. Kinetostatic Modeling of 2PRS-2PSS compliant Parallel Micromanipulator

Define the displacement of the center of the mobile platform as U2PRS-2PSS. Based on
the principle of superposition, displacement of U2PRS-2PSS resulting from the combined
exertions of forces F1, F2, F3, and F4 can be considered as the superposition of the dis-
placements U1, U2, U3, and U4 generated by F1, F2, F3, and F4 acting alone. Therefore, the
displacement of U2PRS-2PSS can be expressed as follows:

U2PRS−PSS =
4

∑
i=1

Ui (22)

According to Equations (20) and (22), one can then obtain the kinetostatic model of a
2PRS-2PSS compliant parallel micromanipulator, as follows:

U2PRS−PSS =
4

∑
i=1

CTOFi · Fi (23)

where the matrix, CTOFi , represents the mapping relationship between the force, Fi, and the
displacement, Ui (i = 1, 2, 3, 4).

Since branches 3 and 4 are symmetrically arranged with branches 1 and 2, respectively,
CTOF3 and CTOF4 can be easily obtained through the rotational transformation of CTOF1 and
CTOF2 , respectively.

CTOFi+2 = [Tπ ]
−T[CTOFi

]
, Tπ =

[
Rz,π 03×3
03×3 Tz,π

]
(24)
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where the matrix CTOFi+2 (i = 1, 2) describes the relationship between the input forces Fi+2
(i = 1, 2) and the corresponding output displacements Ui+2 (i = 1, 2). And Rz,π represents
the coordinate transformation matrix with 180◦ rotation around the z-axis of the coordinate
system O-xyz.

5. Verification and Analysis of the Kinetostatic Model

In Section 4, the kinetostatic model of the 2PRS-2PSS compliant parallel micromanipu-
lator has been established. Here, we validate the accuracy of the established model through
a comparative analysis between theoretical calculations and finite element simulations,
utilizing an example. Additionally, we investigate the impact of variations in the structural
parameters of the flexure hinges on the kinetostatic model. It is important to note that the
parameters in this example are consistent with those presented earlier in Section 3.5.

5.1. Numerical Calculation and Simulation Analysis of the Kinetostatic Model

The 2PRS-2PSS compliant parallel micro-manipulator is a 4-DOF mechanism. There-
fore, the elements related to the movements of four functional directions of the mechanism
in the model are extracted from Equation (23), and the simplified kinetostatic model is
obtained as in Equation (25).

δx
δz
θx
θy

 =


Cδx , f1,z Cδx , f2,z Cδx , f3,z Cδx , f4,z

Cδz , f1,z Cδz , f2,z Cδz , f3,z Cδz , f4,z

Cθx , f1,z Cθx , f2,z Cθx , f3,z Cθx , f4,z

Cθy , f1,z Cθy , f2,z Cθy , f3,z Cθy , f4,z




f1,z
f2,z
f3,z
f4,z

 (25)

The mapping matrix in Equation (25) is composed of the elements of the 1st, 3rd, 4th,
and 5th rows, and the 3rd column of the matrix CTOFi , and it is defined as CTOFrc. And f 1,z,
f 2,z, f 3,z, and f 4,z, respectively, denote the components of forces F1, F2, F3, and F4 along the
z-axis of the local coordinate system. Substituting the parameters in Table 3 into CTOFrc
yields the following:

CAn
TOFrc =


0 −1.61 × 10−6 0 1.61 × 10−6

8.87 × 10−6 8.93 × 10−6 8.87 × 10−6 8.93 × 10−6

6.73 × 10−5 0 −6.73 × 10−5 0
0 −5.36 × 10−5 0 5.36 × 10−5

 (26)

It can be observed from the matrix that the elements of the first row and the fourth
row are proportional, which means that the output displacement δx and θy are always
proportional in value (but their units are different). To facilitate the calculation of input
forces from given output displacements, we extract the first three rows of the matrix, CAn

TOFrc,
to form a new matrix, CAn

TOFrc(r1,2,3). Obviously, Matrix CAn
TOFrc(r1,2,3) has full column rank, so

the input forces can be determined by taking the right inverse of CAn
TOFrc(r1,2,3) as shown in

Equation (27). The trajectory equation is given by Equations (28) and (29), and the motion
trajectory is shown in Figure 9. The obtained input forces are shown in Figure 10.

f1,z
f2,z
f3,z
f4,z

 =
(

CAn
TOFrc(r1,2,3)

)T
(

CAn
TOFrc(r1,2,3) ·

(
CAn

TOFrc(r1,2,3)

)T
)−1

δx
δz
θx

 (27)

{
δx = L cos(10000Lπ)
δz = L sin(10000Lπ)

, 0 ≤ L ≤ 5 × 10−5 (28){
θx = 2e(t/3) sin(3t)× 10−4, 0 ≤ t ≤ 2π

θy =
(

Cθy , f2,z /Cδx , f2,z

)
δx

(29)
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Substituting the obtained input forces into the finite element software for simulation,
the corresponding trajectory can be obtained, as shown in Figure 11a. Figure 11b,c presents
a comparison between the analytical trajectories and the finite element trajectories. Good
consistency of the trajectories demonstrates the accuracy of the established kinetostatic
model. The absolute error between the theoretical analysis and the finite element analysis
for the motion trajectory is illustrated in Figure 12a,b. It is shown that the absolute errors
of the moving trajectory and rotation trajectory are directly correlated with the radius of
the spiral trajectory and the rotating angle, respectively.
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It can be observed from Figure 12c that the maximum relative error occurs in the x-axis
movement direction, stabilizing between 6.176% and 6.180%. The minimum error occurs in
the z-axis movement direction, stabilizing between 3.57450% and 3.57454%. The relative
error for rotation around the x-axis ranges from 3.6582% to 3.6594%, while for rotation
around the y-axis, it ranges from 4.23708% to 4.23730%. Good consistency indicates the
effectiveness of the established kinetostatic model.

5.2. Analysis of the Influence of Parameters on the Kinetostatic Model

In Section 4, the kinetostatic model of the 2PRS-2PSS compliant parallel micromanip-
ulator was established, and its correctness was verified in Section 5.1. Since the micro-
manipulator generates parasitic displacement during its motion, it affects the positioning
accuracy of the micromanipulator. Therefore, in this section, an analysis of the influence of
the structural parameters of the flexure hinges on the mapping matrix is further conducted,
which provides a reference on how to reduce parasitic displacement.

Taking into account the movements in non-functional directions (δy and θz), the re-
lationship between the input forces and output displacements of the mechanism can be
expressed as Equation (30), and the mapping matrix in the equation is defined as CA.
Substitute the parameters in Table 3 into the mapping matrix CA to obtain the results as
shown in Equation (31). The element in matrix CA is defined as the compliance coeffi-
cient. It can be seen from the mapping matrix that the mechanism will produce parasitic
displacement moving along the y-axis direction. For convenience, the first three and last
three rows of the mapping matrix are defined as the translation-related mapping matrix
CT and rotation-related mapping matrix CR, respectively. Meanwhile, since the structural
symmetry of the mechanism, some of the compliance coefficients in the mapping matrix
are the same in absolute values (with the positive or negative sign only indicating the
direction of motion). Therefore, we only need to analyze the compliance coefficients Cδx , f4,z ,
Cδy , f3,z , Cδz , f3,z , Cδz , f4,z , Cθx , f1,z and Cθy , f3,z , where Cδy , f3,z is the compliance coefficient related
to parasitic displacement. Figure 13 shows the variations of the compliance coefficient CT in
terms of the parameters r, w, tR, and tS. Variations of the compliance coefficient CR, in terms
of these parameters, are shown in Figure 14. The range of variation for these parameters is
listed in Table 6. 

δx
δy
δz
θx
θy
θz

 =



Cδx , f1,z Cδx , f2,z Cδx , f3,z Cδx , f4,z

Cδy , f1,z Cδy , f2,z Cδy , f3,z Cδy , f4,z

Cδz , f1,z Cδz , f2,z Cδz , f3,z Cδz , f4,z

Cθx , f1,z Cθx , f2,z Cθx , f3,z Cθx , f4,z

Cθy , f1,z Cθy , f2,z Cθy , f3,z Cθy , f4,z

Cθz , f1,z Cθz , f2,z Cθz , f3,z Cθz , f4,z




f1,z
f2,z
f3,z
f4,z

 (30)
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CAn
A =



0 −1.61 × 10−6 0 1.61 × 10−6

−1.34 × 10−7 0 1.34 × 10−7 0
8.87 × 10−7 8.93 × 10−7 8.87 × 10−7 8.93 × 10−7

6.73 × 10−5 0 −6.73 × 10−5 0
0 −5.36 × 10−5 0 5.36 × 10−5

0 0 0 0

 (31)
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From Figure 13, we can draw the following conclusions: (1) The parasitic displacement-
related compliance coefficient Cδy , f3,z is always much smaller than the mobile functional-
direction-related compliance coefficients (Cδx , f4,z , Cδz , f3,z and Cδz , f4,z ), indicating that the
mechanism has a higher motion accuracy. (2) The parasitic displacement-related compliance
coefficient Cδy , f3,z is directly correlated to the parameter tS, and inversely correlated to the
parameter w, while it is not sensitive to the variations in parameters r and tR. Therefore,
reducing parameter tS and increasing parameter w are preferable measures to reduce
parasitic displacement. However, such changes to these parameters will also decrease the
movement in the functional direction, so designers need to make reasonable trade-offs
based on actual requirements. It is worth noting that changing the parameters to reduce
parasitic displacement will also affect the rotation functional-direction-related compliance
coefficients (Cθx , f1,z and Cθy , f3,z ), as shown in Figure 14. From Figure 14, we can draw the
following conclusions: (1) The rotation functional-direction-related compliance coefficients,
Cθx , f1,z , are inversely correlated to the parameter tS, while not significantly affected by
the changes of parameters r, w, and tR. (2) Another rotation functional-direction-related
compliance coefficient Cθy , f3,z is directly correlated to the parameters w and tR, and inversely
correlated to the parameter tS, while not sensitive to the variation of parameter r.
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6. Conclusions

A novel 2PRS-2PSS compliant parallel micromanipulator is presented, and its com-
pliance model and kinetostatic model are successively established and analyzed. The
correctness of the two models is confirmed through FE simulation. The conclusions are
as follows:

(1) In the verification of the compliance model, comparison results show that the maxi-
mum relative errors of the elements on the main diagonal of the compliance model
between the theoretical calculation and the finite element analysis do not exceed 7.2%,
indicating the correctness of the compliance model. Analysis of the effect of the param-
eters on the compliance model indicates that the structural parameters of the flexure
hinges have a more significant influence on the compliance of the micromanipulator
compared to the dimensional parameters of the mechanism.

(2) By equating the 2PRS-2PSS micromanipulator to a spring system, the kinetostatic
model of the micromanipulator is established based on the previously established
compliance model according to Hooke’s law. In the validation of the kinetostatic
model, comparison results show that the maximum relative errors between the the-
oretical analysis and the finite element analysis are within 6.18%, confirming the
accuracy of the kinetostatic model.

(3) In the analysis of the effect of the parameters on the kinetostatic model, it is found
that compared to other parameters, the width (w) of the flexure revolute hinge and the
cutting thickness (tS) of the flexure spherical hinge has the most significant influence
on the parasitic displacement. Adjusting these parameters by increasing w and
reducing tS can effectively minimize the parasitic displacement of the mechanism,
thereby improving motion accuracy.

It is worth noting that when adjusting parameters to reduce the parasitic displacement
of the micromanipulator, the overall compliance of the micromanipulator also changes. On
the one hand, increasing the width (w) of flexure revolute hinges is advantageous for re-
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ducing parasitic displacement, but it also decreases overall compliance. On the other hand,
reducing the minimum cutting thickness (tS) of flexure spherical hinges can also reduce
parasitic displacement but increase overall compliance. All parameter adjustment schemes
aimed at reducing parasitic displacement will to some extent decrease the working range
of the micromanipulator because the impact of parameters on the compliance coefficient
is universal and consistent. For micromanipulators, reducing parasitic displacement is
beneficial for improving accuracy, and when external disturbances (i.e., external forces
acting on the mobile platform) are significant, reducing overall compliance also helps
improve accuracy. When external disturbances during micromanipulator operation are
significant, lower overall compliance (i.e., higher overall stiffness) is beneficial. As long as
the mechanism’s working range is within the allowed range, increasing the width of flexure
revolute hinges can reduce parasitic displacement and increase the overall compliance of
the mechanism, thereby improving operational precision. However, when external distur-
bances during the micromanipulator operation are minimal or negligible, it is possible to
simultaneously increase the width of flexure revolute hinges and decrease the minimum
cutting thickness of flexure spherical hinges to reduce parasitic displacement while meeting
the working range requirements of the micromanipulator.
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Appendix A

The formulas for calculating the compliance matrix of the right-circular flexure revo-
lute hinge are as follows (w, rR, tR):

Cδx , fx = 12
Ew3

∫ 2rR
0

x2

t2(x)dx + 1
Gw
∫ 2rR

0
1

t(x)dx

Cδy , fy = 12
Ew
∫ 2rR

0
x2

t3(x)dx

Cδz , fz =
1

Ew
∫ 2rR

0
1

t(x)dx

Cθx ,mx = 12
Ew
∫ 2rR

0
1

t3(x)dx

,


Cθy ,my = 12

Ew3

∫ 2rR
0

1
t(x)dx

Cδx ,my = Cθy , fx = 12
Ew3

∫ 2rR
0

x
t(x)dx

Cδy ,mx = Cθx , fy = 12
Ew
∫ 2rR

0
x

t3(x)dx

(A1)
where t(x) = tR + 2rR − 2

√
x(2rR − x), (x ∈ [0, 2rR]

)
, E, and G are the Young’s modulus

and shear modulus of the material, respectively.
The formulas for calculating the compliance matrix of the right-circular flexure spheri-

cal hinge are as follows [30] (rS, tS):

Cδx , fx =
64
∫ 2rS

0
x2

t4(x)
dx+κ(1+υ)

∫ 2rS
0

1
t2(x)

dx

πE
Cδy , fy = Cδx , fx

Cδz , fz =
4

πE
∫ 2rS

0
1

t2(x)dx

Cθx ,mx = 64
πE
∫ 2rS

0
1

t4(x)dx
Cθy ,my = Cθx ,mx

Cθz ,mz = (1 + υ)Cθx ,mx

Cδx ,my = Cθy , fx = rSCθx ,mx

Cδy ,mx = Cθx , fy = −Cδx ,my

(A2)
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where t(x) = tS + 2rS − 2
√

x(2rS − x), (x ∈ [0, 2rS]
)

, κ is the correction coefficient; here,
we take 10/9, υ is the Poisson’s ratio. E is Young’s modulus of the material.
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