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Abstract: We introduce a micro-electromechanical system (MEMS) energy harvester, designed for
capturing flow energy. Moving beyond traditional vibration-based energy harvesting, our approach
incorporates a cylindrical oscillator mounted on an MEMS chip, effectively harnessing wind energy
through flow-induced vibration (FIV). A highlight of our research is the development of a comprehen-
sive fabrication process, utilizing a 5.00 µm thick cantilever beam and piezoelectric film, optimized
through advanced micromachining techniques. This process ensures the harvester’s alignment
with theoretical predictions and enhances its operational efficiency. Our wind tunnel experiments
confirmed the harvester’s capability to generate a notable electrical output, with a peak voltage
of 2.56 mV at an 8.00 m/s wind speed. Furthermore, we observed a strong correlation between
the experimentally measured voltage frequencies and the lift force frequency observed by CFD
analysis, with dominant frequencies identified in the range of 830 Hz to 867 Hz, demonstrating the
potential application in actual flow environments. By demonstrating the feasibility of efficient energy
conversion from ambient wind, our research contributes to the development of sustainable energy
solutions and low-power wireless electron devices.

Keywords: vibration-to-electricity conversion; MEMS energy harvester; fluid-induced vibration
(FIV); Karman vortex; micro-electromechanical system (MEMS); piezoelectric film

1. Introduction

In today’s rapidly advancing technological landscape, the need for compact and
efficient power sources has become increasingly critical [1–3]. This need is paramount not
only in traditional arenas such as wireless sensor networks and wearable devices but also
in rapidly growing fields like advanced mobility solutions and drone technology. These
dynamic applications, characterized by their demand for autonomy and enduring power
sustainability, are transforming our interconnected and mobile world. Specifically, the
inherent movement of devices in sectors like drone technology and new mobility solutions
introduces novel opportunities for energy harvesting [4–6]. This interaction with airflow
represents an overlooked method to boost their sustainability and operational efficiency.

In this context, the development of micro-electromechanical system (MEMS)-based
energy harvesters, which are capable of transforming kinetic energy from environmental
forces like wind into electrical power, signifies a critical breakthrough [7,8]. Harvesters
employing cantilever beams equipped with piezoelectric films excel in harnessing kinetic
energy from diverse sources, including vibration, gravitational forces, and wind [9–13].
Additionally, the piezoelectric energy harvesting method, compared to electromagnetic
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and triboelectric energy harvesting methods, has the advantage of easier miniaturization
through MEMS processes and is less affected by external conditions such as dust and
humidity [14,15]. The materials commonly chosen for piezoelectric films include PZT
and AlN. PZT, known for its high piezoelectric properties, has been applied in MEMS
energy harvesters, typically harvesting energy ranging from 1 µW to 100 µW [16–18].
However, a significant drawback of PZT is that its use in micromachining processes can
contaminate fabrication equipment. On the other hand, MEMS harvesters that employ
AlN, while having lower piezoelectric properties compared to PZT, are noted for their ease
of processing in MEMS fabrication. The energy harvesting capacity of AlN-based MEMS
energy harvesters ranges from 0.8 nW to 10 µW [19,20]. However, the low power levels
generated by energy harvesters pose challenges in electrical circuit operations such as
rectification. Nonetheless, several studies have been conducted to rectify and boost power
at the mV and nW-µW levels into usable scales for energy harvesting [21,22].

Demonstrating a substantial energy density of approximately 0.3 µW/mm3, these
devices are suitable for a broad spectrum of applications [10,23]. Conventional vibration
energy harvesters, typically comprising a silicon cantilever beam with a piezoelectric film
and a proof mass (Figure 1a), are noted for their manufacturing simplicity [23,24]. However,
their efficiency predominantly relies on matching the external excitation frequency with
their resonant frequency. To overcome the limitation of narrow operational bandwidths
that is inherent in resonant systems, recent research efforts have been directed towards
tweaking system parameters such as rigidity, operating frequency, and damping, thereby
widening the bandwidth to adapt to varying environmental vibrations [25–27].
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Figure 1. Schematics of energy harvesters: (a) Traditional MEMS-based vibration harvester with a
piezoelectric cantilever beam and a proof mass. (b) Conceptual design of a wind energy harvester
utilizing flow-induced vibrations. (c) Proposed integrated MEMS energy harvester incorporating a
cylindrical oscillator for enhanced efficiency.
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In this paper, we investigate wind energy harvesting via fluid-induced vibrations
(FIVs), which are often used in macro-scale energy harvesting (Figure 1b). Our device
consists of an MEMS-based silicon cantilever beam integrated with a piezoelectric film and
a cylindrical oscillator that is designed to trigger vibrations effectively in response to wind
flow, harnessing energy across diverse environmental settings (Figure 1c). This approach,
minimally reliant on external vibration sources, harnesses Karman vortex dynamics to gen-
erate perpendicular vibrations to the direction of the fluid flow, thereby facilitating efficient
energy capture [23–25]. Particularly suited for MEMS applications, this method offers both
simplicity and adaptability under varying wind conditions [28–32]. Then, through 2D com-
putational fluid dynamics (CFD) analysis and wind tunnel experiments, we characterize
the harvester’s energy harvesting proficiency to evaluate its practical applicability.

This paper is organized as follows: Section 2 describes the structure and operating
principles of the MEMS energy harvester, along with the methods and setups for numerical
analysis and experiments. Section 3 investigates the behavioral characteristics of the MEMS
energy harvester in wind environments through numerical analysis and explores the
fabrication and properties of the harvester, demonstrating that actual electricity production
aligns with the predicted characteristics through experimental validation. Finally, Section 4
discusses the conclusions of our research, future works, and areas for improvement.

2. Materials and Methods

In this section, we detail the design and fabrication of our MEMS energy harvester,
numerical methods for quantifying the fluid forces, and experimental evaluation of the
energy harvesting efficiency.

2.1. Design and Principle of MEMS Energy Harvester

Our study introduces a novel MEMS energy harvester, adapted for fluidic environ-
ments, representing a significant shift from traditional vibration-based energy harvesters.
The key design consideration is the substitution of the conventional proof mass, typically
attached to a silicon cantilever beam, with a more responsive cylindrical oscillator made
of polylactic acid (PLA). The MEMS energy harvester, with dimensions of approximately
550 mm in width (w) and length (l) and 550 µm in height (h), features a cylindrical oscillator
of 2.00 mm in diameter and 10.0 mm in height. Advanced micromachining techniques
facilitate the integration of a piezoelectric film composed of aluminum nitride onto the
cantilever beam, which is adept at converting vibrational energy to electrical power. The
voltage generated by the piezoelectric film is connected to an electrical circuit through
aluminum electrodes linked to a 10 MΩ resistor to harvest power. The oscillator plays a cru-
cial role in transducing external fluidic forces into the mechanical motion of the cantilever
beam, thereby enhancing electrical energy generation.

Our energy harvester converts vibrational energy from the cantilever beam into elec-
trical power via piezoelectric films. Upon application of external force, the cantilever beam
undergoes alternating tensile and compressive stresses in the piezoelectric film, resulting in
the generation of an oscillating electric potential. This generated voltage further influences
the displacement of the piezoelectric film, forming a coupled mechanical–electrical system
of equations. Notably, the finely tuned oscillator’s alignment with the flow conditions
ensures continuous generation of Karman vortices, leading to the repetitive motion of the
cantilever. This dynamic is encapsulated by Equations (1) and (2), highlighting the intricate
interplay between the mechanical and electrical aspects of the harvester [33]:

m
..
y + c

.
y + ky + ΘV = FL, (1)

CP
.

V +
V
R
− Θ

.
y = 0, (2)

where the overdot denotes differentiation with respect to time. The parameters m, c, k, Θ, V,
FL, Cp, and R represent the effective mass, damping coefficient, stiffness, electromechanical
coupling coefficient, voltage, lift force, system capacitance, and electrical resistance, re-
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spectively. The electromechanical coupling coefficient represents the conversion efficiency
between displacement and voltage. The lift force FL, generated by the Karman vortices
around the oscillator is given by FL = CLρu2/2, where CL, ρ, and u are the lift coefficient,
density of the fluid (air in this study), and flow velocity, respectively. Here, the flow around
the oscillator undergoes changes due to the formation of Karman vortices, and it is these
vortices that primarily influence the variations in FL [34,35]. This force initiates vibration of
the oscillator, which in turn stimulates the cantilever beam’s motion, driving the energy
harvesting process. From Equations (1) and (2), we can anticipate that FL has a significant
impact on the oscillations of the cantilever beam (y) and the voltage (V) generated by the
piezoelectric film. This underscores the importance of investigating the variations in FL due
to the formation of Karman vortices when designing energy harvesters. We will explore
the effect of FL around the oscillator through CFD analysis, followed by an experimental
assessment of the voltage generated by the MEMS harvester.

2.2. Numerical Analysis of Fluid-Induced Forces on the MEMS Harvester

To accurately capture the fluid dynamics affecting our MEMS energy harvester, a
computational analysis was performed, focusing on the influence of the Karman vortex
on the oscillator. This detailed analysis is essential for refining the harvester’s design,
particularly for optimizing its response to Karman vortex forces. Building upon previous
research in fluid-induced vibration (FIV) [31,36], our study emphasizes the importance of
lift force variations on the oscillator.

The analysis domain was set similarly to emulate the phenomena observed in experi-
ments. As illustrated in Figure 2a, the domain features a cylinder with a diameter (D) of
2.00 mm, identical to the oscillator of the energy harvester. The surrounding fluid flow field
was defined by characteristic lengths Lx1, Lx2, and Ly of 50D, 150D, and 100D, respectively,
chosen to minimize the influence of the lateral boundary conditions. For our numerical
model, the foundation was set in two key governing equations: the mass conservation (con-
tinuity) equation and the momentum conservation equation. These equations offer crucial
insights into the fluid behavior around the harvester. The mass conservation equation is
given by

∂ρ

∂t
+ ρ∇·→v = 0 +∇·

(
ρ
→
v
)
= 0, (3)

where ρ, t, and
→
v are the air density, time, and velocity vector, respectively. This equation

ensures that the mass is conserved in the flow field around the harvester. The momentum
conservation equation is expressed as follows:

ρ
∂

∂t

(→
v
)
+ ρ∇

(→
v
→
v
)
= −∇p +∇·

[
µ

[(
∇→

v +
→
v

T
)
− 2

3
·∇→

v I
]]

, (4)

where ∇p, µ,
→
v

T
, and I are the pressure gradient, dynamic viscosity, transpose vector of

velocity, and unit tensor, respectively. The boundary conditions for the CFD analysis were
carefully chosen to reflect realistic physical interactions under the same conditions as the
experiments. At the inlet, a uniform velocity condition was applied, while at the outlet,
an outflow condition was set to simulate the fluid exiting the domain. The side surfaces
were treated with symmetrical boundary conditions to mimic an infinite fluidic domain,
thereby optimizing the computational efficiency and mirroring real-world conditions.
The properties of the working fluid in the analysis were set to match the experimental
environment, using air properties at atmospheric pressure and a standard temperature
of 25.0 ◦C.
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aerodynamic force analysis of the cylinder. (b) Wind tunnel setup illustrating the arrangement of the
blower, inverter, measurement instruments, and the test section for harvester performance evaluation.

Using the commercial software ANSYS Fluent 2023 R1, we employed a discretiza-
tion approach based on the finite volume method (FVM) to transform these continuous
equations into a computationally manageable format. Second-order discretization schemes
for velocity, pressure, and time variables were applied, ensuring higher accuracy. The
SIMPLE algorithm was used for pressure–velocity coupling under laminar flow conditions
(Re = 1095). A grid independence test was conducted to confirm that the chosen trian-
gular mesh size accurately represented the fluid dynamics. The final mesh configuration
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consisted of approximately 58,000 nodes, providing a reliable balance between accuracy
and computational efficiency. The time step was set to 2.00 × 10−6 s, selected through
sensitivity analysis to fully capture the transient nature of the flow.

2.3. Experimental Setup for Evaluating Performance of MEMS Energy Harvester

Following our observations of the external forces applied to the oscillator through
CFD analysis, we aimed to measure the voltage generated by the forces acting on the
oscillator through experiments. To evaluate the efficiency of the MEMS-based energy
harvester in capturing wind energy under controlled conditions, we designed a series of
wind tunnel experiments.

The experimental setup, detailed in Figure 2b, comprised a wind tunnel with a constant
cross-section of 71.0 mm × 63.0 mm and a length of 1000 mm. This configuration allowed for
the establishment of fully developed flow conditions. The blower’s (Inno Tech, Changwon,
Republic of Korea) speed was controlled using an inverter, and the airflow velocity was
measured with a pitot tube. The test section, featuring a sharp leading edge, made via 3D
printing (Cubicon, Seongnam-si, Republic of Korea), was placed at the center height of the
wind tunnel to mitigate boundary layer effects. The experiments were conducted under
controlled environmental conditions of atmospheric pressure and a standard temperature
of 25.0 ◦C. We recorded the voltage generated by the harvester using an oscilloscope
(Tektronix, Beaverton, OR, USA).

3. Results and Discussion

In this section, we present the validation and implications of our MEMS energy
harvester’s design and performance. We begin by examining the fluid dynamics that drive
the device’s functionality and then detail the fabrication processes. Finally, we demonstrate
how the device translates wind energy into usable electrical power, marking a significant
advance in energy harvesting technology.

3.1. Characterization of Vortex-Induced Forces and Their Effect on MEMS Energy Harvester

The CFD results of the transient changes in velocity (U) and static pressure (Ps,gage)
around the MEMS energy harvester, illustrating the lift coefficient (CL) evolution at an inlet
velocity of 8.00 m/s, are presented in Figure 3. In this context, we analyzed the variation
in the static pressure (Ps) field, emphasizing that Ps represents gauge pressure, due to
its direct impact on the variation in the lift force caused by vortex formation. Between
68.1 ms and 69.3 ms, the formation of single-type vortices encircling the cylindrical oscillator
was observed. The shedding of these vortices initiated at the oscillator’s circumferential
boundary—referred to as the “top” in the 2D representation—and progressively migrated
towards the “middle” and “bottom” regions in the 2D field. This migration led to significant
alterations in the adjacent flow and pressure fields. At 68.1 ms, an elevated static pressure,
reaching up to 115 Pa on the upper boundary in the 2D plane, generated a force directed
towards the oscillator’s center. By 68.7 ms, a more uniform pressure distribution resulted in
a neutral force impact on the oscillator. At 69.3 ms, the inversion of the pressure gradient,
dropping to as low as −70 Pa, created a force that was directed away from the center. This
sequence of dynamic shifts induced substantial lift forces, observable in Figure 3d, where
the oscillator experienced periodic, sinusoidal forces, with the lift force coefficient peaking
at 1.33.

Our CFD results elucidate that the vortex patterns that are proximal to the oscillator sig-
nificantly manipulate the flow and pressure distribution, inducing periodic forces that are
crucial for effective energy harvesting. These findings suggest that, within a flow environ-
ment, the MEMS energy harvester will prompt vertical oscillations in the silicon cantilever
beam, which is critical for the harvester’s design to ensure optimal energy extraction.



Micromachines 2024, 15, 581 7 of 13Micromachines 2024, 15, x FOR PEER REVIEW 7 of 13 
 

 

 
Figure 3. Fluid dynamics around the oscillator: (a–c) Transitional changes in the velocity and static 
pressure fields around an oscillator at an inlet velocity of 8.00 m/s (Re = 1095), depicting the influence 
on the lift force coefficient (CL). (d) Time domain signal of the CL, demonstrating its variation over 
time.  

Figure 3. Fluid dynamics around the oscillator: (a–c) Transitional changes in the velocity and static
pressure fields around an oscillator at an inlet velocity of 8.00 m/s (Re = 1095), depicting the influence
on the lift force coefficient (CL). (d) Time domain signal of the CL, demonstrating its variation over time.
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3.2. Fabrication and Characterization of MEMS Energy Harvester and Piezoelectric Film

Building on the insights from Section 3.1, Figure 4 illustrates our fabrication process
for the MEMS chip, tailored to incorporate the parameters from our vortex dynamics
studies. The process begins with the cleaning of a 4-inch silicon-on-insulator (SOI) wafer,
characterized by a 400 µm thick silicon handle layer, a 1.00 µm thick buried oxide layer, and
a 5.00 µm thick p-type silicon device layer, selected for their superior electrical properties
and versatility. To protect the device and handle layers during the fabrication and prevent
edge oxidation, a protective SiO2 layer, approximately 3000 Å thick, was deposited on both
surfaces of the wafer via plasma-enhanced chemical vapor deposition (PECVD).
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a cantilever beam involved etching a specific pattern on the device layer, reactive ion etch-
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Figure 4. MEMS chip fabrication process: (a) SiO2 layer patterning for the piezoelectric AlN film
deposition. (b) AlN film deposition. (c) Electrode layer deposition for electrical output. (d) Formation
of the cantilever structure through reactive ion etching (RIE). (e) Finalization of the cantilever with
back-side alignment and deep reactive ion etching (DRIE). (f) A schematic and (g) photograph of the
completed MEMS chip with cantilever beam, piezoelectric film, and electrodes.

For the piezoelectric component, aluminum nitride (AlN) was selected despite having
a piezoelectric constant (5.5 × 10−12 C/N at d33) that is approximately 100 time lower
than that of lead zirconate titanate (PZT) [37,38]. This choice was made considering AlN’s
advantages, such as a reduced contamination risk and greater cost-efficiency [39]. AlN
was sputtered to a 5000 Å thickness. The fabrication sequence involved patterning for
piezoelectric layer deposition, etching, and a lift-off process to remove superfluous material,
culminating in the construction of electrodes from layers of Al (3000 Å) and Cr (200 Å)
through evaporation, essential for channeling the piezoelectric film’s electrical output.
Here, in the construction process of the electrode, an electron beam (E-beam) evaporator
was employed for depositing Al/Cr layers at thicknesses of 3000/200 Å. These layers were
deposited atop the upper oxide layer and the sputtered AlN region to form the electrodes.
Cr was used as an adhesive layer, which did not affect the AIN performance [40]. Forming a
cantilever beam involved etching a specific pattern on the device layer, reactive ion etching
down to the buried oxide layer, and the addition of a protective cap. This was followed by
backside alignment, etching a masking pattern, and the use of deep reactive ion etching
(DRIE) to sculpt the cantilever from the handle layer. The completed MEMS chip, as shown
in Figure 4f,g, includes the cantilever beam, piezoelectric film, and electrodes.

The thin AlN film, covered with electrodes and deposited on the silicon cantilever
beam (Figure 4g), exhibits varying physical properties based on its crystal orientation.
The reactive sputtering process, employed for depositing AlN, requires careful control
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of the sputtering pressure at 1 Pa and nitrogen gas concentration (50% N2/Ar) to ensure
alignment in the (0002) direction [41]. X-ray diffraction (XRD) analysis of our fabricated
structure confirmed the successful deposition of the AlN film in the correct orientation, as
indicated by the strong intensity peak at the 2θ position of around 36 degrees in Figure 5,
corroborating the perpendicular alignment of the film relative to the cantilever beam’s
surface [41–43]. The final step in the device fabrication involved forming a cylindrical
oscillator using a 3D printer. The oscillator made from polylactic acid filament was secured
to the cantilever beam with a cyanoacrylate adhesive, measuring 2.00 mm in diameter and
10.0 mm in height.
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Figure 5. X-ray diffraction (XRD) analysis of the fabricated MEMS structure. Strong intensity peak
at the 2θ position of around 36 degrees confirms the successful deposition of the AlN film in the
(0002) orientation.

3.3. Harnessing Wind Energy: Correlating Vortex-Induced Dynamics with Electrical Output

This section investigates the harvester’s ability to harness wind energy and convert
it into electrical energy. As evidenced by the generated AC voltage signals presented in
Figure 6a, we observed distinct voltage signal generations across the time and frequency
domains during the wind tunnel test. A notable peak at approximately 2.56 mV at around
50 ms is a clear indicator of the harvester’s ability to effectively capture wind energy. To
ensure that this response is due to the changes in the vortex-induced lift force, we conducted
a comparative analysis, correlating the experimental AC voltage signals with the lift force
frequencies deduced from our numerical studies. Employing fast Fourier transform (FFT)
analyses on both sets of data revealed dominant frequencies at 830 Hz and 867 Hz, as
indicated in Figure 6b. The slight variance between the experimental frequency and the
CFD-derived frequency points to minor discrepancies in the vortex formation around the
MEMS chip, affecting the overall vortex shedding behavior.

The Strouhal number (St), a key dimensionless quantity in fluid dynamics, was as-
sessed to validate the power signal’s reliability and consistency. This number, which ties
the vortex shedding frequency to flow characteristics, is defined as follows [44]:

St =
f D
u

(5)

where f represents the vortex shedding frequency of the flow. In this context, it is essential
to clarify that the “vortex shedding frequency” pertains exclusively to the frequency at
which vortices are shed by the fluid flow, distinctly separate from the oscillation frequency
of the structural. Considering the Reynolds number variations, the Strouhal number was
experimentally determined to be approximately 0.21, resonating with the fluidic conditions
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and an inlet velocity of 8.00 m/s (Re = 1095) [44–46]. This led to a calculated vortex
shedding frequency of around 840 Hz, closely aligning with the FFT analysis outcomes and
affirming the influence of the vortex behavior on the electrical output of the harvester.
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output AC voltage signal, showing variation and peak amplitude over time. (b) Frequency spectrum
from FFT analysis, comparing experimental voltage with numerical simulation results for lift force
coefficient (CL), indicating dominant frequencies at 830 Hz and 867 Hz.

We observed a voltage signal from the MEMS energy harvester of 2.56 mV at 830 Hz.
By comparing the frequencies of vortex shedding, excitation (i.e., voltage), and lift force



Micromachines 2024, 15, 581 11 of 13

at 8 m/s, we demonstrated its applicability in actual flow environments. When design-
ing piezoelectric MEMS energy harvesters, materials like PZT and AlN are considered.
Although PZT is often favored for its superior piezoelectric efficiency [38], allowing vi-
brational energy harvesters to generate power ranging from 1 µW to 100 µW [16–18], it
poses specific challenges in fabrication due to contamination risks during the deposition
process. Conversely, while AlN exhibits lower piezoelectric properties, it is considered
more feasible for MEMS fabrication due to its ease of processing [39], typically generating
power at mV levels in the nW to µW range [19,20]. The relatively low power output from
these harvesters presents challenges in electrical circuit functions, including rectification.
Nonetheless, extensive research has been undertaken to enhance and convert power from
the mV and nW-µW levels to scales that are practical for energy harvesting [21,22].

Methods to enhance performance include minimizing residual stresses on piezoelec-
tric materials through precision micromachining processes and controlling Karman vortex
patterns. In the process of harvesting wind energy, the AlN piezoelectric film, which is
essential for converting mechanical energy into electrical energy, experiences changes in its
coupling coefficient due to residual stresses induced during micromachining [47,48]. In-
creased residual stresses result in reduced coupling coefficients of the piezoelectric elements,
subsequently impairing the performance of energy capture [48]. Therefore, addressing
the challenges in micromachining to control or mitigate these residual stresses is crucial
for enhancing the operational efficiency and energy harvesting capabilities of our MEMS
energy harvester. Additionally, our computational fluid dynamics (CFD) studies reveal that
a single vortex type predominates in the wake of the MEMS energy harvester, as depicted
in Figure 3. By modifying the arrangement or the surface of the cylinder to promote the
formation of combined single and pair of vortex patterns, we anticipate a possible increase
in the amplitude of the voltage produced by the MEMS energy harvester [49].

4. Conclusions

In summary, we presented an MEMS energy harvester for capturing the flow-induced
vibration caused by the Karman vortex. We designed and fabricated a 5 µm thick silicon
cantilever beam coated with AlN piezoelectric film through MEMS processes. The alignment
of the piezoelectric film was verified through an XRD test. The fluctuating static pressure field
around the oscillator, induced by vortex formation, is the primary driver of the cantilever
beam’s vibrations. The robust correlation between the wind-tunnel-derived voltage signals
and the CFD lift force coefficients, especially regarding frequency alignment, as denoted by the
Strouhal number, not only validates the harvester’s operational efficacy but also emphasizes
the importance of flow field control in enhancing energy harvesting performance.

The ability of our energy harvester to transform wind-induced vibrations into electrical
energy with substantial voltage outputs suggests the harvester’s practical applicability. A
notable peak at approximately 2.56 mV at 830 Hz was a clear indicator of the harvester’s
capability to effectively capture wind energy. The observed voltage generation is not just a
measure of the device’s operational capability but also reflects its alignment with the anticipated
performance. The dominant frequencies within the 830 Hz to 867 Hz range closely align with
the theoretical analysis of vortex shedding dynamics. This agreement of experimental results
with theoretical models solidifies our research methodology and supports the significance of
precise modeling in the conceptualization of effective harvesting mechanisms.

In sum, our findings not only elucidate the operational potential of MEMS energy
harvesters but also lay the groundwork for subsequent innovation in the field of renewable
energy technologies. Additionally, the suggested energy harvesting method is significantly
influenced by fluid dynamics, the shape of the energy harvester, resonance phenomena, and
structural characteristics. So, if optimal design is achieved in future works, it could lead to
enhanced energy harvesting. The implications of our work possibly extend into the realm
of sustainable energy solutions and low-power wireless sensors, where the application of
MEMS technology could potentially play a transformative role.
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