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Abstract: Improving measurement accuracy is the core issue with surface acoustic wave (SAW)
micro-force sensors. An electrode transducer can stimulate not only the SAW but also the bulk
acoustic wave (BAW). A portion of the BAW can be picked up by the receiving transducer, leading
to an unwanted or spurious signal. This can harm the device’s frequency response characteristics,
thereby potentially reducing the precision of the micro-force sensor’s measurements. This paper
examines the influence of anisotropy on wave propagation, and it also performs a phase-matching
analysis between interdigital transducers (IDTs) and bulk waves. Two solutions are shown to reduce
the influence of BAW for SAW micro sensors, which are arranged with acoustic absorbers at the
ends of the substrate and in grooving in the piezoelectric substrate. Three different types of sensors
were manufactured, and the test results showed that the sidelobes of the SAW micro-force sensor
could be effectively inhibited (3.32 dB), thereby enhancing the sensitivity and performance of sensor
detection. The SAW micro-force sensor manufactured using the new process was tested and the
following results were obtained: the center frequency was 59.83 MHz, the fractional bandwidth was
1.33%, the range was 0–1000 mN, the linearity was 1.02%, the hysteresis was 0.59%, the repeatability
was 1.11%, and the accuracy was 1.34%.

Keywords: surface acoustic wave (SAW); micro-force sensor; bulk acoustic wave (BAW)

1. Introduction

Devices that utilize surface acoustic waves (SAWs) have found extensive applications
across a range of fields, including mechanical engineering, aerospace and aviation, signal
processing, non-destructive evaluation, and the realm of sensor technology, among oth-
ers [1]. SAW sensors, recognized for their vital role in sensing technology, have shown great
promise due to a combination of advantageous attributes. These include high sensitivity,
rapid response times, excellent specificity, reversibility, battery-powered operation, small
size, low cost, compact dimensions, and affordability [2]. As a result, they hold significant
potential for a wide array of future applications. The SAW sensors can be used to measure
temperature [3], humidity [4], gas [5,6], force [7], and so forth.

In this paper, we focus on research into SAW micro-force sensors. It is well understood
that a variety of sensor types are capable of measuring micro-forces, including but not
limited to capacitive micro-force sensors, resistance micro-force sensors, fiber optic micro-
force sensors, hall micro-force sensors, and so on. However, the output signals of these
traditional force sensors are analog signals, which are susceptible to environmental factors,
whereas the output signal of the SAW micro-force sensor is a frequency signal, which is less
susceptible to interference. In addition, compared to traditional micro-force sensors, the cost
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of SAW force sensors is relatively low. However, due to the limitations of manufacturing
traditional SAW device processes, the measurement accuracy is limited.

For SAW micro-force sensors, the study of measuring accuracy is the core issue. To
develop a practical SAW micro-force sensor, we aim to improve its measuring accuracy.
To develop a high-precision SAW force sensor, the design of input and output interdigital
transducers (IDTs) is critical. Xiaozhou Lü et al. [8,9] used evenly distributed fingers to
design input and output IDTs, but this kind of design method can cause the input IDT to
produce a second-order effect [10–12], which will increase the sidelobes of the SAW sensor,
thus seriously affecting the measuring accuracy of it. When the input transducer excites
the SAW signal, it also excites the BAW signal [13], and the BAW signal will reflect on the
substrate surface and then reach the output transducer. Due to the influence of BAW on
the SAW signal received by the output transducer, the device will eventually have poor
sidelobe rejection performance. Therefore, it is necessary to consider and eliminate the
problem of BAW in the process of realization with SAW devices.

To solve the problem of BAW in surface acoustic wave devices, many scholars have
conducted some research. Changbao Wen proposed using the multistrip coupler (MSC) in
SAW devices [14,15]. Wenke Lu presented the solutions to the insertion loss and the bulk
wave of the wavelet transform processors using SAW devices [16]. Hua Jiang discussed the
insertion loss and the sidelobe in wavelet transform and reconstruction processors using
SAW devices [17]; however, the sidelobe was 28.89 dB. Therefore, regarding SAW micro-
force sensors, there have been fewer studies of the second-order effect, especially the bulk
acoustic waves that cause sidelobes. The bigger the sidelobe, the worse the anti-interference
performance of the micro-force sensor. Therefore, we must propose the principle of BAW
and methods to solve sidelobes.

In this paper, we proposed the electrode-overlap envelope to design the input IDT.
We selected ST-X SiO2 as the material of the piezoelectric substrate to reduce the influence
of sound–electricity reclamation [18]. Two methods are given to reject sidelobes: one is
arranging acoustic absorbers at both ends of the substrate, and another is grooving at the
bottom of the piezoelectric substrate, which can reduce the influence of BAW.

This paper is organized as follows: In Section 2, the principle of the SAW micro-
force sensor is introduced. In Section 3, BAW propagation in the SAW micro-force sensor
is shown. In Section 4, we discuss the manufacture of three types of SAW micro-force
sensor: a SAW micro-force sensor without acoustic absorbers, a SAW micro-force sensor
with acoustic absorbers, and a SAW micro-force sensor both with acoustic absorbers and
grooved piezoelectric substrate. In Section 5, we measure the basic parameters of three types
of SAW micro-force sensors. The conclusions are presented in Section 6.

2. Principle of the SAW Micro-Force Sensor

There are two kinds of SAW micro-force sensors, namely, the delay-line type and
the resonator type. The delay-line structure sensor has a long acoustic transmission path,
which can obtain a large sensitive area, and its structure is simple and small. Therefore, the
delay-line type is adopted as the basic structure of the sensor in this paper. It is composed
of a piezoelectric substrate and two IDTs, and the input IDT and output IDT are etched on
a piezoelectric substrate, which is a thin and flexible diaphragm.

The basic structure of the SAW delay-line sensor is shown in Figure 1. Its working
principle is as follows: firstly, the input electrical signal is converted into the SAW signal
by the input IDT; then, the SAW signal is propagated to the output IDT through the
piezoelectric medium, and finally, the SAW signal is converted into an electrical signal by
the output IDT.

The SAW micro-force sensor adopts a double-end fixed beam structure, that is, the
two ends of the piezoelectric substrate are fixed, which is shown in Figure 2. When the
force F is subjected to the central position of the piezoelectric substrate, its elastic stiffness
constant and density will change, which will lead to variations in the propagation velocity
of SAW. On the other hand, the center distance of the interdigital electrodes will change,
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and it will cause variations in the wavelength of it; finally, it will result in variations in the
oscillation frequency of the SAW sensor. Therefore, the goal of measuring force F can be
reached by the variations in the output frequency of the SAW sensor.
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As shown in Figure 2, when the force F is subjected to the central position of the
piezoelectric substrate, it causes variations in the piezoelectric substrate strain σ, and
combined with Figure 1, we can obtain the following:

a(σ) = a0(1 + σ)
b(σ) = b0(1 + σ)
υ(σ) = υ0(1 + kσ)

λ(σ) = 2a(σ) + 2b(σ)

(1)
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where a(σ) is the width of the electrode, b(σ) is the spacing of the electrode, υ(σ) is the
propagation velocity of SAW, and λ(σ) is the wavelength of SAW; in addition, a0, b0, υ0,
and λ0 are the values of a(σ), b(σ), υ(σ), and λ(σ) when the force F = 0, respectively.
The variable k denotes the elastic stiffness constant of the piezoelectric substrate. This
constant embodies the non-zero pressure coefficients associated with the elastic properties,
piezoelectric characteristics, and the dielectric constant of the material [19]. In addition, we
know from the SAW theory that

f =
υ(σ)

λ(σ)
(2)

where f is the output frequency of the SAW micro-force sensor, and the center frequency
can be written as follows:

f0 =
υ0

λ0
(3)

from Equations (1)–(3), we can obtain the following:

f =
υ(σ)

λ(σ)
=

υ0(1 + kσ)

(2a0 + 2b0)(1 + σ)
=

υ0(1 + kσ)

λ0(1 + σ)
=

1 + kσ

1 + σ
f0 (4)

so the output frequency shift ∆ f can be written by

∆ f = f − f0 =
(k − 1)σ

1 + σ
f0 (5)

According to the relevant mechanical theory, we can obtain the following:

σ1 = − 3FL
4EWH2 (6)

where L, W, and H are the length, width, and thickness of the piezoelectric substrate,
respectively, and E is the modulus elasticity of the piezoelectric substrate material. By
substituting (6) into (5), we obtain the following:

∆ f =
3 f0L(1 − k)

4EWH2 − 3FL
F (7)

In this paper, quartz is selected as a piezoelectric substrate with elastic modulus
E = 72.7 GPa [20,21]. The magnitude of E is 109 (i.e., GPa), so 4EWH >> 3FL, and then
Equation (7) can be written as

∆ f =
3 f0L(1 − k)

4EWH2 F (8)

It can be seen from Equation (8) that there is a linear relationship between the output
frequency shift ∆ f and the force F, so the force F can be measured by the output frequency
shift ∆ f .

3. The BAW Propagation in SAW Micro-Force Sensor
3.1. Phase Matching of IDT to BAW

Upon the application of a micro-force to the SAW sensor, deformation occurs within
the piezoelectric substrate. The input IDT not only stimulates the desired surface acoustic
wave signal but also stimulates the bulk acoustic wave signal that propagates through the
substrate’s volume, provided that the surface projection of the wavelength aligns with the
period of the IDT.

The BAW signal will be reflected on the substrate surface and then reach the output
transducer. Since the propagation speed of the bulk acoustic wave is larger than the surface
acoustic wave, the frequency of the surface acoustic wave of the interdigital transducer
cannot be greater than the frequency of the excited BAW, which is the reason why the
spectrum curve above the center frequency response usually appears on the right side of
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the frequency test diagram of the device, as shown in Figure 3. In Figure 3, the sidelobe
rejection achieves 27.07 dB.
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According to Figure 1, the condition for achieving phase synchronization can be
expressed as follows:

υ0 = f 0λ0 =
υ(γ)

cosγ
(9)

where f0 is the center frequency, λ0 is the IDT period, v0 is the propagation velocity, γ is
the inclination angle of the bulk wave concerning the surface wave, and υ(γ) is the velocity
of the wave in the γ direction.

In Figure 4, the wave vector pO propagating along the surface of the piezoelectric sub-
strate is 2π/λ0. Based on the properties of wave vectors, Equation (9) can be reformulated
as follows:

pO = 2π/λ0 = ps = p(γ)cosγ (10)

where ps is the surface component of the wave vector p(γ).
In an isotropic medium, υ(γ) depends on the wave mode, the material of the sub-

strate, the orientation of the surface cut, the direction of the transducer, and the ambient
temperature. When these factors are determined, the center frequency is determined by the
inclination angle as follows:

f0 =
1

λ0
· υ(γ)

cosγ
(11)

where f0 is determined by γ, specifically 1/cosγ. Therefore, the larger the propagation
angle (γ) of BAW, the higher the frequency of its coupling to IDT.

When the frequency increases, one can juxtapose this scenario with the limiting
condition for BAW propagation, specifically when γ is at its cutoff value γc. This condition
signifies that the direction of energy transfer or wave motion is parallel to the surface.
The familiar SBAW equals SSBW, propagating directly between two IDTs on the same
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surface [22]. By comparing the DBAW case with the limiting SBAW case, we can obtain the
following from Equation (9):

( f 0)DBAW
( f 0)SBAW

=
υ(γ)

vSBAW
· cosγc

cosγ
=

1
cosγ

(12)

The wave’s coupling efficiency to the IDT is likely to diminish as the inclination angle
increases for a specific device. This reduction in coupling efficiency imposes a practical
constraint on the maximum steepness of the wave that can be effectively utilized. For DBAW
devices, enhancement factors (1/cosγ) of 2 or more (γ ≥ 60◦) are considered achievable
and reasonable under favorable material and cut conditions.
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3.2. The BAW in ST-X Quartz Material

SAW devices are sensitive to the materials from which they are made, as the properties
of the material can significantly influence the performance of the device. In a comparative
study examining the application of quartz in contrast to PZT (lead zirconate titanate
piezoelectric ceramics, PZT) ceramics and PMN-PT (magnesium niobate–lead titanate
piezoelectric material, PMN-PT) single crystals for surface acoustic wave (SAW) devices,
several key factors come into play that influence the bulk characteristics and the overall
performance of the resulting SAW devices [23–31], as follows:

1. Nonlinear effects: PZT and PMN-PT are known for their nonlinear piezoelectric effects,
which can be exploited for certain applications such as frequency multiplication or
for creating devices with tunable properties. However, these nonlinearities can also
introduce complexities in wave propagation that might not be present in quartz.

2. Piezoelectric saturation: At high drive levels, the piezoelectric effect in PZT and
PMN-PT can saturate, leading to a nonlinear response. This can affect the accuracy
and stability of the SAW device, particularly in applications that require high-power
handling or large signal modulation.

3. Cutting angle: The properties of SAW devices are highly dependent on the cut and
orientation of the crystal. Quartz has well-established cuts (e.g., Y-cut, AT-cut, ST-cut)
that are optimized for SAW propagation.

4. Signal distortion: Nonlinear effects can cause signal distortion in SAW devices, par-
ticularly for applications that involve large signal swings or high-power operation.
This can be more pronounced in PZT and PMN-PT devices compared to those made
from quartz.

5. Fabrication complexity and cost: PZT and PMN-PT might be more challenging to
fabricate into the precise geometries required for SAW devices, potentially leading to
higher costs or lower yields.
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In summary, the designing of SAW devices needs to adjust device geometries, oper-
ating frequencies, or temperature-compensation strategies to optimize performance with
these alternative materials. To reduce the influence of sound–electricity reclamation on the
SAW sensor, we selected ST-X quartz as the material of the piezoelectric substrate [32,33].
So, analyses should be conducted on the shear–horizontal (SH) bulk waves that travel
perpendicularly to the X-axis within quartz.

Figure 5 illustrates the propagation of shear waves that are oriented perpendicular
to the axis of two-fold symmetry, specifically the X-axis of quartz, with their polarization
vector aligned parallel to this axis, resulting in X-polarized shear waves. These waves are
classified as pure shear waves, which have the unique property of reflecting off surfaces that
are parallel to the symmetry axis without experiencing any energy loss or mode conversion.
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Additionally, Figure 5 provides a depiction of the slowness curve for a commonly
used quartz substrate, known as the ST cut, along with some representative examples of
the directions of long-path BAWs and short-path BAWs. A long-path BAW can stimulate
the SBAW, and a short-path BAW can stimulate the DBAW. So, the solution to reduce the
BAW must take these two influences into account.

4. Manufactured of the SAW Micro-Force Sensor
4.1. Arranging Acoustic Absorbers at Ends of Piezoelectric Substrate

When the acoustic wave propagates on the surface and the body of the piezoelectric
substrate, the sudden fracture of the edge of the substrate will cause the surface acoustic
wave to reflect the input IDT and output IDT, forming a false acoustic wave reflection,
and eventually increasing the ripple in the frequency response of the surface acoustic
wave device, as shown in Figure 6. This phenomenon is called the transducer edge
reflection phenomenon.

When the acoustic absorbers are seated and glued to the edge of the piezoelectric
substrate, the absorbing material can better absorb the reflection of the pseudo surface
wave, thus solving the problem of the edge reflection of the transducer, as shown in Figure 6.
Commonly used acoustic-absorbing substances are silicone rubber and other substances.
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4.2. Piezoelectric Substrate with Slotted Bi-Directional Grooves

The slotting process involves utilizing a specialized tool known as a slice cutter to
meticulously create a narrow groove in a designated direction on the rear surface of the
piezoelectric substrate. This action effectively impedes the propagation of BAW signals
along their typical transmission path [34,35].

In Figure 7a, the path labeled as 1 represents the route taken by electrode A of the
input IDT, while the path labeled as 1′ indicates the reflection of the BAW that occurs before
the implementation of the slotting process. In Figure 7b, the path marked with 1′ ′ (depicted
by an orange dotted line) signifies the reflection of the BAW that takes place after the
grooving process has been completed. This slotting process results in a modification of the
piezoelectric substrate’s thickness, specifically a reduction from 0.5 mm to 0.45 mm due to
a slot depth of 0.05 mm. This alteration repositions the point of maximum BAW reflection
to the termination of the central area’s output IDT, which substantially diminishes the
impact of the BAW. Figure 7c shows the physical image of the ungrooved sensor. Figure 7d
shows the physical image of the grooved sensor.
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Figure 7. Change in BAW reflection excited by IDT after the grooves. (a) Reflection of BAW without
grooved piezoelectric substrate; (b) BAW reflection with grooved piezoelectric substrate; (c) physical
image of ungrooved sensor; (d) physical image of grooved sensor.
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Figure 8 provides a magnified view of the SAW micro-force sensor, with a magnifica-
tion factor of 120×. In Figure 8, the grooves are slotted at the bottom of the piezoelectric
substrate to avoid the BAW reflection arriving at the central area output IDT. The pattern
of the grooves is set at intervals along the Y-axis: a 2 mm gap in the direction of 45 degrees
and a 1 mm gap in the direction of 135 degrees.
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5. Measurement of the SAW Micro-Force Sensor

Three kinds of SAW micro-force sensors were fabricated on ST-X quartz substrate:
the SAW micro-force sensor without acoustic absorbers, the SAW micro-force sensor with
acoustic absorbers, and the SAW micro-force sensor both with acoustic absorbers and
grooved piezoelectric substrate. In addition, the electrode material of the IDTs was alu-
minum [36], and the electrode-overlap envelope of the input IDT was weighted according
to the Hamming function [37–39].

Table 1 shows the design parameters of the micro-force sensor fabricated on ST-X
quartz. We manufactured three types of sensors according to the parameters in Table 1.

Table 1. Design parameters of the micro-force sensor fabricated on ST-X quartz.

Piezoelectric Substrate Center
Frequency

(MHz)

−3 dB
Bandwidth

(MHz)

Electrode
Width
(µm)

Space between
Electrodes

(µm)

Electrode Number

Length
(mm)

Width
(mm)

Thickness
(mm)

Input
IDT

Output
IDT

28 6 0.5 59.83 0.798 8.77 14.54 73 25

Figure 9 shows the frequency curve of the SAW micro-force with acoustic absorption
and grooved piezoelectric substrate. When the grooves are engraved on the piezoelectric
substrate of the SAW micro-force tension sensor, the sidelobe (3.32 dB) can be effectively
suppressed. Compared with Figure 3, we can see clearly that with the acoustic absorption
and the grooved piezoelectric substrate, the sidelobe of frequency characteristics is reduced
from 27.07 dB to 3.32 dB, so the frequency characteristic of the SAW yarn tension sensor is
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better. Therefore, the method of acoustic absorption and grooved piezoelectric substrate
can solve the problem of sidelobe rejection.
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We loaded this type of SAW micro-force sensor and obtained the measurement data,
as shown in Table 2. Table 2 shows the test of the micro-force sensor from 0 mN to 1000 mN,
and each set of data is the average of 10 measurements. And we tested the basic parameters
of the SAW micro-force sensor, as shown in Table 3.

Table 2. Measurement data of SAW micro-force sensor from 0 mN to 1000 mN.

F(mN)
∆ f (Hz)

20
284

40
571

60
858

80
1139

100
1441

140
1993

160
2278

180
2564

200
2872

F(mN)
∆ f (Hz)

220
3129

240
3417

260
3688

280
3969

300
4167

340
4835

360
5117

380
5402

400
5652

F(mN)
∆ f (Hz)

420
5953

440
6257

460
6541

480
6801

500
7034

540
7660

560
7948

580
8256

600
8427

F(mN)
∆ f (Hz)

620
8799

640
9066

660
9357

680
9662

700
9907

740
10,496

760
10,786

780
11,025

800
11,328

F(mN)
∆ f (Hz)

820
11,641

840
11,932

860
12,219

880
12,507

900
12,855

940
13,359

960
13,641

980
13,923

1000
14,227

Table 3. Basic parameters of the SAW micro-force sensor.

Range Linearity Hysteresis Repeatability Accuracy

0–1 N 1.02% 0.59% 1.11% 1.34%
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6. Conclusions

In this paper, a geometric model has been established to describe the propagation of
BAW generated by IDTs, and its fundamental characteristics have been validated through
experimental means. The study takes into account the anisotropy effects of wave propagation
and calculates the phase matching between the IDT and the bulk waves. Two solutions are
shown to reduce the influence of BAWs for SAW micro sensors. First, the acoustic absorbers
at the ends of the substrate absorb the BAW reflection. Second, grooving is at the bottom of
the piezoelectric substrate to avoid the BAW reflection arriving at the central-area output IDT.

BAW configuration was carried out, and the BAW mode and material were selected. Most
of the BAWs were scattered due to the acoustic absorbers and engraved grooves on piezoelectric
substrates, which suppressed the sidelobe from 27.07 dB to 3.32 dB, achieving the high sidelobe
rejection to the SAW micro-force sensor. We developed a new SAW micro-force sensor and
tested it; the experimental results show that the center frequency was 59.83 MHz, the fractional
bandwidth was 1.33%, the range was 0 mN–1000 mN, the linearity was 1.02%, the hysteresis
was 0.59%, the repeatability was 1.11%, and the accuracy was 1.34%.
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