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Abstract: The purpose of this paper is to present a simple micromechanics-based model
to estimate the effective thermal conductivity of macroscopically isotropic materials of
matrix-inclusion type. The methodology is based on the well-established Mori-Tanaka
method for composite media reinforced with ellipsoidal inclusions, extended to account for
imperfect thermal contact at the matrix-inclusion interface, random orientation of particles
and particle size distribution. Using simple ensemble averaging arguments, we show that
the Mori-Tanaka relations are still applicable for these complex systems, provided that
the inclusion conductivity is appropriately modified. Such conclusion is supported by the
verification of the model against a detailed finite-element study as well as its validation
against experimental data for a wide range of engineering material systems.
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1. Introduction

There has been a clear trend over the last decade to exploit ever greater detail of the material structure
to better predict material response from simulations. Hierarchical modeling strategy, either coupled
or uncoupled and mostly of the bottom-up type, has served to provide estimates of the macroscopic
response. In this process, geometric details decisive for a given scale are first quantified by employing
various statistical descriptors [1] but eventually smeared via homogenization to render larger scale
property. Greater precision is expected when introducing the results of microstructure evaluation into
the homogenization step. However, the actual gain when compared to the cost of this analysis is still in
question. Obviously, description of evolving microstructures or rigorous representation of deformation
mechanisms would require to account for almost every detail of the microstructure on a given scale.
But how deep do we have to go if only the effective macroscopic response (i.e., linear macroscopic
properties) is of the primary interest? Such a goal is addressed in this contribution.

Here, the modeling effort concentrates on the evaluation of effective thermal conductivities of various
engineering materials with a significant degree of heterogeneity focusing on imperfect thermal contact
along constituents interfaces. We shall argue, shielded by available experimental data, that reasonably
accurate predictions of macroscopic response can be obtained with very limited information about actual
microstructure such as volume fractions and local properties of material phases. Consequently, we lump
the entire analysis on the assumption of representing true material structures by statistically isotropic
distribution of spheres. Figure 1 shows micro-images of selected material representatives which seem
to admit this classification. Note that whatever material phase embedded into the matrix (the basic
material) is henceforth termed the heterogeneity in real material systems while it is termed inclusion in
approximations adopted for calculations.

Figure 1. Examples of micro-graphs of real engineering materials taken in back scattered
electrons: (a) Alkali-activated fly ash, (b) Alumino-silicate ceramics with Fe and silicium
particles (dark phase), (c) Superspeed—alloying ingredient into crude iron for cast iron
working with silicon particles (dark phase). Reproduced with permission of L. Kopecký
(CTU in Prague).

20 µm 10 µm 500 µm

(a) (b) (c)

Strong motivation for this seemingly swingeing simplification is supported by experimental
measurements presented in [2] for cement matrix based mixture of rubber particles and air voids.
Comparison between experimental data and predictions provided by the Mori-Tanaka averaging scheme
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under the premise of random distribution of spherical inclusions appears in Figure 2. The match is
almost remarkable.

Going back to Figure 1 one may object that while admissible for Figure 1(a) the spherical
approximation of particle phase in Figure 1(c) will yield rather erroneous predictions. Note, however,
that this attempt is not hopeless providing the microstructure can still be considered as macroscopically
isotropic, which ensures the statistically isotropic distribution of heterogeneities having isotropic
material symmetry. In that case, it can be shown that the previously mentioned Mori-Tanaka method
written out for spherical inclusions is adequate provided that the material properties of the inclusions are
suitably modified. Although this step requires information beyond that of volume fractions of phases,
the benefit of gathering additional data will become particularly appreciable once we turn our attention
to material systems with imperfect interfaces, which is the principal objective of this study.

Figure 2. (a) Evolution of effective thermal conductivity χH as a function of volume
fraction of rubber in solid phase, (b) Correlation of measured and calculated values; ρ is
the correlation coefficient.
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The problem of quantifying the influence of imperfect thermal contact on the overall thermal
conductivity has been under intense study in the past. Hasselman and Johnson [3] provided estimates for
dilute concentration of mono-disperse spherical and cylindrical heterogeneities. Successful application
of this simple model to Al/SiC porous composites is presented in [4]. The Hasselman-Johnson results
were then extended by Benveniste and Miloh [5] to spheroidal particle shapes with imperfect interfaces
and subsequently applied in the framework of the Mori-Tanaka method [6]. These early developments
were later generalized by Nogales and Böhm, who proposed in [7] a simple method for dealing with
polydisperse systems of spherical particles. In addition, rigorous third-order bounds for effective
conductivity of macroscopically isotropic distribution of particles with imperfect interfaces were derived
by Torquato and Rintoul [8]. Alternatively, as demonstrated by Hashin [9], the material systems with
imperfect interfaces can be accurately approximated by the coated inclusion model developed by Dunn
and Taya [10], which also accounts for different orientation of the inclusions. When attention is limited
to spherical inclusions, the results presented in [7] can be obtained in a very elegant way by simple
extension of one-dimensional analysis. This is demonstrated in Appendix B.
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To exploit this result in practical applications of the Mori-Tanaka method to a heat conduction
problem, prediction of effective thermal conductivity in particular, we adopt the analysis scheme
graphically presented in Figure 3. We start from the assumption of multidisperse system of randomly
oriented spheroidal inclusions with possibly imperfect thermal contact (non-zero temperature jump
along the interface). We proceed in five consecutive steps to arrive at the desired approximation of
multidisperse system of spherical inclusions with perfect interfaces (temperature continuity along the
interface).

Figure 3. Mori-Tanaka based scheme: Strategy of derivation.

≈ ⇒ ⇒

⇒ ⇒ ⇒

(i) Single inclusion (ii) Multiple inclusions

(iii) Orientation averaging (iv) Imperfect interface (v) Polydispersivity

Original system

These steps are mathematically described in Section 2. Section 3 is devoted to both validation and
verification of the proposed scheme against available experimental data and finite element simulations
performed for several representative statistically isotropic random microstructures. The crucial results
and principal recommendations are finally summarized in Section 4.

2. Theoretical Background of the Mori-Tanaka Method

In this section attention is accorded to the essential theoretical details of the Mori-Tanaka method
in view of the five steps in Figure 3. In the first step, we consider a single inclusion with perfect
interface subject to far-field loading. This step is theoretically elaborated in Section 2.1. Solution of this
problem is then employed in Section 2.2 to estimate the overall conductivity of a composite consisting
of multiple ellipsoidal inclusions bonded to a matrix phase. The third step addressed in Section 2.3 is
reserved for systems with randomly oriented inclusions with a uniform distribution over the hemisphere.
Here, a simple orientation averaging argument is shown to demonstrate that the effective conductivity
of the system coincides with the conductivity of a system reinforced by spherical inclusions, thermal
conductivity of which is appropriately modified. Following [7], an analogous argument is employed in
the next step outlined in Section 2.4 to account for imperfect thermal contact along the matrix-inclusion
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interface. It is shown that in this case the modified conductivity becomes size-dependent. This eventually
allows us to extend the scheme to polydisperse systems in Section 2.5.

2.1. Single Inclusion with Perfect Interface

Let us consider an ellipsoidal inclusion Ω i, with semi-axes a1 ≤ a2 ≤ a3 embedded in the matrix
domain Ωm. We attach to the inclusion a Cartesian coordinate system with the origin at the inclusion
center and axes aligned with the semi-axes. The distribution of local fields follows from the problem

q(x) = −χ(x)h(x), ∇Tq(x) = 0 for x ∈ R3 (1)

where q ∈ R3 denotes the heat flux, h ∈ R3 denotes gradient of the temperature θ (i.e., h(x) = ∇θ(x))
and χ designates the 3× 3 symmetric positive-definite matrix of thermal conductivity given by

χ(x) =

{
χi for x ∈ Ω i

χm otherwise
(2)

Equation (1) is completed by the far-field boundary conditions, cf. [5, Equation (14)],

θ(x) = HTx for ‖x‖ → ∞ (3)

with H ∈ R3 denoting the overall (macroscopic) temperature gradient. Due to linearity of the problem,
we can introduce the temperature gradient concentration factorA ∈ R3×3 in the form

h(x) = A(x)H for x ∈ R3 (4)

As shown first by Hatta and Taya [11], the concentration factor is constant inside the inclusion and admits
the expression

A−1(x) =
(
Ai
)−1

= I − S (χm)−1 (χm − χi
)

for x ∈ Ω i (5)

where I denotes the unit matrix and S ∈ R3×3 is the Eshelby-like matrix which depends only on the
matrix conductivity χm and the ratios of semi-axes lengths β2 = a2 : a1 and β3 = a3 : a1, see also
Appendix A for additional details. For the spherical inclusion with isotropic conductivity χi = χiI

embedded in the isotropic matrix with χm = χmI , Equation (5) simplifies as

Ai = Ai
sphI with Ai

sph =
3χm

2χm + χi
(6)

2.2. Multiple Inclusions with Perfect Interface

In the next step, we adopt the results of the previous section to estimate the overall behavior of
a composite material consisting of distinct phases r = 0, 1, . . . , N . The value r = 0 is reserved
for the matrix phase Ωm and the r-th phase (r > 0) corresponds to the ellipsoidal inclusion Ω (r),
characterized by its semi-axes a(r)

1 , a
(r)
2 and a(r)

3 , volume fraction c(r) and conductivity χ(r). Following
Benveniste’s reformulation [12] of the original Mori-Tanaka scheme [13], the interaction among phases
is approximated by subjecting each inclusion separately to the mean temperature gradient in the matrix
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phase Hm in Equation (3). As a result, the temperature gradient inside the r-th phase remains constant
and reads

H(r) = T (r)Hm for r = 0, 1, . . . , N (7)

Here,

H(r) =
1

|Ω(r)|

∫
Ω(r)

h(x) dx (8)

and T (r) is the 3× 3 partial temperature gradient concentration factor of the r-th phase, given by

T (r) =

{
I for r = 0,

R(r)T
(r)
` (R(r))

T for r = 1, 2, . . . , N
(9)

where the 3 × 3 rotation matrix R(r) accounts for the difference in the global and local coordinate
systems, see Section 2.3 for additional details, and T (r)

` equals toAi in Equation (5) with χi = χ(r) and
S determined from values a(r)

1 , a
(r)
2 and a(r)

3 .
The volume consistency of the overall temperature gradientH and local averagesH(r) requires

H =
N∑
r=0

c(r)H(r) =

(
N∑
r=0

c(r)T (r)

)
Hm (10)

Inverting the above equation gives the average temperature gradient in the matrix as

Hm =

(
N∑
r=0

c(r)T (r)

)−1

H = AmH (11)

which, when substituted into Equation (7), yields the explicit expression for the phase temperature
gradients in the form

H(r) = T (r)

(
N∑
r=0

c(r)T (r)

)−1

H = A(r)H (12)

whereAm,A(r) are the matrix and inclusion temperature gradient concentration factors, respectively.
As each phase is assumed to be homogeneous, the average heat flux in the r-th phase

Q(r) =
1

|Ω(r)|

∫
Ω(r)

q(x) dx for r = 0, 1, . . . , N (13)

equals to

Q(r) = −χ(r)H(r) for r = 0, 1, . . . , N (14)

This allows us to express the macroscopic heat flux in the form

Q =
N∑
r=0

c(r)Q(r) = −

(
N∑
r=0

c(r)χ(r)T (r)

)(
N∑
r=0

c(r)T (r)

)−1

H (15)
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from which we obtain the effective conductivityQ = −χHH in its final form

χH =

(
cmχm +

N∑
r=1

c(r)χ(r)T (r)

)(
cmI +

N∑
r=1

c(r)T (r)

)−1

(16)

Finally, assuming that the composite consists of isotropic matrix with conductivity χm and spherical
isotropic inclusions with conductivities χ(r), Equation (16) becomes χH = χHI , with

χH =

cmχm +
N∑
r=1

c(r)χ(r)T
(r)
sph

cm +
N∑
r=1

c(r)T
(r)
sph

and T
(r)
sph =

3χm

2χm + χ(r)
(17)

2.3. Orientation Averaging

We are now in a position to provide estimates of the effective thermal conductivity for composites
with M (with M � N ) inclusion classes indexed by s = 1, 2, . . . ,M . Each class is characterized by a
single Eshelby-like matrix S in Equation (5) and represents the reference ellipsoidal inclusion randomly
oriented over the unit hemisphere with an independent uniform distribution of orientation angles.

To this goal, consider a quantity X` ∈ R3×3, expressed in a local coordinate system aligned with a
certain reference inclusion. Its form in the global coordinate system follows from

X(ϕ, φ, ψ) = R(ϕ, φ, ψ)X`R
T(ϕ, φ, ψ) (18)

where ϕ, φ and ψ denote the Euler angles(Note that so-called “x2 convention” is used, in which a
conversion into a new coordinates system follows three consecutive steps. First, the rotation of angle
ϕ around the original X3 axis is done. Then, the rotation of angle φ around the new x2 axis is followed
by the rotation of angle ψ around the new x3 axis to finish the conversion.) and the transformation matrix
R is provided by

R(ϕ, φ, ψ) =

 cosψ − sinψ 0

sinψ cosψ 0

0 0 1


 cosφ 0 − sinφ

0 1 0

sinφ 0 cosφ


 cosϕ − sinϕ 0

sinϕ cosϕ 0

0 0 1

 (19)

The orientation average ofX is denoted by double angular brackets

〈〈X〉〉 =
1

8π2

∫ 2π

0

∫ π

0

∫ 2π

0

X(ϕ, φ, ψ) sinφ dϕ dφ dψ (20)

Straightforward calculation, presented in [14, Appendix A.2.3], reveals that the orientation averaging of
an arbitraryX` ∈ R3×3 yields

〈〈X〉〉 = 〈〈X〉〉I with 〈〈X〉〉 =
1

3

3∑
i=1

(X`)ii (21)
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Repeating the steps of the previous section with partial temperature gradient concentration
factors replaced with their orientation averages, we obtain, after some manipulations presented
in [15, Section B], the scalar homogenized conductivity in the form

χH =

cmχm +
M∑
s=1

c(s)〈〈χ(s)T (s)〉〉

cm +
M∑
s=1

c(s)〈〈T (s)〉〉
(22)

Therefore, it follows from the comparison of Equation (22) with Equation (17) that the system
of randomly oriented inclusions embedded in an isotropic matrix is indistinguishable, from the
point of view of homogenized conductivity, from the system of spherical inclusions with an
apparent conductivity

χ̃(s) =
3χm

〈〈T (s)〉〉
− 2χm (23)

which yields

χH =

cmχm +
M∑
s=1

c(s)χ̃(s)T̃
(s)
sph

cm +
M∑
s=1

c(s)T̃
(s)
sph

with T̃
(s)
sph =

3χm

2χm + χ̃(s)
(24)

2.4. Imperfect Interface

The presence of imperfect thermal contact at the matrix-inclusion interface ∂Ω i results in temperature
jump JθK, the magnitude of which is provided by Newton’s law, e.g., [16, Section 1.3]

nT(x)q(x) = k(x)Jθ(x)K for x ∈ ∂Ω i (25)

where k denotes the interfacial conductance (with k →∞ corresponding to perfect interface and k = 0

to ideal insulation) and n denotes the normal vector at the interface oriented outside the inclusion.
This relation, together with Equations (1)–(3), defines the single inclusion problem accounting for the
presence of imperfect interface. Its solution is, however, substantially more involved as the temperature
gradient inside an ellipsoidal inclusion becomes position-dependent; the concentration factor is then
available only in the form of complicated infinite series expansion for spheroidal inclusions [5] or
ellipsoidal coated inclusions [10]. Nevertheless, when restricting the attention to spherical inclusion
of radius a, it can be shown that the temperature gradient within inclusion recovers the constant value
and the concentration factor becomes [5]

Âsph(χi, k, a) =
3χm

2χm + χ̂i(χi, k, a)
where χ̂i(χi, k, a) = χi ak

ak + χi
(26)

see also Appendix B for simple derivation of this result. Hence, analogously to the previous section, the
interfacial effect can be modeled by replacing the “true” conductivity χi by the size-dependent apparent
value χ̂i provided by Equation (26). Assuming in addition that each class of inclusions is characterized
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by identical semi-axes lengths a(s)
1 , a

(s)
2 and a(s)

3 and interfacial conductance k(s), we propose to extend
the relation (24) into the form, cf. [7, Section 2]

χH =

cmχm +
M∑
s=1

c(s)χ̂(s)T̂
(s)
sph

cm +
M∑
s=1

c(s)T̂
(s)
sph

, T̂
(s)
sph =

3χm

2χm + χ̂(s)
, χ̂(s) = χ̃(s) a(s)k(s)

a(s)k(s) + χ̃(s)
(27)

with a(s) =
3

√
a

(s)
1 a

(s)
2 a

(s)
3 and the apparent conductivity χ̃(s) given by Equation (23).

2.5. Polydisperse Systems

Even though Equation (27) is applicable to very general material systems, in practice we typically
assume single inclusion family, with the particle size distribution characterized by a probability density
function p(a) satisfying

p(a) ≥ 0 for −∞ < a <∞,
∫ ∞
−∞

p(a) da = 1 (28)

In this context, the effective conductivity finally becomes

χH =
cmχm + c(1)

{
χ̂(1)T̂

(1)
sph

}
cm + c(1)

{
T̂

(1)
sph

} (29)

where, for an arbitrary function g(a), {g} denotes its expected value given by

{g} =

∫ ∞
−∞

g(a)p(a) da (30)

Following [7,17], the log-normal distribution with the probability density function

p(a) =
1√

2πaσ
exp

(
−
[

ln(a)− µ√
2σ

]2
)
, a > 0 (31)

will be employed to characterize the materials’ polydispersity. The parameters µ and σ are provided
by [7, Equation (17)]

µ = ln(a50), σ =
1

1.2816
ln

(
S +
√
S2 + 4

4

)
, S =

a90 − a10

a50

(32)

where ax denotes the x-th percentile of the particle radii and S is the span of the size distribution.

3. Mori-Tanaka Estimates: Example Results

3.1. Validation Against Available Experimental Data

Two particular examples of real engineering materials are examined in this section to show
applicability of Equation (27) and its extension for polydisperse distribution of heterogeneities,
Equation (29), even when disregarding their actual shape and simply accepting a spherical representation
of the inclusions in the Mori-Tanaka predictions. The results provided by these two equations are
corroborated by available experimental data.
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3.1.1. Random Dispersion of Copper Particles in the Epoxy Matrix

In this first example we compare the single-phase Mori-Tanaka predictions with the experimental
results of de Araujo and Rosenberg [18], who measured the effective thermal conductivities of systems
consisting of randomly dispersed metal particles in the epoxy matrix, and obtained several values of
the interfacial resistance due to acoustic mismatch at the particle-matrix interface, particularly for low
temperatures below 20 K. To enhance the credibility of the Mori-Tanaka predictions we focus on one
particular system made from epoxy resin filled with copper particles also examined in [8] in view of the
three-point lower bound assuming a random array of superconducting hard spheres (i.e., χ(1) → ∞).
It has been shown, see [18,19], that for metal-filled composites with ratio α = χ(1)/χm > 102 the
macroscopic conductivity does not depend on the thermal conductivity of the metallic filler, but only on
its volume fraction together with the properties of matrix and matrix-particle interface. This becomes
evident when rewriting Equation (27) in terms of α

χH

χm
= 1 +

3c(1) [α− (1 +R)]

cm [α + 2 (1 +R)] + 3c(1) (1 +R)
(33)

where we introduced the dimensionless quantity R adopted in [8]

R =
χ(1)

ka
=
αχm

ka
(34)

where a is the sphere radius. It follows from Equation (33) that for the inclusion size equal to the Kapitza
radius [20]

aK =
α

α− 1

χm

k
≈ χm

k
(35)

the effective conductivity equals to that of the matrix, thus the effect of inclusions becomes completely
shielded by the interface. For a < aK, the overall properties are dominated by interfaces and the effective
conductivity decreases with increasing c(1) even when α > 1. For a > aK, the bulk properties of phases
become dominant; see also [20] for further discussion.

In addition to experimental measurements, we also present a comparison with the Torquato-Rintoul
three-point lower bound in resistance case derived in [8, Equation (8)], evaluated for the statistical
parameter ζ(c(1)) given for the model of impenetrable spheres in [21, Table II (simulations)]. Note
that the interfacial properties can be estimated by measuring the ratio of temperature jump to the
applied heat flux across a thin bi-material layer, by acoustic mismatch model [4] or, indirectly, from an
inverse approach as discussed below. The results are presented for two different temperatures θ = 4 K
(a = 14.8 aK) and θ = 3 K (a = 4.93 aK).

The influence of parameter α together with expected particle size dependence, now hidden in
parameter R through Equation (34), is evident from Figure 4(a) plotted for θ = 4 K (aK = 3.38µm).
Clearly, the Mori-Tanaka predictions confirm negligible influence of χ(1) observed for particulate
composites with χ(1) � χm (α > 102) as well as decreasing trend for χH with decreasing particle
size caused by imperfect thermal contact. Figure 4(b) then displays evolution of normalized effective
thermal conductivity as a function of volume fraction of copper particles. Predictive capability of the
Mori-Tanaka method is supported here by a very good agreement with both experimental measurements
and the Torquato-Rintoul bounds [8]. Finally, Figure 4(c) shows correlation between theoretical (MT
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Figure 4. Evolution of the normalized effective thermal conductivity χH/χm as a function
of (a) phase contrast α and relative particle radius a/aK (c(1) = 30%) and (b) volume
fraction c(1) of copper particles, (c) correlation of measured and calculated values; ρ is the
correlation coefficient.
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predictions) and experimental results. The solid line was derived by linear regression of measured and
calculated effective conductivities using the least square method. Another indication of the quality of
numerical predictions can be presented in the form of Pearson’s correlation coefficient written as

ρ =
n〈xy〉 − 〈x〉〈y〉√

n〈x2〉 − 〈x〉2
√
n〈y2〉 − 〈y〉2

, (36)

where 〈a〉 =
∑n

i=1 ai, n is the number of measurements, x stands for the experimental and y for the
corresponding theoretical values. Note that for ρ = 1 the correspondence is exact. In this case the
correlation coefficient equals to 0.999, suggesting almost perfect match between measured and predicted
values, also evident from graphical presentation.

3.1.2. Al/SiC Composite

In [4] the authors studied the effect of imperfect thermal contact on the macroscopic response of
Al/SiC porous composites. The paper presents the results of a thorough experimental investigation and
the traces of an inverse approach in material mechanics for inferring material properties of unknown
components of the composite by matching numerical and experimental results. This approach was first
exploited to derive the matrix thermal conductivity from known electrical conductivity of the composite.
Next, the Hasselman and Johnson model [3] was employed under the premise of random distribution
of spherical particles of identical size to estimate the particle thermal conductivity and interfacial
thermal conductance for pore-free specimens and subsequently utilized in the two-step application of
the Hasselman-Johnson model to address the influence of pores. Note that the material data used in
these predictions can be thought as optimal with respect to the adopted Hasselman-Johnson model.

Hereinafter, we compare the results presented in [4] for seven specimens with pore-free matrix. In
addition, we take advantage of available characteristics of the SiC particles, the span S and the 50th
percentile a50, to extend the analysis to polydisperse systems as presented in Section 2.5. The input
material data are listed in Table 1.
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Table 1. Material properties [4].

Al matrix SiC particles Interface
[Wm−1K−1] [Wm−2K−1]

187 252.5 72.5 × 106

The Mori-Tanaka predictions stored in Table 2 were provided by Equation (29). The integral (30)
was evaluated such that the entire interval was split into 1,000 segments, thus considering 1,000 different
particle sizes of spherical shape. Within each segment s the probability function p(a) was approximated
by a straight line and the volume fraction c(1) of a given set of particles, given by the segment area,
was then associated in a logarithmic way with the mean radius a(1) of this set of particles. Standard
trapezoidal integration rule was then used to sum over all 1,000 segments. Examples of probability
distribution functions for specimens No. 1 and 7 are plotted in Figure 5.

Table 2. Characteristics of SiC particles (cf. [4, Table 1]), and comparison of effective
thermal conductivity χH [Wm−1K−1] between experimental measurements [4] and MT
predictions (29).

Sample Radius [µm] SiC Results
No. a10 a90 S vol. Exp. MT
1 55 114.5 0.71 0.58 219 217.8
2 23 65.5 1.02 0.58 210 212.3
3 19.5 37.5 0.66 0.60 208 208.5
4 11.5 25 0.79 0.59 198 199.9
5 7 17 0.86 0.58 195 190.8
6 5 12 0.82 0.55 184 182.5
7 2.4 7 1.05 0.53 160 161.3

Graphical representation of the results is further seen in Figure 5(b,c) confirming the sensitivity of
the effective thermal conductivity to the mean particle size distribution. Note that individual points
in Figure 5(b) correspond to slightly different volume fraction, see Table 2.

Almost negligible deviation from experimental results measured as

E =

√√√√√√√
∑
i

(χexp − χMT)2

∑
i

(χMT)2
= 1.1%

is, however, not surprising owing to the used material parameters, which were not measured but rather
fitted to a micromechanical model. Even when comparing the Pearson correlation coefficients, 0.98 for
the Hasselman-Johnson model and 0.993 for polydisperse MT model, the improvement when accounting
for more accurate representation of particle size distribution is marginal. This can be explained by a
very small variance associated with adopted distributions, recall Figure 5(a). Nevertheless, it is fair to
point out that unlike the Hasselman-Johnson model the Mori-Tanaka approach is not limited to spherical
particles providing the transformations given by Equations (24) and (27) are admissible. The influence
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of shape of particles on the macroscopic response has been put forward, e.g., by Jäckel in [19], and is
numerically investigated in the next section suggesting increasing thermal conductivity of the composite
with transition from spherical to needle-like particles. The trend is also observed experimentally [18,19].

Figure 5. (a) Examples of probability distribution functions of particle radii a for specimens
No. 1 and 7, (b) evolution of effective thermal conductivity χH as a function of particle radius
a, (c) correlation of measured and calculated values; ρ denotes the correlation coefficient.
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3.2. Verification Against Finite Element Simulations

It has been argued in the previous sections that even very limited information about microstructure
amounted to phase properties and corresponding volume fractions might be sufficient to provide a
reasonable estimate of macroscopic response of various engineering material systems generally classified
as being macroscopically isotropic. This naturally invites the assumption of spherical representation
of otherwise irregular heterogeneities. Although supported by several practical examples discussed
in the previous section, we should expect and even identify, at least qualitatively, limitations to such
perception. In doing so, this section presents numerical investigation of some specific issues such as
the influence of shape and size of inclusions or mismatch of phase material properties on the predicted
macroscopic response.

All numerical results reported bellow are obtained in the two-dimensional setting, hence the
arguments presented in Section 2 need to be translated to the planar case. In particular, inclusions are
modeled as elliptic cylinders of aspect ratio β2 = a2/a1 with a3 →∞. The corresponding Eshelby-like
tensor is given by Equation (43), which leads to the two-dimensional thermal concentration factor for
circular inclusion in the form

Ai = Ai
cirI(2×2) with Ai

cir =
2χm

χm + χi
(37)

The apparent conductivity due to random orientation is provided by

χ̃(s) =
2χm

〈〈T (s)〉〉2D

− χm (38)

where 〈〈•〉〉2D stands for the orientation averaging for the uniform distribution of the Euler angle φ.
Finally note that the apparent conductivity due to imperfect interface is provided by the same relation as
in the three-dimensional setting, compare Equation (26) with Equation (51).
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Three particular representatives, generated such as to approximately resemble the real microstructures
in Figure 1, appear in Figure 6. To comply with general assumptions put forward in the previous
sections, we consider locally isotropic phases with variable contrast of material properties. Additionally,
we assume the above microstructures being periodic and adopt the classical first-order homogenization
strategy, see e.g., [22,23], to provide estimates of the macroscopic response. The results are plotted
in Figure 7.

Figure 6. Examples of random macroscopically isotropic microstructures: (a) circular
cylinders (β2 = 1), (b) elliptical cylinders with aspect ratio β2 = 3, (c) elliptical cylinders
with aspect ratio β2 = 9.

(a) (b) (c)

Figure 7. Variation of the normalized effective conductivity χH/χm for three microstructures
in Figure 6 with perfect interfaces, determined by periodic FEM homogenization for phase
contrast (a) α = 3, (b) α = 10 and (c) α = 20; β2 denotes the inclusion aspect ratio and c(1)

the inclusion volume fraction.
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These results clearly indicate not only the influence of the shape of inclusions on the macroscopic
response but also a strong dependence of these predictions on the contrast of material properties of
individual phases. Thus drawing from the plots presented in Figure 7(a) one may suggest that the
proposed circular representation of generally non-circular heterogeneities is still acceptable when their
shapes only moderately deviate from a circle and when the mismatch of phase properties is not too
severe, which certainly is the case of a number of real materials as demonstrated in the previous section.
This expectation is quite important particularly when dealing with imperfect thermal contact in which
case only spherical and circular inclusions can be easily handled analytically.
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If the circular approximation of heterogeneities is no longer acceptable or the contrast of phase
properties is excessive, one needs to look for more details about microstructure. In such a case,
even two-dimensional images of real systems, at present almost standard input for any material based
analysis, may play an important role in assessing better approximations of shapes, say elliptical, of
these heterogeneities, see e.g., [24]. Then, being given the elliptical shape of the inclusion allows us
to appropriately modify its material data, recall Equation (38), and define a certain indicator of the real
microstructure kcorr, e.g., as a ratio of the modified and original conductivity of the inclusion

kcorr =
χ̃(1)

χ(1)
(39)

Variation of this parameter as a function of the shape of inclusion is seen in Figure 8(a), further
confirming quite strong influence of the phase properties’ mismatch (Note that the parameter kcorr is
determined for two dimensional systems and thus is not applicable to ellipsoidal inclusions of the
same aspect ratio.). The modified conductivity when introduced successively into Equations (37)
and (24) then renders the estimate of effective conductivity almost identical to actual microstructure
with non-circular inclusions as evident from plots in Figure 8(b,c). Note that only the first and the
third microstructure in Figure 6 were examined to first confirm that the Mori-Tanaka method is indeed
well suited for statistically isotropic random microstructures and second to promote applicability of
this simple transformation from elliptical to circular representations even for shapes markedly distinct
from circles. Small but evident deviation of the results observed in Figure 6 for the third needle-like
microstructure and large mismatch of conductivities of the inclusion and matrix equal to 20 can be
attributed to the finite size, although infinite in the sense of periodicity, of the representative model not
large enough to yield statistically isotropic microstructure.

Figure 8. (a) Evolution of correction factor kcorr for systems with perfect interfaces as
a function of the ratio of semi-axes β2 and variation of normalized effective conductivity
χH/χm obtained by FEM and MT with modified conductivity χ̃(1) for phase contrast
(b) α = 3 and (c) α = 20.
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The second set of numerical simulations addresses the theoretically derived dependence of
macroscopic predictions on the size of inclusions in cases with imperfect interfaces generating jumps
in the local temperature field. For simplicity, we limit our attention to statistically isotropic distributions
of circular cylinders with a radius varying from sample to sample. Three such microstructures are shown
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in Figure 9. Note that the same volume fraction and the same number of inclusions was maintained in all
simulations. Zero thickness interface elements were introduced to account for imperfect thermal contact.

Figure 9. Statistically isotropic distribution of circular cylinders with variable radius of their
cross-section.

(a) (b) (c)

Figure 10. (a) Variation of normalized effective conductivity χH/χm for a system
with imperfect interface (k = 60 × 106 Wm−2K−1 and χ(1) = 100 Wm−1K−1,
χm = 10 Wm−1K−1 and c(1) = 40%) as a function of inclusion radius a and (b) variation of
effective conductivity for systems weakened by cylindrical voids as a function of inclusion
volume fraction c(1); β2 denotes inclusion aspect ratio.
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The relevant results appear in Figure 10(a). Both the results found from finite element simulations and
corresponding Mori-Tanaka predictions are displayed to clearly identify the mentioned size dependence.
Proper modifications in the sense of Equation (38) now become even more important as indicated by
the results generated for elliptical microstructures from Figure 6 with cross-sectional area equal to the
area of the circle. These are indicated by x-symbol and the ratio of semi-axes of the corresponding
elliptical cylinder. The Mori-Tanaka estimates found from the application of Equations (26) and (38)
and reasonably close, further supporting the proposed approach for the modeling of real materials with
an imperfect thermal contact. Intuitively, it can be expected that the value of interfacial conductance k
may also show some effect as to the estimates of effective conductivities for non-circular inclusions. This
notion is supported by the results presented in Figure 10(b) showing variation of effective conductivity
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of an isotropic matrix weakened by voids with a very low conductivity. Clearly, the influence of shape
of the inclusions is quite pronounced.

4. Conclusions

The Mori-Tanaka micromechanical model has been often the primary choice among engineers to
provide quick estimates of the macroscopic response of generally random composites. Motivated by
early theoretical as well as experimental works on this subject, the Mori-Tanaka method was examined
here in the light of the solution of a linear steady state heat conduction problem allowing us to estimate
the effective thermal conductivity of a variety of real engineering materials experiencing an imperfect
thermal contact along the constituents interfaces.

Adhering to the only limitation, an assumption of macroscopically isotropic composite, it was shown
that the method originally proposed by Böhm and Nogales [7] for a spherical representation of particles
still applies even to non-spherical particles, provided their shape can be suitably quantified, e.g., by an
ellipsoidal inclusion. In this particular case the Mori-Tanaka predictions were partially corroborated by
two-dimensional numerical simulations confirming experimentally observed considerable sensitivity of
macroscopic conductivities to the shape of particles.

The fact that for composites with imperfect thermal contact the macroscopic predictions depend on
particle size can be effectively handled by introducing the particle size probability density function
directly into the Mori-Tanaka estimates. Although not confirmed for material systems studied in the
paper, this may considerably improve final predictions especially for grading curves showing significant
standard deviation of particle sizes from its mean value. This is particularly appealing, since grading
curves are one of the few information supplied by the manufacturer.

To conclude, it is interesting to point out that there exist many material systems that can be
handled very effectively with simple micromechanical models with no need for laborious finite element
simulations of certain representative volumes of real microstructures.
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7. Böhm, H.J.; Nogales, S. Mori-tanaka models for the thermal conductivity of composites with
interfacial resistance and particle size distribution. Compos. Sci. Tech. 2008, 68, 1181–1187.

8. Torquato, S.; Rintoul, M.D. Effect of the interface on the properties of composite media. Phys.
Rev. Lett. 1995, 75, 4067–4070.

9. Hashin, Z. Thin interphase/imperfect interface in conduction. J. Appl. Phys. 2001, 89,
2261–2267.

10. Dunn, M.L.; Taya, M. The effective thermal conductivity of composites with coated reinforcement
and the application to imperfect interfaces. J. Appl. Phys. 1993, 73, 1711–1722.

11. Hatta, H.; Taya, M. Equivalent inclusion method for steady state heat conduction in composites.
Int. J. Eng. Sci. 1986, 24, 1159–1170.

12. Benveniste, Y. A new approach to the application of Mori-Tanaka theory in composite materials.
Mech. Mater. 1987, 6, 147–157.

13. Mori, T.; Tanaka, K. Average stress in matrix and average elastic energy of materials with
misfitting inclusions. Acta Metall. 1973, 21, 571–574.
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A. Eshelby-Like Tensor

The Eshelby-like tensor for the solution of thermal conductivity problem was introduced by Hatta
and Taya in [11]. For an ellipsoidal inclusion with semi-axes a1, a2, a3 found in an isotropic matrix it
receives the form

Sij =
a1a2a3

4

∂

∂xi∂xj

∫ ∞
0

(
x2

1

a2
1 + s

+
x2

2

a2
2 + s

+
x2

3

a2
3 + s

)
1

∆s
ds (40)

∆s =
√

(a2
1 + s) (a2

2 + s) (a2
3 + s) (41)

Closed form solutions of integral (40) for some special cases of ellipsoidal shapes of the inclusion can
be found in [11]. For a general ellipsoid the solution was introduced by Chen and Yang in [25]. For
circular and spherical shapes needed in the present study the S tensor reads

• Sphere (a1 = a2 = a3)

S11 = S22 = S33 =
1

3
and Sij = 0 for i 6= j (42)

• Elliptic cylinder (a3 →∞)

S11 =
a2

a1 + a2

, S22 =
a1

a1 + a2

, S33 = 0 and Sij = 0 for i 6= j (43)

B. Single Spherical Homogeneity with Imperfect Interface

This section outlines derivation of the replacement conductivity χ̂i and the concentration factor Âsph

introduced in Equation (26). Its two dimensional format is used in numerical calculations and presented
in Section 3.2 as well. It is shown that both 2D and 3D concentration factors can be recovered from the
solution of a 1D problem using a simple geometrical argument.

To that end, consider one-dimensional heat conduction problem depicted in Figure 11(a). Assuming
imperfect thermal contact, the temperature drop across an infinitely thin interface layer is given by
Equation (25). The local temperature gradient for perfect interface between a solitary inclusion
embedded into an infinite matrix follows from Equation (4)

H i = AiH =
χm

χi
H (44)
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Figure 11. Imperfect interface and temperature progress for: (a) 1D, (b) 2D.
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To arrive at similar format of Equation (44) for imperfect contact, we imagine the interface temperature
jump being smeared over the inclusion. Since the heat flux Q associated with the macroscopic
temperature gradient H is constant throughout the composite, we obtain the total temperature change
in the substitute inclusion in the form

∆θ̂i = ∆θi + 2JθK = −Q
(
L

χi
+

2

k

)
(45)

where L stands for the inclusion length. Next, defining the local temperature gradient in the substitute
inclusion as H i = ∆θ̂i/L yields the local constitutive law in terms of the replacement conductivity χ̂i

Q = −χ̂iH i = −χ̂i ∆θ̂
i

L
= − χ̂

i

L

[
−Q

(
L

χi
+

2

k

)]
(46)

so that
χ̂i = χi Lk

Lk + 2χi
(47)

and in analogy with Equation (44) we finally get

H i = ÂiH =
χm

χ̂(i)
H. (48)

The two-dimensional problem of a solitary circular inclusion is treated similarly. We build up on the
assumption that the temperature gradient in the inclusion is constant and collinear with the prescribed far
field gradient parallel to the local x1-axis, see Figure 11(b). To draw similarity with 1D case we divide
the inclusion into parallel filaments with the length L = 2a cosϕ. Next, define a unit vector normal to
the inclusion surface n = (cosϕ, sinϕ) T, and in analogy to Equation (45) write the total temperature
change in each filament for the constant heat flux qi =

(
qi, 0

)
T as

∆θ̂i = ∆θi + 2JθK = −qi

(
d cosϕ

χi
+

2 cosϕ

k

)
(49)

where d is the inclusion diameter. The equivalent conductivity has to fulfill the condition

qi = −χ̂i ∆θ̂i

d cosϕ
= − χ̂i

d cosϕ

[
−qi

(
2a cosϕ

χi
+

2 cosϕ

k

)]
(50)

which yields

χ̂i = χi ak

ak + χi
(51)
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Consequently, the concentration factor of the substitute inclusion attains the form

Âi =
2χm

χm + χ̂i
(52)

The analysis of a spherical inclusion follows identical steps. The replacement thermal conductivity
for constant heat flux qi =

(
qi, 0, 0

)
T thus receives the same form as in Equation (51), rendering the

searched concentration factor as, recall Equation (27),

Âi =
3χm

2χm + χ̂i
(53)
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