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Abstract: A wealth of current research in microengineering aims at fabricating devices  
of increasing complexity, notably by (self-)assembling elementary components into 
heterogeneous functional systems. At the same time, a large body of robotic research called 
swarm robotics is concerned with the design and the control of large ensembles of robots 
of decreasing size and complexity. This paper describes the asymptotic convergence of 
micro/nano electromechanical systems (M/NEMS) on one side, and swarm robotic systems 
on the other, toward a unifying class of systems, which we denote Smart Minimal Particles 
(SMPs). We define SMPs as mobile, purely reactive and physically embodied agents that 
compensate for their limited on-board capabilities using specifically engineered reactivity 
to external physical stimuli, including local energy and information scavenging. In trading 
off internal resources for simplicity and robustness, SMPs are still able to collectively 
perform non-trivial, spatio-temporally coordinated and highly scalable operations such as 
aggregation and self-assembly (SA). We outline the opposite converging tendencies, 
namely M/NEMS smarting and robotic minimalism, by reviewing each field’s literature 
with specific focus on self-assembling systems. Our main claim is that the SMPs can be 
used to develop a unifying technological and methodological framework that bridges the 
gap between passive M/NEMS and active, centimeter-sized robots. By proposing this 
unifying perspective, we hypothesize a continuum in both complexity and length scale 
between these two extremes. We illustrate the benefits of possible cross-fertilizations 
among these originally separate domains, with specific emphasis on the modeling  
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of collective dynamics. Particularly, we argue that while most of the theoretical  
studies on M/NEMS SA dynamics belong so far to one of only two main  
frameworks—based on analytical master equations and on numerical agent-based 
simulations, respectively—alternative models developed in swarm robotics could be 
amenable to the task, and thereby provide important novel insights. 

Keywords: distributed systems; modeling; multi-level; networks; rate equations;  
self-assembly; smart minimal particles; steady-state; stochastic; swarm robotics 

 

1. Introducing Smart Minimal Particles 

Distributed Systems (DSs) are ensembles of elements (hereby referred to as particles for the sake of 
generality) spatially scattered within bounded domains, and whose collective properties depend on 
those of the elements and of their interactions, both with each other and with the environment. DSs 
come in several varieties, depending on, e.g., their coordination and control strategies (centralized  
versus de-centralized), availability and sharing of resources (internal or external, global or local, 
including information and energy), constraints, tasks, performance and adaptivity—besides the specific 
characteristics of the elements and interactions. Biology at large is the prime source of examples of 
DSs and self-organization [1]. Their potentialities have in turn inspired the introduction of DSs in 
broad fields of intensive research and increasing technological pervasiveness such as, among others, 
distributed information processing (e.g., Internet and cloud computing, wireless communications and 
sensor networks [2]), micro/nano electromechanical systems (M/NEMS) [3] and artificial intelligent 
systems [4]. The latter two fields are of particular interest in our view, because they represent the 
extremes of the complexity and size continuum of artificial distributed systems and, at the same time, 
they manifest a convergence towards a shared, conceptual and technological midpoint, embodied by 
what we hereby denote Smart Minimal Particles (SMPs) (Figure 1).  

Figure 1. The convergence toward Smart Minimal Particles (SMPs). 
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On one side of the continuum, robotic agents are normally macroscopic (i.e., from a few millimeters 
to a few tens of centimeters in size), autonomous in terms of energy, locomotion and communication, 
and they can be described by a (finite) number of internal states that determine their deliberative 
response to environmental influences. However, autonomy comes at the price of high complexity 
(Complexity and simplicity refer herein to a measure of the sophistication of internal resources.), cost, 
and susceptibility to failure. Therefore, a very active research topic in robotics concerns the design and 
control of massively-distributed robotic systems involving simpler and smaller robots. Such swarm 
robotic systems generally exploit self-organization, redundancy and environmental surrogates to 
compensate for the technological limitations of the individual robots (e.g., fluid flows for mass 
transport [5], stigmergy [6,7], templating [8]). This approach is consistent with the more general 
minimalist trend of robotics [9]. While the required miniaturization of robotic modules is a difficult 
task in itself, a contextual challenge for minimalism (as defined earlier) is the design of simpler and 
more robust agents still capable of performing desired cooperative tasks in noisy environments and in 
spite of technological limitations. By minimizing the number of their internal states—besides their 
communication, sensing, and actuation capabilities, and their mobility—these robotic agents tend to 
asymptotically approach the status of purely reactive agents, just like molecules, bacteria, or M/NEMS. 

On the other side of the continuum, an important body of precision manufacturing’s research aims 
at producing very-small systems of increasing complexity. One promising route to fabricate complex 
functional systems is the autonomous self-organization and buildup of structures from their simpler 
subunits. As a prominent example, active and passive M/NEMS devices come in large quantities 
owing to batch fabrication technologies [10], but their organized integration into heterogeneous 
functional systems by means of serial manipulation, as done in e.g., consumer electronic  
manufacturing, is limited in terms of throughput, flexibility, and scalability [11]. Therefore, massively 
parallel and high-throughput integration is invoked, as embodied by bottom-up methods such as e.g., 
self-assembly (described in Section 2). However, specific geometric design and surface derivatization 
are required to enable the accurate and efficient self-assembly of M/NEMS devices into desired, 
articulated structures. Such dedicated physico-chemical tailoring encodes local information and 
selective interactions to direct the cooperative aggregation. We denote smarting this tendency toward 
an increased sophistication of M/NEMS devices, and of passive particles (defined in Section 2) in 
general. Conceptually, smarting is the opposite of minimalism: in a nutshell, minimalism tends to 
make intelligent particles as simple, reactive and passive as possible, while smarting tends to make 
passive particles as complex, deliberative and active as possible. 

In our view, smart minimal particles (SMPs) represent the natural convergence locus of such 
opposing tendencies observed in M/NEMS technology and swarm robotics.  

We define SMPs as mobile, sub-millimeter sized, purely reactive agents that compensate their lack 
of on-board resources with their specifically engineered reactivity to external physical stimulation as 
well as ability to scavenge energy and information from their local environment. SMPs may be subject 
to both global and local physical influences, yet they are only capable of local interactions. Influences 
on SMPs can derive from specific stimuli (e.g., wireless actuation by frequency-selective magnetic 
induction [12]), interaction potentials [13] or field gradients (e.g., gravitational, electric, magnetic, 
temperature, pressure), also programmable (e.g., mechanical [14], electric [15]). A partial list of 
examples of application-specific particle engineering includes: selective hydrophobic or -philic surface 
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functionalization [16]; steric affinities based on shape-complementary or matching particle/binding site 
geometries [17,18]; selective coating with fluids of high interfacial energies, such as polymers [19,20] 
or molten solders [21]; magnetic [22] and electric polarizations, both electrostatic [23] and 
electrodynamic [24]; DNA-based derivatization [25,26]. States of SMPs are associated with interfacial 
conformational switchings [27], i.e., with the modification of their chemical and/or mechanical 
interface with the environment, as a consequence of, e.g., global stimuli [25], interactions with other 
particles or with templates (e.g., proximity-dependent activation [28], memory of individual assembly 
history [29]), or modification in the local properties of the environment (e.g., solution pH and light 
intensity [30]). SMPs trade off internal resources for simplicity and robustness, and are still able to 
perform non-trivial collective operations exploiting local interactions; eminently, spatio-temporally 
coordinated, decentralized and scalable organization—i.e., aggregation and, particularly, self-assembly.  

SMPs blur the boundary between M/NEMS and swarm robotics by pointing toward an ideal 
continuum in particle size and complexity levels—from passive to active particles. Contextually, they 
also suggest the possibility of fruitful cross-fertilizations, i.e., the adoption in one domain of 
terminology and modeling frameworks originally developed in the other domain.  

In this paper, we argue the need for and the proposal of SMPs (i) by outlining the mentioned 
convergence toward SMPs with experimental and theoretical examples drawn from both the 
M/NEMS’ and modular robotics’ literature on self-assembly and aggregation, (ii) by illustrating our 
suggested SMP perspective with specific respect to the modeling of the dynamics of self-assembling 
SMPs, and (iii) by adopting a shared, hybrid terminology where possible. 

The paper is structured as follows. Section 2 briefly illustrates the varieties of self-assembly 
possible at most scales before specifically focusing on its static type as the most pertinent to SMPs 
(though far from exhausting their potentialities). Examples are drawn from both the modular robotics 
(Section 2.1) and the M/NEMS literature (Section 2.2); quasi-statics, transient dynamics and collective 
dynamics of self-assembly are also discussed (Section 2.3). The collective dynamics of SMPs is then 
addressed in detail in Sections 3 and 4, which critically review the main, sometimes analogous models 
proposed so far for passive particles—i.e., master equation-based (Section 3.1) and agent-based 
models (Section 3.2)—and for active particles—i.e., stochastic reaction models (Section 4.1) and 
hybrid automata (Section 4.2)—respectively. These reviews prelude to an outline of a proposed, 
unifying modeling framework for SMPs, namely multi-level modeling (Section 5), which integrates a 
set of conceptually-different models, ranked according to their level of abstraction and stacked into a 
coherent hierarchical system across which control and design parameters can be seamlessly transferred 
from one model to the other, either upward (i.e., abstraction) or downward (i.e., implementation). 
Finally, Section 6 presents concluding remarks and perspectives for future research. 

2. Self-Assembly across Scales 

Self-assembly (SA) [31] has recently gained considerable momentum in the realm of precision 
engineering and manufacturing [32,33]. Particularly, SA represents the main embodiment of the 
bottom-up approach to the fabrication of heterogeneous and articulated micro-and nanosystems [34]. 
Rooted in, and constantly inspired by, biology and supermolecular chemistry [35], such an approach is 
complementary to the top-down fabrication approach established at (though not exclusive to)  
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More importantly, SA processes can be broadly classified according to the role played by energy 
and to the level of pro-activity of the particles to achieve aggregation [31]. As for the former 
classification, in static SA (sSA) processes energy is dissipated only while the assembling system is 
approaching (possibly, one of) its minimal energy configuration(s). In sSA the thermodynamic concept 
of free energy landscape can be applied, and there is no further action by nor energy release from the 
system once the system has reached equilibrium. Conversely, in dynamic SA (dySA) [45] the sustained 
energy dissipation itself is the origin of the organization of ordered, steady-state spatio-temporal 
patterns of particles. DySA emerges in systems driven out of thermodynamic equilibrium (e.g., 
dissipative structures [46]) by the constant exposure to an external energy gradient. The implied 
structural organization is thought to underlie most biological phenomena [47]. Significant researches 
toward a comprehensive theory of DySA, still missing, are being pursued (see e.g., [48,49]). 
Concerning the latter classification, the particles can (active SA) or cannot (passive SA) purposely 
expend internal resources (e.g., energy, communication) to drive the process or establish selective 
physical or informational links with other particles. Active particles(An active particle is also active in 
the electric (device) meaning of the term, though the opposite is not necessarily true: e.g.,  
electrically-active M/NEMS are normally passive for SA purposes.)

 
can be identified with agents 

endowed with degrees of autonomy and with internal states(Hard-wired SA encodes the sequence of 
assembly events in the states of the particles. Examples range from living cells [50] to self-replicating 
artificial structures [51].), able to make choices (regarding e.g., trajectories, links to other particles). 
Instead, in passive particles the autonomy is strictly limited to scavenging means of mass transport 
from the environment, conformational switchings, and to the compliance with the physical interactions 
as mediated by body and surface forces. 

In the following sections, recent results concerning experimental and modeling SA activities in 
robotics and M/NEMS are reviewed. 

2.1. Self-Assembly of Small Modular Robots 

Achieving SA and aggregation are important tasks in distributed and modular robotics [52], as 
supported by a vast literature, both theoretical and experimental.  

Probabilistic models were developed for the aggregation and SA of mobile robots [53,54], along with 
deterministic models of aggregation and flocking (i.e., the coordinated motion of the aggregates) [55,56], 
and graph-based approaches [57]. A comprehensive theoretical study of microscopic robot 
coordination in viscous fluids was carried out by Hogg [58]. Stochastic and distributed control of 
swarms of robots was extensively studied by Kumar and colleagues [59], who also exploit modeling 
methods originating from the study of chemical systems [60]. The chemical formalism well suits the 
description of SA, as will be shown in Sections 3.1 and 4.1 and as further demonstrated in recent 
studies involving real and simulated robots [61,62].  

Aggregation of passive objects mediated by mobile robots [7], self-organized aggregation of mobile 
robots [63,64] and even of robots and insects [65] was extensively investigated using very diverse 
robotic platforms, ranging from a few to several centimeters in size [66]. Actual SA was achieved on 
the Swarm-bot, a 15 cm-sized mobile robot equipped with a gripper [67], and with Klavins’ 
programmable parts, i.e., triangular robots (12.5 cm in size) that randomly slide on an air table and 
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assemble with each other according to pre-planned schemes ([53], see also Section 4.1). Miyashita 
et al. proposed simpler triangular robots (Tribolons, 4.9 cm in size) that assemble with each other at 
the water/air interface and rely on a pantograph for both energy supply and control [68].  

SA of sub-centimeter sized robots is also being addressed. Donald et al. demonstrated MEMS 
robots (i.e., miniature robots fabricated by micromachining) that can selectively respond to a single, 
global control signal delivered through the interdigitated electrodes of an insulated substrate [69]. 
Thanks to their scratch-drive actuator and single steering arm, such robots can describe intersecting 
trajectories and dock compliantly together, forming planar structures several times their own size. 
Frutiger et al. fabricated sub-millimetric MEMS robots that utilize a wireless resonant magnetic 
microactuator to get power supply, achieve propulsion and perform servoed exploration and possibly 
cooperative tasks [12]. Such Magmites convert the energy of magnetic fields into mechanical  
motion directly, and can be controlled by frequency-coded signals. Chang et al. demonstrated the 
electro-osmotic motion of millimetric, light-responsive diodes controlled by an external AC electric 
field [70]. Several research groups envision designing modular surgical robots small enough  
(about 1 cm) for entering the human body through natural orifices (e.g., by ingestion [71]) and capable 
of configuring themselves into kinematic structures within the stomach. Further examples are referred 
to in [12]. 

Consistently with our SMP perspective, the ongoing miniaturization of robotic modules may thus 
further decrease the gap, both in size and performance, with M/NEMS—whose SA is reviewed next. 

2.2. Self-Assembly of M/NEMS 

For the assembly of micro- and nanosystems, a wealth of static templated SA processes were 
proposed and demonstrated, as detailed in several recent reviews [3,33,34]. A very wide range of 
applications is targeted, including, e.g., three-dimensional electric circuits [72], flexible LED-based 
displays [42], integration of semiconductor devices onto plastic substrates [17], polyhedral  
containers [33], monocrystalline solar cells [16]. They exploit a broad spectrum of physical interactions, 
including (but not limited to) gravitational [73], hydrophobic [74], steric [18], electric [24],  
magnetic [22], capillary [75], DNA hybridization-mediated [25], fluidic [76]. Interestingly, in the range 
of micrometric to nanometric scales most of these interactions can be tuned to a reasonable  
degree [35,77]. Unless an adaptive system is required [45], the static type of SA is adopted here 
because of the functional and disposable nature of the systems themselves(Reconfigurable systems 
(e.g., by disassembly) are also hereby included, as they can be thought of as a sequence of static SA 
processes, each starting from the pre-configuration left from the previous instance). As for the M/NEM 
units, in practically all cases they are only required to be able to scavenge energy and information from 
the environment (particularly, from templates and other parts) and to recognize their target position in 
the assembling structures. For this purpose, they need proper pre-conditioning, outlined in Section 1. 

2.3. Modeling Static Self-Assembly 

SA entails several correlated phenomena at different levels of detail—each being possibly subject to 
modeling. Models of sSA of passive particles mainly focus on three main aspects: quasi-statics, 
transient dynamics and collective dynamics (There is no contradiction here: the dynamics refers here to 
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the transient approach—at single and collective particle level, respectively—to the static (final) system 
configuration). The first two aspects concern the highly accurate, case-specific modeling of material, 
physico-chemical, and geometrical properties influencing the SA performance of a single particle in 
relatively-close proximity to its (optimal) target position in the assembling structure. The latter, 
complementary aspect concerns a more relational, multi-particle perspective which, while reducing 
accuracy by sparing a substantial amount of details about the physical and geometrical details of the 
system, still captures meaningful information about the cooperativity of the process and possibly gains 
in generality and computational efficiency.  

Analytical models (based on first-order approximations and/or first-principles equations) and  
finite-element numerical simulations, often coupling multiple physical domains, well suit physical 
modeling. Due to scaling laws, the hierarchy of magnitudes of physical forces at sub-millimetric 
scales, where surface phenomena dominate, is different from that at the macroscale [78]; this favors 
different actuation and interaction mechanisms at different scales. A substantial amount of rather  
case-specific works addressed both quasi-statics (see e.g., [79-82] and references therein) and transient 
dynamics (see e.g., [83,84] and references therein).  

Statistical mechanics is the discipline most devoted to the probabilistic modeling of large ensembles 
of particles and their collective properties, including their dynamics [85]. However, up to now 
M/NEMS and particularly robotic ensembles considered far lower counts of particles, which should in 
principle be treated by specific thermodynamics [34]. To date, very little effort has been dedicated to 
the modeling of passive particles’ collective dynamics (see Section 3). We believe that this is due to: 
(1) the prominence, in the M/NEMS community, of the fully-fledged physical modeling of single 
particle’s behavior as opposed to the modeling of collective dynamics; (2) the ability of the existing 
models to reasonably predict qualitative assembly trends; more importantly, (3) the lack of  
multi-objective cost functions in the proposed SA applications (mainly industrial manufacturing), 
which were mostly interested in optimizing throughput and/or time-to-assembly; and, possibly, (4) a 
lack of knowledge of modeling frameworks developed in other domains such as swarm robotics. The 
convergence of M/NEMS toward SMPs (Section 1) could also help in significantly shrinking this gap. 

3. Modeling the SA Dynamics of Passive Particles 

The main models of the SA dynamics of passive particles proposed in literature belong to one of 
two general approaches, namely: (1) analytical, rate equation-based, and (2) numerical, agent-based. 
They are illustrated and exemplified in the following sections. 

3.1. Master Equation-Based Models 

A master equation is a set of equations describing the probability distribution with which a given 
system S occupies each state i of its discrete set of states S. It can be put in the generic form: 

[ ] [ ]{ }∑
≠

⋅Δ+−⋅Δ+=−Δ+
ji

ijii tNtittjptNtjttiptNttN )()(|)()()(|)()()(  (1) 

where Ni is the number of system elements in state i, and p(i(t + Δt)|j(t)) = pij is the conditional 
transition probability from state j to state i within the time interval Δt ( i, j  S). The first (second) 
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term of the right-end side of Equation 1 describes the inflow (outflow) of elements for state i. For a  
finite (infinitesimal) value of Δt, Equation 1 takes the form of a first-order finite-difference 
(differential) equation, as shown in Equation 2 (Equation 3): 

[ ]∑
≠

⋅−⋅=−+
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ijijijii tNptNptNtN )()()()1(  (2) 

[ ]∑
≠

⋅−⋅=
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i tNktNk

dt
tdN

)()(
)(   (3) 

where kij is the transition rate from state j to state i. Equation 3 is also called rate equation.  
The master equation derives from a deterministic description of Markov processes, which are 

memoryless stochastic processes in continuous time (i.e., where the state at time t contains all the 
information necessary to determine states at time tt >' )(The Markov property pertains to the model, 
not necessarily to the described system). Markov processes have proven extremely successful for 
modeling a large variety of dynamical systems [86].  

Very common in statistical physics and chemistry, master equations were also adopted in models of 
the collective dynamics of smart particles. Before introducing the latter models, we shall review their 
most fundamental assumptions (we denote reactions both assembly and disassembly events). 

1. The system is well-mixed (or -stirred): all particles have equal probability to be at any point in 
space at any time. Accordingly, a given particle has equal probability to encounter any other 
particle or binding site at any time.  

2. The reactions are independent: the (dis)assembly of one particle does not affect the probability 
of (dis)assembly of other particles.  

3. The reaction probabilities are time-invariant and independent on the number of particles and 
sites. Accordingly, assembly at one site does not affect the availability of any other site for 
assembly, nor its probability of being filled.  

4. Only bi-particle events are considered, both for assembly (producing dimers) and disassembly. 

Such assumptions are discussed in Section 3.1.4. 

3.1.1. Hosokawa’s State Variable Model 

In their 1995 work (The same authors later applied the same model to a simpler self-assembling 
system, composed of flat sub-millimetric particles that floated at the water-air interface and interacted 
by capillary flotation forces [87]. The final 4-particle structure and its allowed intermediate products 
were made predictable by introducing both attractive and repulsive local interactions.), Hosokawa et 
al. first proposed an explicit analogy with chemical kinetics to model the dynamics of an artificial, 
macroscopic self-assembling system [28]. 

The system was composed of a uniform population of centimeter-sized, polyurethane triangles 
endowed with neodymium magnets along two of their sides. The flat particles were put in a rotating 
box which constrained their random motion to a vertical plane. Being equilateral, the assembly of 
exactly six triangles formed a full hexagon, and all the intermediate assembly products were known 
a priori (Figure 3). To predict the final population of aggregates after a given assembly time (known as 
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Given NP and nP representing the total number of particles and that of the unassembled particles, 
respectively, and NS, x(t) = x and nS the total number of binding sites, the filled sites and the vacant 
sites (with x = NP − nP = NS − nS), respectively, Verma et al. phenomenologically assumed the 
assembly rate RA to be proportional to the number of unfilled sites and to that of the unassembled 
particles (i.e., RA  nPnS), and the disassembly rate RD proportional to the number of filled sites 
(i.e., self -disassembly, RD  x). At the steady state (SS), the opposing reaction rates are equivalent, 
that is: 

SSDSSA
SS

RR
dt

tdx
=⇒= 0)(   (4) 

which in this case results in: 

xknnk DSPA ⋅=⋅   (5) 

where kA and kD are rate constants. By defining the filling ratio χ ≡ x/NS and K ≡ C1/C2, Equation 5 yields: 

P

P

nK
nK
⋅+

⋅
=

1
χ   (6) 

which (The analogy of Equation 6 with a first-order superficial adsorption isotherm [89] should not 
surprise, since assumptions conceptually similar to those of Section 3.1 were also used by, e.g., 
Langmuir to derive his adsorption isotherm [90]), as intuitively expected, predicts χ → 1 for high 
values of K and nP, i.e., for high particle redundancy (nP » nS) and for processes favoring stable 
assembly (K → ∞ for C2 → 0). Note, however, that Equation 6 is a second-order equation in disguise, 
since x is not completely resolved.  

Recently, Mastrangeli et al. applied the steady-state analysis to predict the yield of more general SA 
processes, i.e., including multiple disassembly phenomena [3]. Their assembly rate equation was the 
same as Verma’s, while their disassembly rate equation included both self-disassembly and kinetic 
disassembly, i.e., caused by unassembled particles colliding with assembled ones; that is: 

))(( xNxNkR SPAA −−=  (7) 
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Solving the SS for x results in (C1 ≡ kD1/kA and C2 ≡ kD2/kA): 
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The special cases, including only self-disassembly and kinetic disassembly, can be recovered from 
Equation 9 by setting C1 = 0 (Equation 10, analogous to Equation 6) and C2 = 0 (Equation 11), 
respectively: 
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3.1.3. Zheng and Jacobs’ Time-Continuous Model 

In 2005, Zheng and Jacobs demonstrated a three-dimensional, molten solder-driven and shape 
matching-directed fluidic process to self-assemble submillimetric LEDs onto glass carriers [91]. In the 
process, the initial populations of LEDs and carriers are stirred by turbulent flow of warm fluid inside a 
beaker; by random collisions, the LEDs with sufficient kinetic energy and proper relative orientation fit 
into the cavities of the carriers, where they are retained by the surface tension of molten solder bumps. 
To model analytically the yield of their assembly experiments, Zheng and Jacobs proposed a  
time-continuous rate equation of the following form: 

[ ][ ]
A

LC

T
txNtxN

dt
tdx )()()( −−
=   (12) 

where x(t) is the number of assembled dimers, NC and NL the total number of carrier and LEDs, 
respectively, and TA the single-LED-single-carrier mean assembly time (roughly proportional to the 
inverse of an assembly rate). Using the initial condition x(t = 0) = 0, Equation 12 is solved by: 
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Equation 13 predicts the asymptotic achievement of 100% assembly yield in time by means of 
stochastic SA: Ct

Ntx =
∞→

)(lim . After a given duration of the assembly process, higher assembly yields 

are predicted for shorter TA and for larger LED-to-carriers ratios, i.e., particle redundancy. Using TA as 
single fitting parameter, the model matched the experimental results accurately (see Figure 7). TA could 
be in principle measured experimentally, and depends on design and control parameters.  

Mastrangeli et al. [3] generalized Zheng and Jacobs’ model by including a generic, second-order 
(i.e., including mono- and bi-particle events only) disassembly term in Equation 12, obtaining: 

[ ][ ] [ ]
DA

LC

T
txD

T
txNtxN

dt
tdx )()()()(

−
−−

=   (14) 

where TD is the single-LED-single-carrier mean disassembly time. Being D[x(t)] of second order in 
x(t), the solution of Equation 14 has the same form as Equation 13, except for replacing NL (NC) with 
x1 (x2), x1 ≥ x2 > 0 being the roots of the polynomial in x appearing in the solution of Equation 14 and 
depending on NL, NC, TA, TD and the specific coefficients of D[x(t)]. Thus, in this case: 2)(lim xtx

t
=

∞→
. 

When no disassembly is possible (i.e., TD → ∞), Equation 12 and consequently Equation 13 are 
recovered. When kinetic disassembly is considered, i.e., for [ ] [ ] DL TtxNtxtxD /)()()( −= , the roots 
are: x1 = NL and )/1/(2 DAC TTNx += . As expected, in this case a finite time-to-disassembly constant 

implies an asymptotical assembly yield always lower than 100%. D[x(t)] can also take into account 
further disassembly events specific to three-dimensional SA processes [3]. 
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3.1.4. Critiques to the Models 

The rate constants appearing in the previous models lump many interacting factors. Though some of 
them may be experimentally determined (e.g., mean (dis)assembly time), a complete theoretical model 
should be able to derive such parameters from first principles describing e.g., the physics of the 
assembly interactions. On the other hand, such lumping provides a simplification that avoids the 
models to be application-specific. This, together with the focus on average behavior implicit in the 
mean-field approach, accounts for the models’ high abstraction level.  

Multi-particle collision events are not considered. These are less and less probable as the number of 
parts involved grows (in general, reactions of the form ABCCBA →++  can be decomposed into two 
bi-reactant reactions ABBA →+  and ABCCAB →+  without loss of accuracy). Still, they may take 
place and influence the assembly history. For example, in particle-to-template assembly more than one 
particle can impinge on the same available binding site, which may constitute a barrier to the filling of 
its neighboring sites. In three-dimensional SA, the assembled dimers that are then not removed from 
the assembly space keep on colliding with unassembled parts. Their possible influence is simply 
neglected in analytical models.  

The models predict higher assembly speed and yield for higher particle redundancy. Nevertheless, 
there could be a practical limit on the maximum number of parts present in a bounded assembly space. 
Too-high a particle density may increase the chance of damaging collisions, which irreversibly 
decrease the yield. It may also affect the transport and mixing of the particles themselves, thus altering 
the assembly rates and making them density-dependent. Therefore, practically speaking, the  
assumptions listed in Section 3.1 are valid for ensembles containing sparse particles or whose occupied 
(i.e., excluded) volume is reasonably smaller than the total space volume. These requirements comply 
with models of ideal solutions and very-diluted gases. In such settings, the discrete nature of assembly 
events may then not be neglected, i.e., a time-discrete or event-driven framework may be 
more suitable.  

Master equations considering reaction-limited processes—i.e., where diffusion rates are higher than 
reaction rates—assume ideal stirring and transport mechanisms, as already mentioned. The description 
of more common and more realistic diffusion-limited aggregation processes [92], where parts can 
practically have access only to a fraction of the assembly space and thus of particles, requires different 
mathematical models, possibly involving spatially-dependent diffusion and transport terms [93].  

Importantly, all the evoked concepts of particle density, excluded volume and diffusion entail the 
spatial extent of the particles and of the assembly space. The spatial dimension of (SA) processes is to 
a large degree eluded in a master equation-based, mean-field analytical approach by conveniently 
assuming the thermodynamic limit (i.e., an infinite number of point-like particles in an infinite space, 
such that the particle density is still finite [60]). Spatiality is nonetheless contemplated in lower-level 
modeling frameworks, such as e.g., the agent-based models presented in the next section. 

3.2. Agent-Based Models 

Modeling based on the representation of the behavior of system agents is a natural, bottom-up 
framework to capture the properties of DSs. An agent can be identified with an actual element of the 
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system in object and/or with one of its variables. An Agent-Based Model (ABM) [94] then describes 
the collective properties of the system that can be inferred and/or emerge from the specification of (i) the 
agents, (ii) their interaction rules, and (ii) their connection topology [95]. A wide spectrum of topics 
belonging to disciplines as diverse as sociology [96], economy [97], ecology [95], pattern formation [98], 
network dynamics, game theory [95,99], videogaming, distributed robotics and many more list ABM 
as fundamental modeling tool. Recently, ABM was also adopted for the modeling of the SA dynamics 
of smart particles, as illustrated in the next sections. 

3.2.1. Mermoud’s Two-Dimensional Model 

In 2009, Mermoud et al. proposed an ABM of the stochastic, two-dimensional SA of finite-sized 
particles within an assembly space with periodic boundary conditions [100]. The particles are circular, 
and their motion is described by a Langevin stochastic differential equation. Furthermore, the model 
assumes that the particles invariably aggregate whenever they collide; however, the energy (and 
stability) of the resulting bond depends on their mutual alignment, as described by the following 
Arrenhius-like expression: 
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⎛
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where ξ = (θ1 θ2)  [0, π]2 
is the orientational state vector (i.e., measuring the relative alignment) of the 

couple of colliding particles, and σθ their misalignment tolerance (note that ΔE is negative). The bond 
energy is used to estimate the assembly (k+) and disassembly (k−) rate constants of the bi-particle 
aggregate, according to the law of mass action: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Δ
−==

−

+

PE
E

k
k

K )(exp ξ
  (16) 

where EP is an estimate of the mean energy of the particle systems. Hence, by arbitrarily setting 1=+k , 
the value of k− derived from Equation 16 is used to estimate the probability of breakup pb of the bond 
with energy ΔE(ξ) within the next time interval Δt, according to: 
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b E

Etkp )(exp ξ
 (17) 

As a result, the better the alignment, the lower pb. The model was implemented using NetLogo, an 
open-source ABM simulation environment developed by Northwestern University [101]. Model results 
are shown in Figure 10. Interestingly, this model was designed in the context of a more 
comprehensive, multi-level modeling framework discussed in details in Section 5. 

3.2.2. Mastrangeli’s Three-Dimensional Model 

Mastrangeli et al. [102] proposed in 2010 an ABM of the three-dimensional fluidic SA process 
earlier demonstrated by Zheng and Jacobs, as a complement to Zheng and Jacobs’ own analytical 
model (see Section 3.1.3).  
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Figure 9. Simulated effects of inert dimers (resulting from assembly) on fluidic SA 
performance: for the out (in) case, the dimers are (not) removed from the assembly space 
after assembly (ABM parameters: 10× smaller assembly space; initial populations:  
60 LEDs and 30 carriers, θCCS = 80°, initial agents velocity: 100 mm/s; statistics out of  
10 realizations for each case). 

 

3.2.3. Critiques to the Models 

Agent-based modeling is particularly suitable to the description of systems involving agents whose 
behaviors are non-linear (e.g., characterized by non-linear interactions, conditional rules, thresholds), 
non-Markovian (including memory, path-dependence, hysteresis, adaptation), or of systems in which 
spatiality and communication play an important role [94]. The agents can also be endowed with 
arbitrary properties: they can range from fully passive to autonomous. ABM is therefore well 
consistent with the SMP perspective as it can represent the whole spectrum of distributed systems. 

An ABM can produce spatially-embedded simulations of single realizations of the system 
phenomena. In this sense, agent-based modeling describes physical particle systems at a significantly 
lower level than e.g., master equations, i.e., with richer, more domain-specific and realistic details, and 
yet avoiding fully-fledged physical simulations. This can be appreciated by comparing Zheng and 
Jacobs’ (Section 3.1.3) and Mastrangeli’s (Section 3.2.2) models of the same fluidic SA process [91], 
where the latter represents more closely the actual process while not implementing e.g., the physics of 
molten solder adhesion to metal pads nor hydrodynamic effects (which could nonetheless be accounted 
for, in principle). Open-source physical engines (e.g., Open Dynamics Engine (Available on: 
http://www.ode.org/)) or domain-specific soft-wares (e.g., Webots [100]) can be used to produce more 
physically-accurate simulations.  

Additionally, and in spite of its reductionism, an ABM can also capture a system’s emergent 
phenomena, i.e., whose properties (often counter-intuitive) cannot be reduced only to those of its 
agents [94]. Considering ABM as opposed to analytic, differential equation-based system descriptions 
is not correct; instead, they are compatible, and even synergetic. This is well illustrated by e.g., 
Brownian agents (Section 4.2) and, with hindsight, by the remarkable consistency and 
complementarity of the already mentioned models of Zheng and Jacobs (analytical) and  
Mastrangeli et al. (ABM), pertaining to the same experimental system. Importantly, one could in 
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principle define a set of coupled dynamical systems that is equivalent to a given ABM. However, the 
complexity of the resulting system of equations is likely to become intractable; instead, the definition 
of agents and rules in an ABM is amenable to simple and intuitive approaches, and their sophistication 
can be tuned and managed with ease—i.e., ABM is more flexible than rate equations. Furthermore, an 
ABM is more naturally applied when the behavior of agents is better described by interaction rules 
than by transition rates. Particularly, the stochasticity of the agents’ behavior is generally easier to 
capture in an ABM, especially when one is interested in multimodal, non-parametric, or lumped noise 
distributions.  

Finally, an ABM is essentially a microscopic modeling approach. Therefore, its primary alternative 
is a macroscopic modeling approach, of which master equations (Section 3.1) or other mean-field 
approaches are specific, but not exclusive, instances. A relaxation of this duality suggests using a 
hierarchy of models to describe the same system at different levels of abstraction (concerning details, 
information, length and time scales and their continuity versus discreteness). We note that several 
levels of description can coexist within the same ABM, especially when the introduction of agent 
subgroups or aggregates is meaningful or legitimate within a system (see Section 4.2). A different and 
possibly more general approach to multilevel modeling, featuring models belonging to different 
frameworks, is presented in Section 5. 

4. Modeling the SA Dynamics of Active Particles 

The following sections illustrate models that can be partly considered extensions of those discussed 
in Section 3, as they can also capture programmed particle actions (e.g., planned structure formation) 
and thus span wider fields. 

4.1. Stochastic Reaction Models 

Originating from chemistry, stochastic reaction models are ways to macroscopically represent 
continuous-time Markov processes.  

To specify a Markov process X(t), the transition rate matrix from state j to state i (or generator) Aij 
can be given, such that: 

{ } dtAtXdttXp ijji =+ )(|)(   (18) 

And the probability distribution at time t given an initial distribution p0 is given by: 

{ } ( )itA
i eptXp ⋅= 0)(   (19) 

In some cases, A is too large to be easily tractable; but the structure of the process may be used to 
simplify its description. A stochastic reaction model then assumes a finite set of system states at time t, 

[ ])()...()...()( 1 tXtXtXtX Ss=
r

 with Xs(t) representing the number of elements in species s. Each change 
in species populations is associated with a reaction r producing effect rer , such that rexx rrr

+→  takes 
place in the next time interval dt at a rate given by the propensity function )(xhr

r
. Without significant 

loss, A can accordingly be described by: 

)(),( xhexxA rr
rrrr

=+   (20) 
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rxexifxxA r ∀≠+= '0)',( rrrrr
  (21) 

∑−=
r

r xhxxA )(),( rrr   
(22) 

A stochastic reaction network is a stochastic reaction model with S species and R reactions. Each 
reaction has the form: 

...... 22112211 ++⎯→⎯++ YbYbXaXa rλ   (23) 

where Xi (Yi) are the number of elements in the reactant (product) species i, λr is the reaction rate 
constant, and ai and bi are stoichiometric coefficients such that the reaction effect is in their difference. 

Hosokawa’s idea of identifying intermediate assembly products with state variables (see  
Section 3.1.1) can be partly inscribed in the framework of stochastic reaction networks. Explicitly 
inspired by Hosokawa’s work, Klavins et al. proposed a grammatical graph-based variant [104]. They 
identified the intermediate assembly products with the labeled nodes of a graph, whose labeled links 
describe general rules (representing physical interactions or the possibility of active choices made by 
the agents) given to derive the hierarchy of possible products accessible from a given initial condition. 
Such graph grammars can be translated into a set of hardware specifications; they were used by 
Klavins’ group to model the collective behavior of aggregating reflexive robots. Their programmable 
parts resemble Hosokawa’s triangular magnetic particles; they move randomly on an air table, are able 
to communicate and share their internal states upon contact, and eventually assemble by means of 
magnetomechanic latches [53]. Recently, they demonstrated a feedback controller for the copy number 
of assemblies described by a tunable reaction network [105]. The Tribolon system proposed by 
Miyashita et al. can be considered as a simpler self-assembling system as compared to Klavins’; 
among other objectives, it was used for modeling the impact of particle morphology on the yield of 
two-dimensional SA [68].  

A single realization of a reaction process reduces to tracing a sample path through the system’s set 
of states starting from specific initial conditions. Gillespie derived an exact numerical algorithm for the 
simulation of stochastic processes [106]. Gillespie’s direct method is based on the following property 
of the chemical reaction models. Let T

+ 
be the time at which the next reaction occurs, as counted from 

instant t; then, given 0)( xtX rr
= : 

1. the conditional distribution of tT −+  is exponential with parameter ∑= r r xh )( 0
rμ ;  

2. the conditional probability )( 0rRp =  for the next reaction to be r0 is 
∑r r

r

xh
xh

)(
)(

0

00
r

r

; 

3. tT −+  and the choice of r0 are conditionally independent. 

The algorithm can then be described as follows: starting from the initial condition 0xr at time 0=t , 

at each step: draw T
+ 

from the )exp(μ  distribution, and set t → t + T
+
; if t < tmax, then draw R from 

)( 0rRp = , and set reXX rrr
+→ . 

Gillespie developed several computationally more efficient variants of the original numerical 
algorithm, as well [60]. Moreover, he showed that the default rules for the propensity functions are 
valid for well-stirred chemical reactions (Section 3.1); nevertheless, they are also generally accepted 
for many bio-chemical and population models. Napp et al. proposed an extended state space approach 



Micromachines 2011, 2  
 

 

101

based on hidden Markov models—i.e., models where the system is assumed to be Markovian but with 
unobserved states—to deal with stochastic SA of non-well stirred ensembles of particles [107]. 
Stochastic simulations with spatial resolution were also developed. Smoluchowski models can account 
for spatial diffusion phenomena as applied, e.g., to chemical reactions with molecular detail [93]; the 
Fokker-Plank diffusion model was also adopted by Prorok et al. to capture the spatial distribution over 
time of miniature robots in an inspection task [108]. 

4.2. Brownian Agents and Stochastic Micro-Agents 

With his Brownian agents, Schweitzer introduced a rather comprehensive modeling framework for 
DSs, both agent-based and supported by the analytical methods of statistical mechanics [109].  

Each agent k is described by a finite set of state variables{ })(k
iu , whose dynamics are subject to a 

superposition of both deterministic ( )(kf ) and stochastic ( stochf ) influences, as captured by the 
Langevin formalism:  

stoch
i

k
i

k
i ff

dt
du

+= )(
)(

  (24) 

where the distinction between the two types of causes depends on whether they can be possibly 
resolved at the characteristic time and length scales of the chosen agents—in analogy with physical 
particles undergoing Brownian motion; hence the name of such agents. )(kf subsumes all specifiable 
influences on the state variables, such as non-linear, rule-based interactions with other agents, external 
conditions as defined by control parameters (e.g., dissipative forces, forces deriving from external 
potentials, in/outflux of resources), and internal time-dependent agent dynamics. On the other hand, 

stochf  cumulates all influencing factors that would require a smaller-scale observation to be detailed 
into a single stochastic variable with defined statistical properties. The scale at which such distinction 
is placed sets the degree of granularity in the description of the system. This possibility of choosing the 
level of detail abstraction is useful to distill meaningful collective information, and to allow the 
subsequent, cumulative buildup of model complexity to remain tractable.  

The Brownian agent approach is focused on cooperative agent interactions, particularly  
self-organization and aggregation, instead of on individual actions. Brownian agents are not able of 
deliberative actions, e.g., calculating cost functions and develop internal world representations and 
strategies. Still, they possess internal degrees of freedom, for instance an internal energy depot; and 
they can interact indirectly by means of stigmergy [6], i.e., by modifying the shared environment that 
in turn influences the actions of the (other) agents.  

Upon the baseline of purely passive agents undergoing Brownian motion, Schweitzer adopts a 
minimalistic, constructive agent design, in which the complexity and potentialities of each agent are 
progressively augmented by the cumulative addiction of built-in features and capabilities. For each 
subsequent level of agent sophistication, the simplest set of rules is used and a homogeneous 
population of agents is simulated to investigate its collective properties and potential behavior(s).  
This way, Schweitzer shows that Brownian agents can be progressively enabled to perform or 
reproduce various collective patterns, e.g., deterministic chaotic, intermittent or swarming type of 
motion; simulations of aggregation and structure formation processes of physico-chemical systems;  
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self-organization of stable and adaptive networks; trail formation, and consequent reinforced  
biased random walk; and social aggregation phenomena, like urban sprawl and opinion formation, as  
well [109]. Other researchers also adopted Brownian agents for e.g., traffic modeling, synchronization 
phenomena, granular matter, and more. 

As an interesting alternative, Milutinović proposed a framework linking directly the microscopic, 
deterministic behavior of agents to the macroscopic dynamics of their populations, as inspired by the 
kinetic gas theory [110]. His stochastic micro-agents are hybrid automata described by event-driven 
transitions among a discrete set of control states and by time-dependent motion in a continuous space. 
The events reproducing inter-agent interactions and inducing the control state transitions are generated 
by a collection of event generators; these events are stochastic, and their probability distributions 
encode the complexity of the interactions within a population of agents. That is, a mean-field approach 
is adopted, where each agent interacts with the rest of the agents in the population through their 
aggregate effects, as embodied in the event sequences produced by the event generators. Importantly, a 
set of partial differential equations (shown to be a generalization of the Liouville equation) describes 
the time evolution of the probability density function associated with the agent population given its 
initial conditions. This way, collective dynamics can be directly derived from that of the individual 
agents. The framework was originally applied to the modeling of immune system cells. 

4.3. Critiques to the Model 

Stochastic reaction networks’ abstraction level lies between that of mean-field differential equations 
and of agent behavior-oriented ABMs. Particularly, they are not as spatially embedded as the latter; 
yet, in contrast to more abstract mean-field models, they can include network topologies. In fact, their 
strength resides in taking advantage of the developing tools of network theory [111] to quantitatively 
describe the local geometrical neighborhoods of agents and the informational aspects of their 
interactions. For instance, at the core of important results in burgeoning fields, e.g., biological 
networks for the regulation of genetic expression, metabolisms and catalytic reactions lies the network 
analysis by combined use of rate equations and logical operators [112]. Klavins’ graph grammars are 
an actual example of how similar methods can be applied to SMPs [53]. On the other hand, the 
Markovian assumption underlying the stochastic reaction models may constrain their application to 
systems of shallower complexity, as compared to those addressable by ABMs.  

Brownian agents provide an important example of a reductionist but nevertheless constructive 
approach to describe a wide range of DSs at several scales and increasing levels of sophistication and 
complexity—in a way reminding of Braitenberg’s cumulative design of vehicles [113]. By combining 
analytic and agent-based representations at nearly all levels, Schweitzer’s approach can exploit their 
complementary features (e.g., statistical mechanics tools and flexible design, respectively) and tune 
their relative weight in the aggregated models according to case-specific applications. Reaching from 
passive, purely reactive agents to active, fully reflexive ones, Brownian agents represent therefore a 
modeling tool remarkably well aligned with SMPs, since the latter shall, in principle, span the entire 
domain of the former (as outlined in Section 1). However, the flexibility of such agents is traded off 
for a limited anchoring to reality—that is, the agents are rather abstract and defined by parameters not 
derived, at least explicitly, from an underlying, submicroscopic level of detail (see next section for a 
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definition). Importantly, from Schweitzer’s work it is not straightforward to derive univocal design 
guidelines to embed his software agents into real devices, nor are many of the parameters governing 
the agents’ behavior directly traceable back to experimental details and features. An extension oriented 
toward model-based design and bridging the model/reality gap is therefore required for the present 
framework to fully fit within our SMP perspective. 

In Milutinović’s framework, the collective macroscopic dynamics is directly connected to the 
microscopic agent dynamics through the evolution of the associated probability distribution, while the 
actual interactions among agents are lumped, and their complexity hidden, into the stochastic 
components of the event generators. It represents an interesting attempt at including both macroscopic 
(mean-field) and microscopic (individual agent) modeling levels within the context of hybrid automata 
control; it is also amenable to analytical treatment, especially in the Markovian approximation. 

Finally, stochastic reaction networks and hybrid automata can also be readily included into an even 
more comprehensive modeling framework—i.e., one integrating a hierarchy of different modeling 
tools or methods, each specific and/or more suitable to a particular level of abstraction, within a single 
and consistent modeling suite. This refers to the general multi-level modeling framework, in which the 
choice of the model types itself, beside necessarily their instances, can be case-specific. In the next 
section, we illustrate the multi-level modeling approach as applied to the self-assembly of SMPs. 

5. Toward a Comprehensive Modeling Framework for SMPs: Multi-Level Modeling 

One of the main difficulties in modeling ensembles of SMPs, and particularly those involving 
aggregation and self-assembly, is the inherent randomness and hybridness of their dynamics. For 
instance, while a robot’s controller is essentially a deterministic, discrete entity, it has to interact with a 
noisy, continuous environment. At the microscale, a particle’s binding site may or may not be 
occupied (discrete state variable), and this may depend on the temperature of the system (continuous 
parameter), such as in the case of e.g., DNA-mediated binding sites.  

These challenges motivate the combination of multiple levels of abstractions—ranging from 
detailed, submicroscopic models up to more general, macroscopic ones—into a consistent multi-level 
modeling framework. On the one hand, one needs submicroscopic models that are able to capture the 
complete state of particles, including spatiality and embodiment (e.g., pose, shape, surface properties). 
On the other hand, one is also interested in models that can yield accurate numerical predictions of 
collective metrics, and investigate, possibly in closed form, macroscopic properties such as the sizes, 
types, and proportions of the resulting assemblies. Multi-level modeling allows the fulfillment of both 
requirements in a very efficient way by building up models of increasing levels of abstraction in order 
to capture the relevant features of the system. 

Within this context, we classify models of distributed systems into three main categories:  
(i) submicroscopic models, in which each particle’s state as well as sub-components (e.g., bulk, 
surfaces, binding sites) are captured (Section 5.1); (ii) microscopic models, in which the state of each 
particle in the system is captured, but the details of its sub-components are abstracted (Section 5.2), 
and (iii) macroscopic models, in which all particles in a given state are aggregated into a single state 
variable (Section 5.3).  
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Originally, the multi-level modeling methodology was developed in the context of swarm  
robotics [114]; in [100], Mermoud et al. extended this approach to more minimalist entities, 
prefiguring the more mature concept of SMPs. In the sequel, we describe a suite of models at different 
abstraction levels, all exemplifying higher abstractions of Mermoud’s two-dimensional ABM 
described in Section 3.2.1. 

5.1. Submicroscopic Models 

The most detailed level of modeling is provided by physics-based simulations, which bridge the gap 
between model and reality by accurately capturing each system particle as well as its sub-components. 
These simulations faithfully account for a subset of physical phenomena (e.g., capillarity, hydrophobic 
interaction, electromagnetic forces), which are considered most relevant to the dynamics of the system. 
The strength of this type of models is their direct anchoring to reality, even though the number of their 
parameters tends to grow rapidly with the number of physical phenomena to be modeled. Also, while 
these models enable, in principle, the direct visualization of a particle’s behavior, their heavy 
computational requirements limit their applicability to systems that involve a limited number of 
particles. Examples include finite-element numerical simulations and molecular dynamics 
(representing the most radical physical ABM) for M/NEMS (see Section 2.3), and case-specific 
software faithfully reproducing robot behaviors, such as Webots [115]. 

5.2. Microscopic Models 

Even though microscopic models capture the state of each individual particle in the system, their 
state vector is significantly smaller than their correspondingly submicroscopic counterpart. This state 
reduction is typically obtained through appropriate aggregation of the state variables, which can be 
more or less important as a function of the desired level of detail. Section 3.2 described two such, 
spatial models. Spatial models offer an interesting modeling framework for multi-agent systems, but 
they can be expensive both in terms of memory and computation. Indeed, these models store the 
position and the orientation of each agent as well as the precise structure of each aggregate. Also, they 
must determine whether a collision occurred, or not, at each iteration and for each pair of agents.  

One can go even further in the process of abstracting details that are not significant to the dynamics 
of the process under investigation. Hereafter we describe a Monte Carlo-based version of the ABM 
presented in Section 3.2.1 which does not capture spatiality, i.e., it does not keep track of the position 
and orientation of each agent. It can be considered a stochastic microscopic model that, in contrast to 
the macroscopic models developed later, does not rely on a mean-field approach in terms of population 
distribution. However, the model assumes that the individual behavior of each agent and that of the 
environment can be represented by (semi-)Markov chains, i.e., the probabilistic transition from one 
state vector A to another state vector B depends only on the information contained in the state vector A 
(see Section 3.1). 
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expansion process. For instance, in order to capture the alignment of pairs of building blocks, one can 
discretize the state variable N2 (representing the average number of dimers) into M sub-variables N2,i 
that denote the number of aggregates with an average alignment ξi with i = 1,…,M. Obviously, such a 
discretization leads to a M-fold increase of the number of states, and therefore an exponential increase 
of the number of equations, making the model rapidly intractable. The proposed macroscopic model 
captures alignment of building blocks at the macroscopic level by using this approach, but with an 
explicit limitation on the size of the aggregates to pairs. 

A Macroscopic Model of Pair-wise SA 

One can describe the dynamics of each particle P by a Markov chain with a set of states X. The state 
space X

(P) 
should be discrete, finite, and it must reflect the type of the aggregate s the particle belongs 

to. However, the space S of aggregate’s types in our model is not discrete. Indeed, even though we can 
distinguish between single building blocks and pairs in a discrete manner, pairs take continuous energy 
values (see Section 3.2.1). To discretize S, we note that the symmetry of Equation 16 allows 
simplifying the vector ξ defining the relative particle orientation within an aggregate to a scalar, i.e., 
the norm of the relative positioning, denoted by: 

[ ]22
2

2
1

22 20 πθθξθ ∈+==   (26) 

which can be discretized into a set of K averaged values 2
1̂θ  given by: 

Kiwith
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⎠
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πθ   (27) 

Therefore, the state space of the Markov chain is given by: 

di
P Ss ∈=Χ )(   (28) 

With Sd the discretized space of aggregate’s types, s0 representing single particles, si pairs with an 
averaged relative positioning norm 2

1̂θ  with Ki ...2,1=  and binding energy 
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Therefore, the probability for a particle P to aggregate with another particle into a pair of averaged 
relative positioning norm 2

1̂θ  is: 

1))(|)1(( 0
)()( ===+Χ stXstp P

i
P  (30) 

Similarly, the probability for a particle P to leave a pair with an averaged relative positioning 2
1̂θ  is 

given by: 

[ ]10:))(|)1(( )(
0

)( →==+Χ di
PP SstXstp  (31) 

and will be denoted )( il sp . A pair will break up if one or both of its particles leaves. Therefore, the 
probability )( ib sp  for a pair of type si to break up (Equation 17) can be written as: 
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Using a set of difference equations, one can summarize the average state transitions of each 
individual Markov dynamical system, and thus keep track of the number of aggregates of type s  Sd. 
We write Ni the average number of aggregate of type si.  

The average number of single particles Ns is given by the following difference equation: 
2)()(2)()1( tNptNptNtN scpbss ⋅−=−+

rr  (33) 

having defined 
[ ]TKbbb spspp )(),...,( 1=

r  (33) 

[ ]TKp tNtNtN )(),...,()( 1=
r

 (33) 

and pc is the collision probability (Equation 25) and ..  is the scalar product. The scalar term 

)(tNp bb

rr  is the average number of pairs that broke up at iteration t. The term pc · Ns(t)
2 
is the average 

number of particles that collided and formed a pair at iteration t. Similarly, the number of pairs of type 
si with Ki ,...,1=  is given by the following difference equation: 
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⋅
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where f (i) : Z+ → [0, 1]. The term )()( tNsp iib ⋅  is the average number of pairs of type si that broke 

up at iteration t. The term pc · Ns(t)
2 
is the average number of particles that collided and formed a pair 

at iteration t, regardless of its type (since two particles are needed to form a pair, this term is divided 
by two). Furthermore, since all formed pairs are not of type si, the function f (i) determines the fraction 
of formed aggregates that are actually of type si (refer to [100] for a complete derivation of f (i)). 

5.4. Validation of and Critiques to the Models 

Mean-field macroscopic models can be computationally efficient; but they are approximations of 
the models at lower abstraction levels and, ultimately, of the real system. Particularly, mean-field 
macroscopic models aggregate discrete entities into real-valued state variables that describe averaged 
quantities. This way, both the absolute discrete quantities of the state variables representing the 
number of agents in a given state and the potentially non-uniform behavior of the system under 
consideration are lost. To cope with it, macroscopic models rely on the ODE approximation, which 
assumes that the system involves a large number of small changes, i.e., the model becomes exact if the 
system is scaled such that the reaction rates become large and the effects of those reactions small  
(i.e., in the thermodynamic limit, Section 3.1.4). The validity of the approximation does not only 
depend on the number of particles in the systems, though: the number of interactions and the structure 
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of their network also play a key role. Hence, discretization of state variables is generally a source of 
inaccuracy, because it tends to lower the reaction rates while increasing their effects. 

Figure 10 provides a comparison of the predictions of the models of the same system presented in 
Sections 3.2.1 (microscopic, spatial), 5.2.1 (microscopic, non-spatial) and 5.3 (macroscopic), 
respectively. For N0 = 1,000, all models show a good agreement, even though the Monte Carlo and the 
macroscopic model exhibit a slightly faster convergence, probably due to their non-spatiality. Indeed, a 
particle that is surrounded by stable aggregates may take quite some time before encountering another 
single particle. Such suboptimal mixing tends to slow the process down; this phenomenon is not 
captured by non-spatial models, but has been repeatedly reported in spatial ABMs (Section 3.2).  

Figure 10. (a) Comparison of the yield of the system (proportion of pairs) with K = 3,000 
and N0 = 1,000 predicted by the macroscopic model (dashed), the Monte Carlo simulation 
(continuous), and the agent-based simulation (bold). (b) Comparison of the long run 
prediction (50,000 s) of non-spatial models for different total number of individual building 
blocks N0: the Monte-Carlo simulation (N0 = 50, triangles; N0 = 100, squares; N0 = 500, 
circles) and the macroscopic model (N0 = 50, dotted line; N0 = 100, dashed line; N0 = 500, 
continuous line). 

  
(a)       (b) 

 
Also, one can clearly see that the accuracy of the macroscopic model with respect to the Monte 

Carlo one degrades gracefully as N0 decreases; for N0 = 50, the macroscopic model actually predicts a 
much faster growth of the pair ratio than that observed in Monte Carlo simulations, whereas an almost 
perfect match is observed for N0 = 500. These results exhibit the limits of the ODE approximation for 
nonlinear dynamical systems. More complex behaviors are observed when varying the discretization 
factor K (full details in [100]). 

6. Conclusions and Perspectives 

This paper proposed a novel and unifying perspective for the design and control of self-assembling 
micro-/nano- and distributed intelligent systems. This perspective results from the extrapolation of 
ongoing technological trends observed in these domains, namely smarting and minimalism, 
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respectively. We believe that, thanks to such trends, both domains will converge and eventually merge 
into a single locus, defined by what we call smart minimal particles (SMPs). SMPs bridge the 
complexity and scale gap between micro/nanosystems and robotic systems; contextually, SMPs point 
to the existence of a continuum of sophistication between passive and active particles, both from a 
technological and a methodological standpoint. Moreover, the proposed unification emphasizes the 
cross-fertilizations among the originally separate domains concerning terminologies and methodologies. 
Particularly (but not exclusively) in the case of the modeling of aggregation and self-assembly 
dynamics, the mutual advantages of shared knowledge and tools are evident and very promising, as we 
showed in reviewing the efforts pursued in both M/NEMS and distributed robotics in terms of 
manufacturing technology and distributed control strategies.  

A major motivation for proposing the concept of SMPs is the development of the vast, necessarily 
multi-disciplinary knowledge required to master the control of the hierarchical organization of matter 
into adaptive artificial structures—i.e., programmable matter (see e.g., [116-118] for related 
acceptions). In this context, we consider M/NEMS as an enabling technology, which shall ultimately 
allow for the organization of matter from its raw state into small yet functional particles, smart enough 
to achieve further aggregation into larger and more sophisticated entities; at the same time, distributed 
robotics is elaborating and developing control strategies for the decentralized and robust coordination 
of such building blocks into the desired, adaptive structures. Therefore, in our view, the introduction of 
SMPs is a natural step towards a seamless, bidirectional flow of information and capabilities all the 
way from the most basic micromachined particles to fully-fledged robots.  

This paper accordingly attempted to put the collective efforts of vast research communities into a 
shared perspective—as a step toward the ambitious direction outlined above. We are actively pursuing 
both technological and theoretical investigations on SMPs, and it is our hope that the introduction of 
the SMP perspective may help favoring stronger and fruitful interactions among the M/NEMS and 
robotics communities so to catalyze further research into self-assembly—needed to pursue the targeted 
goals and to cope with the many challenges yet to be tackled by both communities. 
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