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Abstract: A wealth of current research in microengineering aims at fabricating devices
of increasing complexity, notably by (self-)assembling elementary components into
heterogeneous functional systems. At the same time, a large body of robotic research called
swarm robotics is concerned with the design and the control of large ensembles of robots
of decreasing size and complexity. This paper describes the asymptotic convergence of
micro/nano electromechanical systems (M/NEMS) on one side, and swarm robotic systems
on the other, toward a unifying class of systems, which we denote Smart Minimal Particles
(SMPs). We define SMPs as mobile, purely reactive and physically embodied agents that
compensate for their limited on-board capabilities using specifically engineered reactivity
to external physical stimuli, including local energy and information scavenging. In trading
off internal resources for simplicity and robustness, SMPs are still able to collectively
perform non-trivial, spatio-temporally coordinated and highly scalable operations such as
aggregation and self-assembly (SA). We outline the opposite converging tendencies,
namely M/NEMS smarting and robotic minimalism, by reviewing each field’s literature
with specific focus on self-assembling systems. Our main claim is that the SMPs can be
used to develop a unifying technological and methodological framework that bridges the
gap between passive M/NEMS and active, centimeter-sized robots. By proposing this
unifying perspective, we hypothesize a continuum in both complexity and length scale
between these two extremes. We illustrate the benefits of possible cross-fertilizations
among these originally separate domains, with specific emphasis on the modeling
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of collective dynamics. Particularly, we argue that while most of the theoretical
studies on M/NEMS SA dynamics belong so far to one of only two main
frameworks—based on analytical master equations and on numerical agent-based
simulations, respectively—alternative models developed in swarm robotics could be
amenable to the task, and thereby provide important novel insights.

Keywords: distributed systems; modeling; multi-level, networks; rate equations;
self-assembly; smart minimal particles; steady-state; stochastic; swarm robotics

1. Introducing Smart Minimal Particles

Distributed Systems (DSs) are ensembles of elements (hereby referred to as particles for the sake of
generality) spatially scattered within bounded domains, and whose collective properties depend on
those of the elements and of their interactions, both with each other and with the environment. DSs
come in several varieties, depending on, e.g., their coordination and control strategies (centralized
versus de-centralized), availability and sharing of resources (internal or external, global or local,
including information and energy), constraints, tasks, performance and adaptivity—besides the specific
characteristics of the elements and interactions. Biology at large is the prime source of examples of
DSs and self-organization [1]. Their potentialities have in turn inspired the introduction of DSs in
broad fields of intensive research and increasing technological pervasiveness such as, among others,
distributed information processing (e.g., Internet and cloud computing, wireless communications and
sensor networks [2]), micro/nano electromechanical systems (M/NEMS) [3] and artificial intelligent
systems [4]. The latter two fields are of particular interest in our view, because they represent the
extremes of the complexity and size continuum of artificial distributed systems and, at the same time,
they manifest a convergence towards a shared, conceptual and technological midpoint, embodied by
what we hereby denote Smart Minimal Particles (SMPs) (Figure 1).

Figure 1. The convergence toward Smart Minimal Particles (SMPs).
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On one side of the continuum, robotic agents are normally macroscopic (i.e., from a few millimeters
to a few tens of centimeters in size), autonomous in terms of energy, locomotion and communication,
and they can be described by a (finite) number of internal states that determine their deliberative
response to environmental influences. However, autonomy comes at the price of high complexity
(Complexity and simplicity refer herein to a measure of the sophistication of internal resources.), cost,
and susceptibility to failure. Therefore, a very active research topic in robotics concerns the design and
control of massively-distributed robotic systems involving simpler and smaller robots. Such swarm
robotic systems generally exploit self-organization, redundancy and environmental surrogates to
compensate for the technological limitations of the individual robots (e.g., fluid flows for mass
transport [5], stigmergy [6,7], templating [8]). This approach is consistent with the more general
minimalist trend of robotics [9]. While the required miniaturization of robotic modules is a difficult
task in itself, a contextual challenge for minimalism (as defined earlier) is the design of simpler and
more robust agents still capable of performing desired cooperative tasks in noisy environments and in
spite of technological limitations. By minimizing the number of their internal states—besides their
communication, sensing, and actuation capabilities, and their mobility—these robotic agents tend to
asymptotically approach the status of purely reactive agents, just like molecules, bacteria, or M/NEMS.

On the other side of the continuum, an important body of precision manufacturing’s research aims
at producing very-small systems of increasing complexity. One promising route to fabricate complex
functional systems is the autonomous self-organization and buildup of structures from their simpler
subunits. As a prominent example, active and passive M/NEMS devices come in large quantities
owing to batch fabrication technologies [10], but their organized integration into heterogeneous
functional systems by means of serial manipulation, as done in e.g., consumer electronic
manufacturing, is limited in terms of throughput, flexibility, and scalability [11]. Therefore, massively
parallel and high-throughput integration is invoked, as embodied by bottom-up methods such as e.g.,
self-assembly (described in Section 2). However, specific geometric design and surface derivatization
are required to enable the accurate and efficient self-assembly of M/NEMS devices into desired,
articulated structures. Such dedicated physico-chemical tailoring encodes local information and
selective interactions to direct the cooperative aggregation. We denote smarting this tendency toward
an increased sophistication of M/NEMS devices, and of passive particles (defined in Section 2) in
general. Conceptually, smarting is the opposite of minimalism: in a nutshell, minimalism tends to
make intelligent particles as simple, reactive and passive as possible, while smarting tends to make
passive particles as complex, deliberative and active as possible.

In our view, smart minimal particles (SMPs) represent the natural convergence locus of such
opposing tendencies observed in M/NEMS technology and swarm robotics.

We define SMPs as mobile, sub-millimeter sized, purely reactive agents that compensate their lack
of on-board resources with their specifically engineered reactivity to external physical stimulation as
well as ability to scavenge energy and information from their local environment. SMPs may be subject
to both global and local physical influences, yet they are only capable of local interactions. Influences
on SMPs can derive from specific stimuli (e.g., wireless actuation by frequency-selective magnetic
induction [12]), interaction potentials [13] or field gradients (e.g., gravitational, electric, magnetic,
temperature, pressure), also programmable (e.g., mechanical [14], electric [15]). A partial list of

examples of application-specific particle engineering includes: selective hydrophobic or -philic surface
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functionalization [16]; steric affinities based on shape-complementary or matching particle/binding site
geometries [17,18]; selective coating with fluids of high interfacial energies, such as polymers [19,20]
or molten solders [21]; magnetic [22] and electric polarizations, both electrostatic [23] and
electrodynamic [24]; DNA-based derivatization [25,26]. States of SMPs are associated with interfacial
conformational switchings [27], i.e., with the modification of their chemical and/or mechanical
interface with the environment, as a consequence of, e.g., global stimuli [25], interactions with other
particles or with templates (e.g., proximity-dependent activation [28], memory of individual assembly
history [29]), or modification in the local properties of the environment (e.g., solution pH and light
intensity [30]). SMPs trade off internal resources for simplicity and robustness, and are still able to
perform non-trivial collective operations exploiting local interactions; eminently, spatio-temporally
coordinated, decentralized and scalable organization—i.e., aggregation and, particularly, self-assembly.

SMPs blur the boundary between M/NEMS and swarm robotics by pointing toward an ideal
continuum in particle size and complexity levels—from passive to active particles. Contextually, they
also suggest the possibility of fruitful cross-fertilizations, i.e., the adoption in one domain of
terminology and modeling frameworks originally developed in the other domain.

In this paper, we argue the need for and the proposal of SMPs (i) by outlining the mentioned
convergence toward SMPs with experimental and theoretical examples drawn from both the
M/NEMS’ and modular robotics’ literature on self-assembly and aggregation, (ii) by illustrating our
suggested SMP perspective with specific respect to the modeling of the dynamics of self-assembling
SMPs, and (iii) by adopting a shared, hybrid terminology where possible.

The paper is structured as follows. Section 2 briefly illustrates the varieties of self-assembly
possible at most scales before specifically focusing on its static type as the most pertinent to SMPs
(though far from exhausting their potentialities). Examples are drawn from both the modular robotics
(Section 2.1) and the M/NEMS literature (Section 2.2); quasi-statics, transient dynamics and collective
dynamics of self-assembly are also discussed (Section 2.3). The collective dynamics of SMPs is then
addressed in detail in Sections 3 and 4, which critically review the main, sometimes analogous models
proposed so far for passive particles—i.e., master equation-based (Section 3.1) and agent-based
models (Section 3.2)—and for active particles—i.e., stochastic reaction models (Section 4.1) and
hybrid automata (Section 4.2)—respectively. These reviews prelude to an outline of a proposed,
unifying modeling framework for SMPs, namely multi-level modeling (Section 5), which integrates a
set of conceptually-different models, ranked according to their level of abstraction and stacked into a
coherent hierarchical system across which control and design parameters can be seamlessly transferred
from one model to the other, either upward (i.e., abstraction) or downward (i.e., implementation).
Finally, Section 6 presents concluding remarks and perspectives for future research.

2. Self-Assembly across Scales

Self-assembly (SA) [31] has recently gained considerable momentum in the realm of precision
engineering and manufacturing [32,33]. Particularly, SA represents the main embodiment of the
bottom-up approach to the fabrication of heterogeneous and articulated micro-and nanosystems [34].
Rooted in, and constantly inspired by, biology and supermolecular chemistry [35], such an approach is
complementary to the top-down fabrication approach established at (though not exclusive to)
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the macroscale because of its highly decentralized, massively parallel, and largely unsupervised
control [11], which, together with intrinsic redundancy, makes it also highly robust [36] and, in
principle, scalable to the control of larger structures. Interestingly, combinations of both approaches
are being currently envisioned, as in e.g., Aybrid microhandling [37,38]. A taxonomy of SA is sketched
in Figure 2.

Figure 2. Taxonomy of Self-Assembly.

In its static templated (or directed) variety—commonly adopted for M/NEMS coordinated
aggregation, and main focus of this contribution—SA builds up ordered structures out of biased
stochastic searches within bounded assembly spaces and over the free energy landscapes of the
assembling systems. The characteristics of these landscapes can be specified by the physicochemical
features of the particles to be assembled, their mutual interactions, and their reactivity to external
stimuli and to the boundary conditions (including templating) imposed by the assembly space. All of
these elements can be tailored to control the assembly process. Indeed, the interplay between biases
and stochasticity—object of an ongoing debate in SA-based manufacturing—enables SA’s extensive
flexibility and effective search in solution or assembly space; very similar mechanisms are harnessed
in a large class of stochastic optimization algorithms (e.g., simulated annealing [39], stochastic
gradient descent [40]) used for solving constraint-satisfaction problems. By embedding randomness,
SA is intrinsically robust against noise, deadlocks and locally optimal points; using seeds and biases,
the progress of SA is purposely directed. Particularly, templating is exploited in a vast class of SA
processes of eminent importance for industrial manufacturing, where time-to-assembly and throughput
are normally critical performance metrics. In this context, the introduction of pre-designed physical
templates with target binding sites, of selective (an)isotropic affinities, and of complementary
shape-matching geometries enable (globally and locally, respectively) the growth of predictable
structures and the enhancement of their assembly rates. Besides, in some SA instances the spatial and/or
temporal sequence of assembly events can be pre-programmed to a certain extent [41-43]; also, the
assembling particles can in turn be the result of prior SA of simpler particles (hierarchical SA) [44].
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More importantly, SA processes can be broadly classified according to the role played by energy
and to the level of pro-activity of the particles to achieve aggregation [31]. As for the former
classification, in static SA (sSA) processes energy is dissipated only while the assembling system is
approaching (possibly, one of) its minimal energy configuration(s). In sSA the thermodynamic concept
of free energy landscape can be applied, and there is no further action by nor energy release from the
system once the system has reached equilibrium. Conversely, in dynamic SA (dySA) [45] the sustained
energy dissipation itself is the origin of the organization of ordered, steady-state spatio-temporal
patterns of particles. DySA emerges in systems driven out of thermodynamic equilibrium (e.g.,
dissipative structures [46]) by the constant exposure to an external energy gradient. The implied
structural organization is thought to underlie most biological phenomena [47]. Significant researches
toward a comprehensive theory of DySA, still missing, are being pursued (see e.g., [48,49]).
Concerning the latter classification, the particles can (active SA) or cannot (passive SA) purposely
expend internal resources (e.g., energy, communication) to drive the process or establish selective
physical or informational links with other particles. Active particles(An active particle is also active in
the electric (device) meaning of the term, though the opposite is not necessarily true: e.g.,
electrically-active M/NEMS are normally passive for SA purposes.) can be identified with agents
endowed with degrees of autonomy and with internal states(Hard-wired SA encodes the sequence of
assembly events in the states of the particles. Examples range from living cells [50] to self-replicating
artificial structures [51].), able to make choices (regarding e.g., trajectories, links to other particles).
Instead, in passive particles the autonomy is strictly limited to scavenging means of mass transport
from the environment, conformational switchings, and to the compliance with the physical interactions
as mediated by body and surface forces.

In the following sections, recent results concerning experimental and modeling SA activities in
robotics and M/NEMS are reviewed.

2.1. Self-Assembly of Small Modular Robots

Achieving SA and aggregation are important tasks in distributed and modular robotics [52], as
supported by a vast literature, both theoretical and experimental.

Probabilistic models were developed for the aggregation and SA of mobile robots [53,54], along with
deterministic models of aggregation and flocking (i.e., the coordinated motion of the aggregates) [55,56],
and graph-based approaches [57]. A comprehensive theoretical study of microscopic robot
coordination in viscous fluids was carried out by Hogg [58]. Stochastic and distributed control of
swarms of robots was extensively studied by Kumar and colleagues [59], who also exploit modeling
methods originating from the study of chemical systems [60]. The chemical formalism well suits the
description of SA, as will be shown in Sections 3.1 and 4.1 and as further demonstrated in recent
studies involving real and simulated robots [61,62].

Aggregation of passive objects mediated by mobile robots [7], self-organized aggregation of mobile
robots [63,64] and even of robots and insects [65] was extensively investigated using very diverse
robotic platforms, ranging from a few to several centimeters in size [66]. Actual SA was achieved on
the Swarm-bot, a 15 cm-sized mobile robot equipped with a gripper [67], and with Klavins’
programmable parts, i.e., triangular robots (12.5 cm in size) that randomly slide on an air table and



Micromachines 2011, 2 88

assemble with each other according to pre-planned schemes ([53], see also Section 4.1). Miyashita
et al. proposed simpler triangular robots (Tribolons, 4.9 cm in size) that assemble with each other at
the water/air interface and rely on a pantograph for both energy supply and control [68].

SA of sub-centimeter sized robots is also being addressed. Donald et al. demonstrated MEMS
robots (i.e., miniature robots fabricated by micromachining) that can selectively respond to a single,
global control signal delivered through the interdigitated electrodes of an insulated substrate [69].
Thanks to their scratch-drive actuator and single steering arm, such robots can describe intersecting
trajectories and dock compliantly together, forming planar structures several times their own size.
Frutiger et al. fabricated sub-millimetric MEMS robots that utilize a wireless resonant magnetic
microactuator to get power supply, achieve propulsion and perform servoed exploration and possibly
cooperative tasks [12]. Such Magmites convert the energy of magnetic fields into mechanical
motion directly, and can be controlled by frequency-coded signals. Chang ef al. demonstrated the
electro-osmotic motion of millimetric, light-responsive diodes controlled by an external AC electric
field [70]. Several research groups envision designing modular surgical robots small enough
(about 1 cm) for entering the human body through natural orifices (e.g., by ingestion [71]) and capable
of configuring themselves into kinematic structures within the stomach. Further examples are referred
toin [12].

Consistently with our SMP perspective, the ongoing miniaturization of robotic modules may thus
further decrease the gap, both in size and performance, with M/NEMS—whose SA is reviewed next.

2.2. Self-Assembly of M/NEMS

For the assembly of micro- and nanosystems, a wealth of static templated SA processes were
proposed and demonstrated, as detailed in several recent reviews [3,33,34]. A very wide range of
applications is targeted, including, e.g., three-dimensional electric circuits [72], flexible LED-based
displays [42], integration of semiconductor devices onto plastic substrates [17], polyhedral
containers [33], monocrystalline solar cells [16]. They exploit a broad spectrum of physical interactions,
including (but not limited to) gravitational [73], hydrophobic [74], steric [18], electric [24],
magnetic [22], capillary [75], DNA hybridization-mediated [25], fluidic [76]. Interestingly, in the range
of micrometric to nanometric scales most of these interactions can be tuned to a reasonable
degree [35,77]. Unless an adaptive system is required [45], the static type of SA is adopted here
because of the functional and disposable nature of the systems themselves(Reconfigurable systems
(e.g., by disassembly) are also hereby included, as they can be thought of as a sequence of static SA
processes, each starting from the pre-configuration left from the previous instance). As for the M/NEM
units, in practically all cases they are only required to be able to scavenge energy and information from
the environment (particularly, from templates and other parts) and to recognize their target position in
the assembling structures. For this purpose, they need proper pre-conditioning, outlined in Section 1.

2.3. Modeling Static Self-Assembly

SA entails several correlated phenomena at different levels of detail—each being possibly subject to
modeling. Models of sSA of passive particles mainly focus on three main aspects: quasi-statics,
transient dynamics and collective dynamics (There is no contradiction here: the dynamics refers here to
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the transient approach—at single and collective particle level, respectively—to the static (final) system
configuration). The first two aspects concern the highly accurate, case-specific modeling of material,
physico-chemical, and geometrical properties influencing the SA performance of a single particle in
relatively-close proximity to its (optimal) target position in the assembling structure. The latter,
complementary aspect concerns a more relational, multi-particle perspective which, while reducing
accuracy by sparing a substantial amount of details about the physical and geometrical details of the
system, still captures meaningful information about the cooperativity of the process and possibly gains
in generality and computational efficiency.

Analytical models (based on first-order approximations and/or first-principles equations) and
finite-element numerical simulations, often coupling multiple physical domains, well suit physical
modeling. Due to scaling laws, the hierarchy of magnitudes of physical forces at sub-millimetric
scales, where surface phenomena dominate, is different from that at the macroscale [78]; this favors
different actuation and interaction mechanisms at different scales. A substantial amount of rather
case-specific works addressed both quasi-statics (see e.g., [79-82] and references therein) and transient
dynamics (see e.g., [83,84] and references therein).

Statistical mechanics is the discipline most devoted to the probabilistic modeling of large ensembles
of particles and their collective properties, including their dynamics [85]. However, up to now
M/NEMS and particularly robotic ensembles considered far lower counts of particles, which should in
principle be treated by specific thermodynamics [34]. To date, very little effort has been dedicated to
the modeling of passive particles’ collective dynamics (see Section 3). We believe that this is due to:
(1) the prominence, in the M/NEMS community, of the fully-fledged physical modeling of single
particle’s behavior as opposed to the modeling of collective dynamics; (2) the ability of the existing
models to reasonably predict qualitative assembly trends; more importantly, (3) the lack of
multi-objective cost functions in the proposed SA applications (mainly industrial manufacturing),
which were mostly interested in optimizing throughput and/or time-to-assembly; and, possibly, (4) a
lack of knowledge of modeling frameworks developed in other domains such as swarm robotics. The
convergence of M/NEMS toward SMPs (Section 1) could also help in significantly shrinking this gap.

3. Modeling the SA Dynamics of Passive Particles

The main models of the SA dynamics of passive particles proposed in literature belong to one of
two general approaches, namely: (1) analytical, rate equation-based, and (2) numerical, agent-based.
They are illustrated and exemplified in the following sections.

3.1. Master Equation-Based Models

A master equation is a set of equations describing the probability distribution with which a given
system S occupies each state 7 of its discrete set of states S. It can be put in the generic form:

N, (t+ A0 = N, (6) = S plie + A | j()]- N, (6) - plie + A0 | i) N, (0)} (1)

i#j
where N; is the number of system elements in state i, and p(i(t + A?)}j(t)) = p; is the conditional
transition probability from state j to state i within the time interval Az (Vi, j € S). The first (second)
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term of the right-end side of Equation 1 describes the inflow (outflow) of elements for state i. For a
finite (infinitesimal) value of Az, Equation 1 takes the form of a first-order finite-difference
(differential) equation, as shown in Equation 2 (Equation 3):

Nt+D =N, =X [p, N, = p, - N(0)] )
dN, (1)
TZZ[kU'Nj(t)_kﬁ'Nf(t)] (3)

i#]

where kj; is the transition rate from state j to state i. Equation 3 is also called rate equation.

The master equation derives from a deterministic description of Markov processes, which are
memoryless stochastic processes in continuous time (i.e., where the state at time ¢ contains all the
information necessary to determine states at time #'>¢)(The Markov property pertains to the model,
not necessarily to the described system). Markov processes have proven extremely successful for
modeling a large variety of dynamical systems [86].

Very common in statistical physics and chemistry, master equations were also adopted in models of
the collective dynamics of smart particles. Before introducing the latter models, we shall review their
most fundamental assumptions (we denote reactions both assembly and disassembly events).

1. The system is well-mixed (or -stirred): all particles have equal probability to be at any point in
space at any time. Accordingly, a given particle has equal probability to encounter any other
particle or binding site at any time.

2. The reactions are independent: the (dis)assembly of one particle does not affect the probability
of (dis)assembly of other particles.

3. The reaction probabilities are time-invariant and independent on the number of particles and
sites. Accordingly, assembly at one site does not affect the availability of any other site for
assembly, nor its probability of being filled.

4. Only bi-particle events are considered, both for assembly (producing dimers) and disassembly.

Such assumptions are discussed in Section 3.1.4.
3.1.1. Hosokawa’s State Variable Model

In their 1995 work (The same authors later applied the same model to a simpler self-assembling
system, composed of flat sub-millimetric particles that floated at the water-air interface and interacted
by capillary flotation forces [87]. The final 4-particle structure and its allowed intermediate products
were made predictable by introducing both attractive and repulsive local interactions.), Hosokawa et
al. first proposed an explicit analogy with chemical kinetics to model the dynamics of an artificial,
macroscopic self-assembling system [28].

The system was composed of a uniform population of centimeter-sized, polyurethane triangles
endowed with neodymium magnets along two of their sides. The flat particles were put in a rotating
box which constrained their random motion to a vertical plane. Being equilateral, the assembly of
exactly six triangles formed a full hexagon, and all the intermediate assembly products were known
a priori (Figure 3). To predict the final population of aggregates after a given assembly time (known as
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the yield problem), Hosokawa et al. identified the cardinality of the intermediate products of their
system with the state variables, and described their evolution from given initial conditions by means of
rate and master equations. They considered only bi-particle reactions (Figure 3), and estimated
geometrically the particle bonding probability and the rate constants. Their equations predicted that,
within a finite time period, not all the initially lone particles would assemble to form complete
hexagons, i.e., a few intermediate products would also be part of the final population (Figure 4). They
judged their theory was roughly supported by their experiments. In the same work, a conformational
switching mechanism was proposed (involving magnets moving across two possible positions) that
could make the particles change from non-interactive to interactive. The interactive particles could
transfer the property to the assembly products they belonged to. In spite of their expectation, the final
assembly yield did not show significant improvement.

Figure 3. Hosokawa’s intermediate assembly products (a) and bi-particle reactions (b).
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Figure 4. Simulated evolution of self-assembly yield as in Hosokawa’s model (from [28]).
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3.1.2. Verma’s Steady-State Model

In 1995, Verma et al. used the steady-state analysis of rate equations to model the yield of their
fluidic SA of silicon particles onto planar substrates templated with binding sites of complementary,
three-dimensional shape [88].
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Given Np and np representing the total number of particles and that of the unassembled particles,
respectively, and Ns, x(f) = x and ng the total number of binding sites, the filled sites and the vacant
sites (with x = Np — np = Ns — ng), respectively, Verma et al. phenomenologically assumed the
assembly rate R4 to be proportional to the number of unfilled sites and to that of the unassembled
particles (i.e., R4y & npns), and the disassembly rate Rp proportional to the number of filled sites
(i.e., self -disassembly, Rp o x). At the steady state (SS), the opposing reaction rates are equivalent,

that is:
dx(t)
t SS

:0:>RA|SS :RD|SS (4)

which in this case results in:

k, npng =k, x (5)

where k4 and kp are rate constants. By defining the filling ratio y = x/Ns and K = C,/C,, Equation 5 yields:

_ K-n,

S vy o ©)
which (The analogy of Equation 6 with a first-order superficial adsorption isotherm [89] should not
surprise, since assumptions conceptually similar to those of Section 3.1 were also used by, e.g.,
Langmuir to derive his adsorption isotherm [90]), as intuitively expected, predicts y — 1 for high
values of K and np, i.e., for high particle redundancy (np » ns) and for processes favoring stable
assembly (K — o for C; — 0). Note, however, that Equation 6 is a second-order equation in disguise,
since x is not completely resolved.

Recently, Mastrangeli et al. applied the steady-state analysis to predict the yield of more general SA
processes, i.e., including multiple disassembly phenomena [3]. Their assembly rate equation was the
same as Verma’s, while their disassembly rate equation included both self-disassembly and kinetic

disassembly, i.e., caused by unassembled particles colliding with assembled ones; that is:
R, =k,(N,—x)(Ng—x) (7)
R, =k,x+k, x(N,—x) (8)
Solving the SS for x results in (Cy = kp /k4 and C; = kp,/ka4):

NS+(1+C2)NP+C1_\/(NS+(1+C1)N,,+CIJ2 N, ©)

2(1+C,)N, 2(1+C,)N, 1+ C,)N,

The special cases, including only self-disassembly and kinetic disassembly, can be recovered from
Equation 9 by setting C; = 0 (Equation 10, analogous to Equation 6) and C, = 0 (Equation 11),

respectively:
1

1+C, (10)

2
1+NP+C1_ lJrNIﬂLC1 Ny (1)
2 2N 2 2N Ny

Zself =

Z kinetic —
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3.1.3. Zheng and Jacobs’ Time-Continuous Model

In 2005, Zheng and Jacobs demonstrated a three-dimensional, molten solder-driven and shape
matching-directed fluidic process to self-assemble submillimetric LEDs onto glass carriers [91]. In the
process, the initial populations of LEDs and carriers are stirred by turbulent flow of warm fluid inside a
beaker; by random collisions, the LEDs with sufficient kinetic energy and proper relative orientation fit
into the cavities of the carriers, where they are retained by the surface tension of molten solder bumps.
To model analytically the yield of their assembly experiments, Zheng and Jacobs proposed a
time-continuous rate equation of the following form:

dx(t) [N —x()]N, - x(0)]
dt T, (12)

where x(7) is the number of assembled dimers, Nc and N the total number of carrier and LEDs,
respectively, and 74 the single-LED-single-carrier mean assembly time (roughly proportional to the
inverse of an assembly rate). Using the initial condition x(z = 0) = 0, Equation 12 is solved by:

e(NL—Nc)E _Ne (13)

Equation 13 predicts the asymptotic achievement of 100% assembly yield in time by means of
stochastic SA: lim x(¢) = N .. After a given duration of the assembly process, higher assembly yields

P
are predicted for shorter 74 and for larger LED-to-carriers ratios, i.e., particle redundancy. Using 74 as
single fitting parameter, the model matched the experimental results accurately (see Figure 7). 7,4 could
be in principle measured experimentally, and depends on design and control parameters.

Mastrangeli et al. [3] generalized Zheng and Jacobs’ model by including a generic, second-order
(i.e., including mono- and bi-particle events only) disassembly term in Equation 12, obtaining:

dx(t) _[Ne —x0]N, —x(®] D[x()]
dt T, T,

D

(14)

where Tp is the single-LED-single-carrier mean disassembly time. Being D[x(¢)] of second order in
x(?), the solution of Equation 14 has the same form as Equation 13, except for replacing N, (N¢) with

X1 (x2), x1 = x2 > 0 being the roots of the polynomial in x appearing in the solution of Equation 14 and
depending on N;, N¢, T4, Tp and the specific coefficients of D[x(#)]. Thus, in this case: limx(¢) = x,.

t—©

When no disassembly is possible (i.e., Tp — ), Equation 12 and consequently Equation 13 are
recovered. When kinetic disassembly is considered, i.e., for D[x(t)]zx(t)[N . —x(t)]/T , the roots
are: x; = Npand x, = N./(1+7T,/T,). As expected, in this case a finite time-to-disassembly constant

implies an asymptotical assembly yield always lower than 100%. D[x(#)] can also take into account
further disassembly events specific to three-dimensional SA processes [3].
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3.1.4. Critiques to the Models

The rate constants appearing in the previous models lump many interacting factors. Though some of
them may be experimentally determined (e.g., mean (dis)assembly time), a complete theoretical model
should be able to derive such parameters from first principles describing e.g., the physics of the
assembly interactions. On the other hand, such lumping provides a simplification that avoids the
models to be application-specific. This, together with the focus on average behavior implicit in the
mean-field approach, accounts for the models’ high abstraction level.

Multi-particle collision events are not considered. These are less and less probable as the number of
parts involved grows (in general, reactions of the form 4+ B+ C — ABC can be decomposed into two
bi-reactant reactions 4+ B — 4B and 4B+ C — ABC without loss of accuracy). Still, they may take
place and influence the assembly history. For example, in particle-to-template assembly more than one
particle can impinge on the same available binding site, which may constitute a barrier to the filling of
its neighboring sites. In three-dimensional SA, the assembled dimers that are then not removed from
the assembly space keep on colliding with unassembled parts. Their possible influence is simply
neglected in analytical models.

The models predict higher assembly speed and yield for higher particle redundancy. Nevertheless,
there could be a practical limit on the maximum number of parts present in a bounded assembly space.
Too-high a particle density may increase the chance of damaging collisions, which irreversibly
decrease the yield. It may also affect the transport and mixing of the particles themselves, thus altering
the assembly rates and making them density-dependent. Therefore, practically speaking, the
assumptions listed in Section 3.1 are valid for ensembles containing sparse particles or whose occupied
(i.e., excluded) volume is reasonably smaller than the total space volume. These requirements comply
with models of ideal solutions and very-diluted gases. In such settings, the discrete nature of assembly
events may then not be neglected, ie., a time-discrete or event-driven framework may be
more suitable.

Master equations considering reaction-limited processes—i.e., where diffusion rates are higher than
reaction rates—assume ideal stirring and transport mechanisms, as already mentioned. The description
of more common and more realistic diffusion-limited aggregation processes [92], where parts can
practically have access only to a fraction of the assembly space and thus of particles, requires different
mathematical models, possibly involving spatially-dependent diffusion and transport terms [93].

Importantly, all the evoked concepts of particle density, excluded volume and diffusion entail the
spatial extent of the particles and of the assembly space. The spatial dimension of (SA) processes is to
a large degree eluded in a master equation-based, mean-field analytical approach by conveniently
assuming the thermodynamic limit (i.e., an infinite number of point-like particles in an infinite space,
such that the particle density is still finite [60]). Spatiality is nonetheless contemplated in lower-level
modeling frameworks, such as e.g., the agent-based models presented in the next section.

3.2. Agent-Based Models

Modeling based on the representation of the behavior of system agents is a natural, bottom-up
framework to capture the properties of DSs. An agent can be identified with an actual element of the
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system in object and/or with one of its variables. An Agent-Based Model (ABM) [94] then describes
the collective properties of the system that can be inferred and/or emerge from the specification of (i) the
agents, (ii) their interaction rules, and (ii) their connection topology [95]. A wide spectrum of topics
belonging to disciplines as diverse as sociology [96], economy [97], ecology [95], pattern formation [98],
network dynamics, game theory [95,99], videogaming, distributed robotics and many more list ABM
as fundamental modeling tool. Recently, ABM was also adopted for the modeling of the SA dynamics
of smart particles, as illustrated in the next sections.

3.2.1. Mermoud’s Two-Dimensional Model

In 2009, Mermoud et al. proposed an ABM of the stochastic, two-dimensional SA of finite-sized
particles within an assembly space with periodic boundary conditions [100]. The particles are circular,
and their motion is described by a Langevin stochastic differential equation. Furthermore, the model
assumes that the particles invariably aggregate whenever they collide; however, the energy (and
stability) of the resulting bond depends on their mutual alignment, as described by the following
Arrenhius-like expression:

0} 0;
AE(E)=-E, , -exp| ——— ——2
(&) bond " EXP 207 207 (15)
where &= () 6,) € [0, z]*is the orientational state vector (i.e., measuring the relative alignment) of the
couple of colliding particles, and oy their misalignment tolerance (note that AE is negative). The bond
energy is used to estimate the assembly (k+) and disassembly (k—) rate constants of the bi-particle
aggregate, according to the law of mass action:

(16)

where Ep is an estimate of the mean energy of the particle systems. Hence, by arbitrarily setting £, =1,

the value of & derived from Equation 16 is used to estimate the probability of breakup p; of the bond
with energy AE(&) within the next time interval A¢, according to:

p, =k -At= exp[%] (17)

p

As a result, the better the alignment, the lower p,. The model was implemented using NetLogo, an
open-source ABM simulation environment developed by Northwestern University [101]. Model results
are shown in Figure 10. Interestingly, this model was designed in the context of a more
comprehensive, multi-level modeling framework discussed in details in Section 5.

3.2.2. Mastrangeli’s Three-Dimensional Model

Mastrangeli et al. [102] proposed in 2010 an ABM of the three-dimensional fluidic SA process
earlier demonstrated by Zheng and Jacobs, as a complement to Zheng and Jacobs’ own analytical
model (see Section 3.1.3).
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Mastrangeli built a NetLogo model to simulate single realizations of the actual SA process; while
simplified, it still elicits important insights into the system dynamics. The assembly space bounded by
hard walls closely reproduces the actual one (Figure 5). LEDs and glass carriers are represented by
separate species of cuboidal agents with initially equal velocities, random orientations and uniform
distribution in the assembly space. They move across space according to Newtonian dynamics without
perturbations; particle collisions with walls and with other particles (not leading to assembly, i.e.,
ineffective) are elastic. The simulation parameters—including particle count, volume, density, initial
velocity; space volume, fluidic drag and gravity—can be tuned to reproduce the experimental
conditions. Only bi-particle assembly events are considered, producing inert dimers. The assembly
events are irreversible (as in the original analytical model), and the particle assembly criterion is
geometrical, in strict analogy to the experimental system. Effective assembly events depend on the
intersection of the capture cross section (CCS) of two incident particles (Figure 6). Once all parameters
are set, the model provides a single fitting parameter (namely, the width O¢c¢s of the CCS), in analogy
with 74 of Zheng and Jacobs’ model. Interestingly, the real-time tracked velocity distribution tends to
roughly approach a Maxwell-Boltzmann distribution (as expected for ideal gases, see Section 3.1.4).

Figure 5. Mastrangeli’s ABM of Zheng and Jacobs’ fluidic SA process. (a) Zheng and
Jacobs’ experimental set-up (edited from [91]); (b) ABM assembly space and agents.

Figure 6. The geometrical matching capture cross-section (MCCS) criterion for effective
inter-agent collisions, i.e., leading to assembly, as defined in Mastrangeli’s ABM model.
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Figure 7 compares the ABM and the experimental results for the case No = N, = 100. A good match
is found for O¢cs = 80°, which is then adopted for investigations on other system aspects. For instance,
the ABM evidences the influence of the LEDs-to-carriers number ratio [Figure 8(a)], and of the volume
of the assembly space (i.e., of the density of the particles, Figure 8(b)) on assembly rates. Moreover,
Mastrangeli et al. could investigate the effect of inert dimers on the SA dynamics (Figure 9). As
compared to the standard case (labeled in) where the dimers are left in the assembly space after
formation, realizations where the dimers annihilate (i.e., are removed from the assembly space) just
after formation (i.e., out) show faster (slower) initial (final) assembly dynamics. This preliminary
evidence may point out that inert dimers play the role of mechanical assembly catalysts, as additional
means of kinetic energy transfer (as also experimentally demonstrated by Baskaran et al. [103]) and/or
of compartmentalization of the assembly space. Additional studies are needed to clarify the issue.

Figure 7. (a) Experimental and analytical, and (b) ABM simulation results for Zheng and
Jacobs’ fluidic SA process with initial populations of 100 LEDs (/) and 100 carriers (c)
(analytical model: To = 15 h, picture from [91]; ABM: assembly space volume: 4,394
mm’; initial agents speed: 100 mm/s; statistics out of 10 realizations for each CCS value).
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Figure 8. ABM-simulated effects of (a) LEDs-to-carrier ratio and (b) particle density on
assembly rates (ABM parameters: 10x smaller assembly space, initial populations:
10 LEDs and 10 carriers, O..s= 80°, initial agents velocity: 100 mm/s; statistics out of 10
realizations for each parameter value).
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Figure 9. Simulated effects of inert dimers (resulting from assembly) on fluidic SA
performance: for the out (in) case, the dimers are (not) removed from the assembly space
after assembly (ABM parameters: 10x smaller assembly space; initial populations:
60 LEDs and 30 carriers, O8ccs = 80°, initial agents velocity: 100 mm/s; statistics out of
10 realizations for each case).
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3.2.3. Critiques to the Models

Agent-based modeling is particularly suitable to the description of systems involving agents whose
behaviors are non-linear (e.g., characterized by non-linear interactions, conditional rules, thresholds),
non-Markovian (including memory, path-dependence, hysteresis, adaptation), or of systems in which
spatiality and communication play an important role [94]. The agents can also be endowed with
arbitrary properties: they can range from fully passive to autonomous. ABM is therefore well
consistent with the SMP perspective as it can represent the whole spectrum of distributed systems.

An ABM can produce spatially-embedded simulations of single realizations of the system
phenomena. In this sense, agent-based modeling describes physical particle systems at a significantly
lower level than e.g., master equations, i.e., with richer, more domain-specific and realistic details, and
yet avoiding fully-fledged physical simulations. This can be appreciated by comparing Zheng and
Jacobs’ (Section 3.1.3) and Mastrangeli’s (Section 3.2.2) models of the same fluidic SA process [91],
where the latter represents more closely the actual process while not implementing e.g., the physics of
molten solder adhesion to metal pads nor hydrodynamic effects (which could nonetheless be accounted
for, in principle). Open-source physical engines (e.g., Open Dynamics Engine (Available on:
http://www.ode.org/)) or domain-specific soft-wares (e.g., Webots [100]) can be used to produce more
physically-accurate simulations.

Additionally, and in spite of its reductionism, an ABM can also capture a system’s emergent
phenomena, i.e., whose properties (often counter-intuitive) cannot be reduced only to those of its
agents [94]. Considering ABM as opposed to analytic, differential equation-based system descriptions
is not correct; instead, they are compatible, and even synergetic. This is well illustrated by e.g.,
Brownian agents (Section 4.2) and, with hindsight, by the remarkable consistency and
complementarity of the already mentioned models of Zheng and Jacobs (analytical) and
Mastrangeli et al. (ABM), pertaining to the same experimental system. Importantly, one could in
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principle define a set of coupled dynamical systems that is equivalent to a given ABM. However, the
complexity of the resulting system of equations is likely to become intractable; instead, the definition
of agents and rules in an ABM is amenable to simple and intuitive approaches, and their sophistication
can be tuned and managed with ease—i.e., ABM is more flexible than rate equations. Furthermore, an
ABM is more naturally applied when the behavior of agents is better described by interaction rules
than by transition rates. Particularly, the stochasticity of the agents’ behavior is generally easier to
capture in an ABM, especially when one is interested in multimodal, non-parametric, or lumped noise
distributions.

Finally, an ABM is essentially a microscopic modeling approach. Therefore, its primary alternative
is a macroscopic modeling approach, of which master equations (Section 3.1) or other mean-field
approaches are specific, but not exclusive, instances. A relaxation of this duality suggests using a
hierarchy of models to describe the same system at different levels of abstraction (concerning details,
information, length and time scales and their continuity versus discreteness). We note that several
levels of description can coexist within the same ABM, especially when the introduction of agent
subgroups or aggregates is meaningful or legitimate within a system (see Section 4.2). A different and
possibly more general approach to multilevel modeling, featuring models belonging to different
frameworks, is presented in Section 5.

4. Modeling the SA Dynamics of Active Particles

The following sections illustrate models that can be partly considered extensions of those discussed
in Section 3, as they can also capture programmed particle actions (e.g., planned structure formation)
and thus span wider fields.

4.1. Stochastic Reaction Models

Originating from chemistry, stochastic reaction models are ways to macroscopically represent
continuous-time Markov processes.

To specify a Markov process X(¢), the transition rate matrix from state j to state i (or generator) A;;
can be given, such that:

PAX (4 d0)| X (1)) = A,di (18)
And the probability distribution at time # given an initial distribution py is given by:
p{Xi(t)}z(pO 'etA),- (19)

In some cases, 4 is too large to be easily tractable; but the structure of the process may be used to
simplify its description. A stochastic reaction model then assumes a finite set of system states at time ¢,
X)) = [X (@)X, (). X (t)] with X(¢) representing the number of elements in species s. Each change

in species populations is associated with a reaction r producing effect €,, such that X — X +e¢, takes
place in the next time interval dt at a rate given by the propensity function £ (x). Without significant

loss, 4 can accordingly be described by:

A5 +8)=h (7) (20)
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A stochastic reaction network is a stochastic reaction model with S species and R reactions. Each
reaction has the form:

a X, +a, X, +.—2>bY, +bY, +.. (23)

where X; (Y;) are the number of elements in the reactant (product) species i, A, is the reaction rate
constant, and a; and b; are stoichiometric coefficients such that the reaction effect is in their difference.

Hosokawa’s idea of identifying intermediate assembly products with state variables (see
Section 3.1.1) can be partly inscribed in the framework of stochastic reaction networks. Explicitly
inspired by Hosokawa’s work, Klavins et al. proposed a grammatical graph-based variant [104]. They
identified the intermediate assembly products with the labeled nodes of a graph, whose labeled links
describe general rules (representing physical interactions or the possibility of active choices made by
the agents) given to derive the hierarchy of possible products accessible from a given initial condition.
Such graph grammars can be translated into a set of hardware specifications; they were used by
Klavins’ group to model the collective behavior of aggregating reflexive robots. Their programmable
parts resemble Hosokawa’s triangular magnetic particles; they move randomly on an air table, are able
to communicate and share their internal states upon contact, and eventually assemble by means of
magnetomechanic latches [53]. Recently, they demonstrated a feedback controller for the copy number
of assemblies described by a funable reaction network [105]. The Tribolon system proposed by
Miyashita et al. can be considered as a simpler self-assembling system as compared to Klavins’;
among other objectives, it was used for modeling the impact of particle morphology on the yield of
two-dimensional SA [68].

A single realization of a reaction process reduces to tracing a sample path through the system’s set
of states starting from specific initial conditions. Gillespie derived an exact numerical algorithm for the
simulation of stochastic processes [106]. Gillespie’s direct method is based on the following property
of the chemical reaction models. Let T d be the time at which the next reaction occurs, as counted from
instant #; then, given X (¢) = %, :

1. the conditional distribution of 7" —¢ is exponential with parameter x = zr h.(X,);

h (%)
Db (3

2. the conditional probability p(R =r,) for the next reaction to be 7 is

3. T —t and the choice of ry are conditionally independent.

The algorithm can then be described as follows: starting from the initial condition x,at time =0,

+ +
at each step: draw 7' from the exp(u) distribution, and set t — ¢ + T ; if ¢ < ty4, then draw R from
p(R=r,),andset X - X +¢,.

Gillespie developed several computationally more efficient variants of the original numerical
algorithm, as well [60]. Moreover, he showed that the default rules for the propensity functions are
valid for well-stirred chemical reactions (Section 3.1); nevertheless, they are also generally accepted
for many bio-chemical and population models. Napp et al. proposed an extended state space approach
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based on hidden Markov models—i.e., models where the system is assumed to be Markovian but with
unobserved states—to deal with stochastic SA of non-well stirred ensembles of particles [107].
Stochastic simulations with spatial resolution were also developed. Smoluchowski models can account
for spatial diffusion phenomena as applied, e.g., to chemical reactions with molecular detail [93]; the
Fokker-Plank diffusion model was also adopted by Prorok et al. to capture the spatial distribution over
time of miniature robots in an inspection task [108].

4.2. Brownian Agents and Stochastic Micro-Agents

With his Brownian agents, Schweitzer introduced a rather comprehensive modeling framework for

DSs, both agent-based and supported by the analytical methods of statistical mechanics [109].
Each agent k is described by a finite set of state variables {u(k)}, whose dynamics are subject to a

i

stoch

superposition of both deterministic ( f*’) and stochastic ( /") influences, as captured by the

Langevin formalism:

) ,
i AR (4)

where the distinction between the two types of causes depends on whether they can be possibly
resolved at the characteristic time and length scales of the chosen agents—in analogy with physical
particles undergoing Brownian motion; hence the name of such agents. 7’ subsumes all specifiable
influences on the state variables, such as non-linear, rule-based interactions with other agents, external
conditions as defined by control parameters (e.g., dissipative forces, forces deriving from external
potentials, in/outflux of resources), and internal time-dependent agent dynamics. On the other hand,
£ cumulates all influencing factors that would require a smaller-scale observation to be detailed
into a single stochastic variable with defined statistical properties. The scale at which such distinction
is placed sets the degree of granularity in the description of the system. This possibility of choosing the
level of detail abstraction is useful to distill meaningful collective information, and to allow the
subsequent, cumulative buildup of model complexity to remain tractable.

The Brownian agent approach is focused on cooperative agent interactions, particularly
self-organization and aggregation, instead of on individual actions. Brownian agents are not able of
deliberative actions, e.g., calculating cost functions and develop internal world representations and
strategies. Still, they possess internal degrees of freedom, for instance an internal energy depot; and
they can interact indirectly by means of stigmergy [6], i.e., by modifying the shared environment that
in turn influences the actions of the (other) agents.

Upon the baseline of purely passive agents undergoing Brownian motion, Schweitzer adopts a
minimalistic, constructive agent design, in which the complexity and potentialities of each agent are
progressively augmented by the cumulative addiction of built-in features and capabilities. For each
subsequent level of agent sophistication, the simplest set of rules is used and a homogeneous
population of agents is simulated to investigate its collective properties and potential behavior(s).
This way, Schweitzer shows that Brownian agents can be progressively enabled to perform or
reproduce various collective patterns, e.g., deterministic chaotic, intermittent or swarming type of
motion; simulations of aggregation and structure formation processes of physico-chemical systems;
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self-organization of stable and adaptive networks; trail formation, and consequent reinforced
biased random walk; and social aggregation phenomena, like urban sprawl and opinion formation, as
well [109]. Other researchers also adopted Brownian agents for e.g., traffic modeling, synchronization
phenomena, granular matter, and more.

As an interesting alternative, Milutinovi¢ proposed a framework linking directly the microscopic,
deterministic behavior of agents to the macroscopic dynamics of their populations, as inspired by the
kinetic gas theory [110]. His stochastic micro-agents are hybrid automata described by event-driven
transitions among a discrete set of control states and by time-dependent motion in a continuous space.
The events reproducing inter-agent interactions and inducing the control state transitions are generated
by a collection of event generators; these events are stochastic, and their probability distributions
encode the complexity of the interactions within a population of agents. That is, a mean-field approach
is adopted, where each agent interacts with the rest of the agents in the population through their
aggregate effects, as embodied in the event sequences produced by the event generators. Importantly, a
set of partial differential equations (shown to be a generalization of the Liouville equation) describes
the time evolution of the probability density function associated with the agent population given its
initial conditions. This way, collective dynamics can be directly derived from that of the individual
agents. The framework was originally applied to the modeling of immune system cells.

4.3. Critiques to the Model

Stochastic reaction networks’ abstraction level lies between that of mean-field differential equations
and of agent behavior-oriented ABMs. Particularly, they are not as spatially embedded as the latter;
yet, in contrast to more abstract mean-field models, they can include network topologies. In fact, their
strength resides in taking advantage of the developing tools of network theory [111] to quantitatively
describe the local geometrical neighborhoods of agents and the informational aspects of their
interactions. For instance, at the core of important results in burgeoning fields, e.g., biological
networks for the regulation of genetic expression, metabolisms and catalytic reactions lies the network
analysis by combined use of rate equations and logical operators [112]. Klavins’ graph grammars are
an actual example of how similar methods can be applied to SMPs [53]. On the other hand, the
Markovian assumption underlying the stochastic reaction models may constrain their application to
systems of shallower complexity, as compared to those addressable by ABMs.

Brownian agents provide an important example of a reductionist but nevertheless constructive
approach to describe a wide range of DSs at several scales and increasing levels of sophistication and
complexity—in a way reminding of Braitenberg’s cumulative design of vehicles [113]. By combining
analytic and agent-based representations at nearly all levels, Schweitzer’s approach can exploit their
complementary features (e.g., statistical mechanics tools and flexible design, respectively) and tune
their relative weight in the aggregated models according to case-specific applications. Reaching from
passive, purely reactive agents to active, fully reflexive ones, Brownian agents represent therefore a
modeling tool remarkably well aligned with SMPs, since the latter shall, in principle, span the entire
domain of the former (as outlined in Section 1). However, the flexibility of such agents is traded off
for a limited anchoring to reality—that is, the agents are rather abstract and defined by parameters not
derived, at least explicitly, from an underlying, submicroscopic level of detail (see next section for a
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definition). Importantly, from Schweitzer’s work it is not straightforward to derive univocal design
guidelines to embed his software agents into real devices, nor are many of the parameters governing
the agents’ behavior directly traceable back to experimental details and features. An extension oriented
toward model-based design and bridging the model/reality gap is therefore required for the present
framework to fully fit within our SMP perspective.

In Milutinovi¢’s framework, the collective macroscopic dynamics is directly connected to the
microscopic agent dynamics through the evolution of the associated probability distribution, while the
actual interactions among agents are lumped, and their complexity hidden, into the stochastic
components of the event generators. It represents an interesting attempt at including both macroscopic
(mean-field) and microscopic (individual agent) modeling levels within the context of hybrid automata
control; it is also amenable to analytical treatment, especially in the Markovian approximation.

Finally, stochastic reaction networks and hybrid automata can also be readily included into an even
more comprehensive modeling framework—i.e., one integrating a hierarchy of different modeling
tools or methods, each specific and/or more suitable to a particular level of abstraction, within a single
and consistent modeling suite. This refers to the general multi-level modeling framework, in which the
choice of the model types itself, beside necessarily their instances, can be case-specific. In the next
section, we illustrate the multi-level modeling approach as applied to the self-assembly of SMPs.

5. Toward a Comprehensive Modeling Framework for SMPs: Multi-Level Modeling

One of the main difficulties in modeling ensembles of SMPs, and particularly those involving
aggregation and self-assembly, is the inherent randomness and hybridness of their dynamics. For
instance, while a robot’s controller is essentially a deterministic, discrete entity, it has to interact with a
noisy, continuous environment. At the microscale, a particle’s binding site may or may not be
occupied (discrete state variable), and this may depend on the temperature of the system (continuous
parameter), such as in the case of e.g., DNA-mediated binding sites.

These challenges motivate the combination of multiple levels of abstractions—ranging from
detailed, submicroscopic models up to more general, macroscopic ones—into a consistent multi-level
modeling framework. On the one hand, one needs submicroscopic models that are able to capture the
complete state of particles, including spatiality and embodiment (e.g., pose, shape, surface properties).
On the other hand, one is also interested in models that can yield accurate numerical predictions of
collective metrics, and investigate, possibly in closed form, macroscopic properties such as the sizes,
types, and proportions of the resulting assemblies. Multi-level modeling allows the fulfillment of both
requirements in a very efficient way by building up models of increasing levels of abstraction in order
to capture the relevant features of the system.

Within this context, we classify models of distributed systems into three main categories:
(1) submicroscopic models, in which each particle’s state as well as sub-components (e.g., bulk,
surfaces, binding sites) are captured (Section 5.1); (ii) microscopic models, in which the state of each
particle in the system is captured, but the details of its sub-components are abstracted (Section 5.2),
and (iii) macroscopic models, in which all particles in a given state are aggregated into a single state
variable (Section 5.3).
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Originally, the multi-level modeling methodology was developed in the context of swarm
robotics [114]; in [100], Mermoud et al. extended this approach to more minimalist entities,
prefiguring the more mature concept of SMPs. In the sequel, we describe a suite of models at different
abstraction levels, all exemplifying higher abstractions of Mermoud’s two-dimensional ABM
described in Section 3.2.1.

5.1. Submicroscopic Models

The most detailed level of modeling is provided by physics-based simulations, which bridge the gap
between model and reality by accurately capturing each system particle as well as its sub-components.
These simulations faithfully account for a subset of physical phenomena (e.g., capillarity, hydrophobic
interaction, electromagnetic forces), which are considered most relevant to the dynamics of the system.
The strength of this type of models is their direct anchoring to reality, even though the number of their
parameters tends to grow rapidly with the number of physical phenomena to be modeled. Also, while
these models enable, in principle, the direct visualization of a particle’s behavior, their heavy
computational requirements limit their applicability to systems that involve a limited number of
particles. Examples include finite-element numerical simulations and molecular dynamics
(representing the most radical physical ABM) for M/NEMS (see Section 2.3), and case-specific
software faithfully reproducing robot behaviors, such as Webots [115].

5.2. Microscopic Models

Even though microscopic models capture the state of each individual particle in the system, their
state vector is significantly smaller than their correspondingly submicroscopic counterpart. This state
reduction is typically obtained through appropriate aggregation of the state variables, which can be
more or less important as a function of the desired level of detail. Section 3.2 described two such,
spatial models. Spatial models offer an interesting modeling framework for multi-agent systems, but
they can be expensive both in terms of memory and computation. Indeed, these models store the
position and the orientation of each agent as well as the precise structure of each aggregate. Also, they
must determine whether a collision occurred, or not, at each iteration and for each pair of agents.

One can go even further in the process of abstracting details that are not significant to the dynamics
of the process under investigation. Hereafter we describe a Monte Carlo-based version of the ABM
presented in Section 3.2.1 which does not capture spatiality, i.e., it does not keep track of the position
and orientation of each agent. It can be considered a stochastic microscopic model that, in contrast to
the macroscopic models developed later, does not rely on a mean-field approach in terms of population
distribution. However, the model assumes that the individual behavior of each agent and that of the
environment can be represented by (semi-)Markov chains, i.e., the probabilistic transition from one
state vector A to another state vector B depends only on the information contained in the state vector 4
(see Section 3.1).
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A Non-Spatial Monte Carlo Model

This model assumes that agents aggregate pair-wise to form dimers only, and it keeps track of only
one property of the dimers, that is, the relative alignment of their building blocks. Since the model is

non-spatial, collisions are no longer deterministic, but are instead randomly sampled from a Poisson
distribution of mean A = p_N_ (see Equation 25). Furthermore, each aggregate resulting from agent

collisions is individually captured: a random relative alignment &, = (6’1,1. 492,,.) is generated and stored

in a list E, (see Algorithm 1). One interesting feature of this type of models is that they store only
relevant pieces of information about the aggregates, which can range from the number of building
blocks to a fully-fledged graph-based representation of the aggregate’s topology.

One subtlety in building non-spatial models of aggregation is to accurately capture the encountering
probabilities. Here, we assume a constant encountering probability p. that is determined using a
geometric approximation:

_vTw,
P, y

(25)

tot

v is the average velocity of the particle, wy its diameter, T the sampling time, and 4,,, is the total
area of the arena [114]. In more complicated scenarios, one would also account for encountering
probabilities that depend on the size and the geometry of the aggregates.

Algorithm 1. Pseudo-code of the non-spatial Monte Carlo simulation.

initialize Ny = Ny and Na3,... =0

— Generate and append to E; a random vector of n, relative align-
ments E, = (é], .. -:é.rn() with g,' = (91‘,', 92';') and Bd,i ~ H(O, T[)
— Generate a random vector X° = (x3,...,x3 ) with x; ~ U(0,1) and

N gizaflBE D

N SIZ28 oy
— Compute 1, the number of aggregates in E, with ¢; such that x} <
p'“@¢ (&) and remove them from Z,

—Let N+ N+2Zn, —2n.

5.3. Macroscopic Models

The stochastic model previously described provides a single realization of the time evolution of the
system at each run, and do not scale well with the number of robots. As a result, one must usually
perform a large number of computationally expensive runs in order to obtain statistically meaningful
results. Hereafter, we describe a non-spatial macroscopic version of the previous model of aggregation,
which allows one to overcome these limitations, but at the price of further approximations.

Macroscopic models can also track properties of the aggregates other than their size (i.e., the
number of building blocks), such as their geometry. To achieve that, one conventional approach is to
discretize selected state variables into several sub-variables, essentially going through a state
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expansion process. For instance, in order to capture the alignment of pairs of building blocks, one can
discretize the state variable N, (representing the average number of dimers) into M sub-variables N
that denote the number of aggregates with an average alignment & with i = 1,...,M. Obviously, such a
discretization leads to a M-fold increase of the number of states, and therefore an exponential increase
of the number of equations, making the model rapidly intractable. The proposed macroscopic model
captures alignment of building blocks at the macroscopic level by using this approach, but with an
explicit limitation on the size of the aggregates to pairs.

A Macroscopic Model of Pair-wise SA

One can describe the dynamics of each particle P by a Markov chain with a set of states X. The state
space X( Y should be discrete, finite, and it must reflect the type of the aggregate s the particle belongs
to. However, the space S of aggregate’s types in our model is not discrete. Indeed, even though we can
distinguish between single building blocks and pairs in a discrete manner, pairs take continuous energy
values (see Section 3.2.1). To discretize S, we note that the symmetry of Equation 16 allows
simplifying the vector ¢ defining the relative particle orientation within an aggregate to a scalar, i.e.,
the norm of the relative positioning, denoted by:

0* =|¢*| =02 +6 co 22°] (26)

which can be discretized into a set of K averaged values 6. given by:

A 1\ 27°
6> =|i—=| with  i=12,.K
| ( 2j K (27)

Therefore, the state space of the Markov chain is given by:
X" =s,€8, (28)

With S, the discretized space of aggregate’s types, sy representing single particles, s; pairs with an
averaged relative positioning norm 62 with i =1,2...K and binding energy

A

92
AE(S[) = Ebond ’ exp[z_lzJ (29)

Oy

Therefore, the probability for a particle P to aggregate with another particle into a pair of averaged

relative positioning norm 62 is:
pXP @+ =5, X7 (1) =5,)=1 (30)
Similarly, the probability for a particle P to leave a pair with an averaged relative positioning 6. is

given by:

pXV(t+) =5, | XD (1) =5):8, > [0 1] 31)
and will be denoted p,(s,). A pair will break up if one or both of its particles leaves. Therefore, the

probability p, (s;) for a pair of type s; to break up (Equation 17) can be written as:
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py(s) = 1=-[t=p,(s)f
= pi(s) 2= pis)]
[AE(S,JJ G2)
= exp| ———

(24%

N

Using a set of difference equations, one can summarize the average state transitions of each
individual Markov dynamical system, and thus keep track of the number of aggregates of type s € S,.
We write N, the average number of aggregate of type s;.

The average number of single particles N; is given by the following difference equation:

N, (t+1)=N,(6)=2(p, N, (O))= p.-N,(®)’ (33)

having defined
By =Py (s 2y ()] (33)
N, =[N,@®),...N.®O] (33)

and p. is the collision probability (Equation 25) and <> is the scalar product. The scalar term
_ 2
< Py N, (t)> is the average number of pairs that broke up at iteration ¢. The term p. - Ny(¢) is the average

number of particles that collided and formed a pair at iteration ¢. Similarly, the number of pairs of type
s; with i =1,...,K 1is given by the following difference equation:

p. N (1)

N+ =N, = /()=

=Py (8;)-N;(2) (34)

where f'(i) : Z+ — [0, 1]. The term p, (s,)- N,(¢) is the average number of pairs of type s; that broke

up at iteration ¢. The term p, - Ns(t)2 is the average number of particles that collided and formed a pair
at iteration ¢, regardless of its type (since two particles are needed to form a pair, this term is divided
by two). Furthermore, since all formed pairs are not of type s;, the function f (i) determines the fraction
of formed aggregates that are actually of type s; (refer to [100] for a complete derivation of £ (7)).

5.4. Validation of and Critiques to the Models

Mean-field macroscopic models can be computationally efficient; but they are approximations of
the models at lower abstraction levels and, ultimately, of the real system. Particularly, mean-field
macroscopic models aggregate discrete entities into real-valued state variables that describe averaged
quantities. This way, both the absolute discrete quantities of the state variables representing the
number of agents in a given state and the potentially non-uniform behavior of the system under
consideration are lost. To cope with it, macroscopic models rely on the ODE approximation, which
assumes that the system involves a large number of small changes, i.e., the model becomes exact if the
system is scaled such that the reaction rates become large and the effects of those reactions small
(i.e., in the thermodynamic limit, Section 3.1.4). The validity of the approximation does not only
depend on the number of particles in the systems, though: the number of interactions and the structure
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of their network also play a key role. Hence, discretization of state variables is generally a source of
inaccuracy, because it tends to lower the reaction rates while increasing their effects.

Figure 10 provides a comparison of the predictions of the models of the same system presented in
Sections 3.2.1 (microscopic, spatial), 5.2.1 (microscopic, non-spatial) and 5.3 (macroscopic),
respectively. For Ny = 1,000, all models show a good agreement, even though the Monte Carlo and the
macroscopic model exhibit a slightly faster convergence, probably due to their non-spatiality. Indeed, a
particle that is surrounded by stable aggregates may take quite some time before encountering another
single particle. Such suboptimal mixing tends to slow the process down; this phenomenon is not
captured by non-spatial models, but has been repeatedly reported in spatial ABMs (Section 3.2).

Figure 10. (a) Comparison of the yield of the system (proportion of pairs) with K = 3,000
and Nyo= 1,000 predicted by the macroscopic model (dashed), the Monte Carlo simulation
(continuous), and the agent-based simulation (bold). (b) Comparison of the long run
prediction (50,000 s) of non-spatial models for different total number of individual building
blocks Ny: the Monte-Carlo simulation (N, = 50, triangles; Ny = 100, squares; Ny = 500,
circles) and the macroscopic model (N, = 50, dotted line; Ny = 100, dashed line; Ny = 500,
continuous line).
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Also, one can clearly see that the accuracy of the macroscopic model with respect to the Monte
Carlo one degrades gracefully as N, decreases; for Ny = 50, the macroscopic model actually predicts a
much faster growth of the pair ratio than that observed in Monte Carlo simulations, whereas an almost
perfect match is observed for Ny = 500. These results exhibit the limits of the ODE approximation for
nonlinear dynamical systems. More complex behaviors are observed when varying the discretization
factor K (full details in [100]).

6. Conclusions and Perspectives

This paper proposed a novel and unifying perspective for the design and control of self-assembling
micro-/nano- and distributed intelligent systems. This perspective results from the extrapolation of
ongoing technological trends observed in these domains, namely smarting and minimalism,
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respectively. We believe that, thanks to such trends, both domains will converge and eventually merge
into a single locus, defined by what we call smart minimal particles (SMPs). SMPs bridge the
complexity and scale gap between micro/nanosystems and robotic systems; contextually, SMPs point
to the existence of a continuum of sophistication between passive and active particles, both from a
technological and a methodological standpoint. Moreover, the proposed unification emphasizes the
cross-fertilizations among the originally separate domains concerning terminologies and methodologies.
Particularly (but not exclusively) in the case of the modeling of aggregation and self-assembly
dynamics, the mutual advantages of shared knowledge and tools are evident and very promising, as we
showed in reviewing the efforts pursued in both M/NEMS and distributed robotics in terms of
manufacturing technology and distributed control strategies.

A major motivation for proposing the concept of SMPs is the development of the vast, necessarily
multi-disciplinary knowledge required to master the control of the hierarchical organization of matter
into adaptive artificial structures—i.e., programmable matter (see e.g., [116-118] for related
acceptions). In this context, we consider M/NEMS as an enabling technology, which shall ultimately
allow for the organization of matter from its raw state into small yet functional particles, smart enough
to achieve further aggregation into larger and more sophisticated entities; at the same time, distributed
robotics is elaborating and developing control strategies for the decentralized and robust coordination
of such building blocks into the desired, adaptive structures. Therefore, in our view, the introduction of
SMPs is a natural step towards a seamless, bidirectional flow of information and capabilities all the
way from the most basic micromachined particles to fully-fledged robots.

This paper accordingly attempted to put the collective efforts of vast research communities into a
shared perspective—as a step toward the ambitious direction outlined above. We are actively pursuing
both technological and theoretical investigations on SMPs, and it is our hope that the introduction of
the SMP perspective may help favoring stronger and fruitful interactions among the M/NEMS and
robotics communities so to catalyze further research into self-assembly—needed to pursue the targeted
goals and to cope with the many challenges yet to be tackled by both communities.
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