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Abstract: A thin-film grating on a curved substrate functions as a highly reflective and 

wavelength sensitive mirror for a diverging wave that has the same curvature as the 

substrate. In this paper we propose a cylindrical cavity surrounded by a curved resonant 

grating wall, and describe its resonance characteristics. Through finite-difference time-domain 

(FDTD) simulation we have clarified that this type of cavity supports two resonance 

modes: one is confined by Fresnel reflection and the other by resonance reflection of the 

wall. We have also demonstrated that the latter mode exhibits a Q factor several orders of 

magnitude higher than that of the former mode. 
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1. Introduction 

The cylindrical cavity is one of the most fundamental types of resonant cavities, and has been used 

to construct, for example, wavelength filters for microwaves [1,2], millimeter waves [3,4] and 

Terahertz waves [5]. The cylindrical cavity also has a number of important applications in the 

lightwave field, such as couplers and laser cavities [6–8]. 

Similar to other types of resonators, the quality factor (Q) of a cylindrical cavity, which is a basic 

characteristic, depends on the performance of the cavity walls. External Q increases with wall 

reflectivity, provided that the wall is lossless. The full width at half maximum (FWHM) of the 

resonance peak becomes narrow, while the free spectral range (FSR) widens as the cavity radius 

OPEN ACCESS



Micromachines 2012, 3 102 

 

 

increases. This dependence is the same as conventional Fabry-Perot etalons which utilize a pair of flat 

mirrors. Various trials have been conducted in recent years aiming to control the resonance characteristics 

of circular cavities. One of the most straightforward approaches is to add sub-wavelength scale index 

perturbation to the walls. For example, the application of periodic index modulation along the  

radial [9,10] and azimuthal [11] directions has been found to be effective for selecting the specific 

order of resonance modes. 

Guided-mode resonance (GMR) is another useful phenomenon for controlling the reflection 

spectrum at material boundaries [12,13]. The main structure for GMR is a thin-film grating surrounded 

by relatively low-index materials. GMR occurs as a result of resonant coupling between an externally 

incident plane wave and a leaky guiding mode supported by the grating film as a periodic slab 

waveguide [14]. Coupled leaky mode propagates inside the slab and is again diffracted by the grating, 

and radiated out of the film. Theoretically, the reflectivity for plane wave incidence is as high as 100% 

at the wavelength and angle of incidence where all of the radiated waves interfere constructively [15]. 

Thin-film gratings are therefore often called Resonant Gratings (RG) or Resonant Sub-wavelength 

Gratings (RSG) [16,17]. A RG functions basically as a wavelength selective mirror, and its reflection 

spectrum can be tailored by designing the periodic structure appropriately [18]. Highly efficient 

reflection [19], as well as the ability to tailor the spatial beam profile, has been successfully 

demonstrated [20]. 

Figure 1. Schematic view of part of a flat/curved resonant grating and a circular cavity.  

(a) Conventional thin-film grating with a sinusoidal profile on a flat substrate; (b) Curved 

structure; (c) Cylindrical cavity with a curved grating wall. 

 

Recently, attempts have been made to extend the GMR concept to curved substrate structures [21,22]. 

We have shown that RGs with constant local curvature exhibit similar resonant reflection for 

concentric circular waves [21]. Based on the insights obtained, in this paper we propose a novel 

cylindrical resonator surrounded by a curved RG wall. Our sample structure is based on the 

conventional thin-film surface grating with a sinusoidal cross-sectional profile as shown in Figure 1. 

Some of the fundamental characteristics, such as resonance wavelength, Q factor, and modal fields are 

calculated by numerical simulation. It is also shown that the resonator supports extremely high-Q 
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modes compared to conventional dielectric circular resonators. Note that the major difference between 

the proposed structure and the microgear disk resonator [11] is the refractive index inside the cavity. In 

our structure it is essential to make the index lower than that of the constituent material of the RG wall, 

in order to confine the light field inside the cavity by the effect of GMR. The resonant modes of the 

cavity to be confined thus have zero-th azimuthal order. 

2. Characteristics of a Curved RG 

2.1. Structure and Method of Calculation 

Before calculating the characteristics of the cavity, we first analyzed the reflection property of the 

wall part. A schematic diagram of the structure is shown in Figure 2(a). One of our future targets is to 

design three-dimensional structures like a micro-disk resonator on a planar integrated light circuit. 

However, in this study, we simplified the structure as a two-dimensional one using the effective index 

method [23], to identify the main resonance characteristics of the curved RG-type resonator. Refractive 

index and electromagnetic fields were assumed to be uniform in the z (normal to the paper) direction of 

the figure. Throughout this paper we consider only TM modes (Ez, Hθ, and Hρ). 

Figure 2. Detail of the sample structures. (a) Curved resonant grating (proposed structure). 

ρ0, 2a and d0 are the average radial position, depth and base thickness of the grating, 

respectively. The region surrounded by a solid line indicates the computational domain for 

FDTD. PBC and RBC stand for Periodic and Radiation Boundary Conditions, respectively; 

(b) Reference curved slab structure. The grating region is replaced by an average refractive 

index layer. 

 

Let the distance between the center of curvature and the average height of the grating be ρ0. The 

depth and average thickness of the grating layer are 2a and d0, respectively. The index of the grating 

layer, n2 = 2.63, is set close to the effective index of the fundamental TM mode of the InP/air disk 
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structure [24]. The refractive indexes of the inner and outer spaces are n1 = 1.45 and n3 = 1.0, 

respectively. The local thickness of the grating layer, d(θ), is defined as: 

( ) ( ){ }00 /2cos1 θπθθ ++= add  (1) 

where d0 = 0.68Λ and a = 0.25Λ. 

These parameters were determined so that the lowest-order GMR wavelength is in the valley region 

of the reflection spectrum (spectra are shown in Figure 3). 

The angle θ0 denotes the azimuthal extent of a unit grating, and is expressed as θ0 = 2π/m [rad] 

where m is the total number of gratings on a wall edge. The pitch of the grating, Λ, is defined as the 
length of an arc at the average grating height, 00θρ=Λ . 

Figure 3. Reflection spectra viewed from inside the curved grating. “m” is the number of 

gratings on the outer edge of the cavity wall. The broken line shows the spectrum of the 

average index structure of Figure 2(b) for m = 50. 

 

Figure 2(b) shows a simple cylindrical structure where the grating region is replaced by a mean 

refractive index layer. This structure was also analyzed to see the resonance characteristics where the 

grating does not exhibit GMR. The average index of the replaced region, n4, is defined as: 
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The reflectivity for a cylindrical wave launched from inside the curvature (ρ < ρ0 − d0) is calculated 

by a cylindrical coordinate version of the two-dimensional FDTD method [25]. The computational 

domain is surrounded by a solid line in Figure 2(a). The angular direction is limited by one grating 

period. Both sides are connected by periodic boundary conditions (PBCs). The radial ends are 

terminated by radiation boundary conditions (RBCs) [26] to absorb inward converging and outward 

diverging waves. 
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2.2. Reflection Spectra 

A concentric cylindrical wave of a center wavelength of λ0 = 2Λ with a temporal Gaussian envelope 

was excited near the inner RBC. Because there is insufficient space between the excitation position 

and the inner surface of the RG, it is difficult to temporally separate the excited and reflected waves. 

Therefore we tried to estimate the reflectivity using the waveform monitored outside the RG. The 

recorded time-domain waveform of Ez and Hθ are Fourier transformed and then multiplied to obtain 
the radial component of the Poynting vector, ( )λρP . A similar calculation is carried out for a uniform 

space of n = 1.45 to obtain a reference Poynting vector ( )λρ0P . The reflectivity of RG is then 

evaluated by ( ) ( ) ( )λλλ ρρ 01 PPR −= . The results for various curvature radii are plotted in Figure 3. It 

is clearly seen that the spectra are the superposition of average structure reflectivity (Figure 2(b)) and a 

sharp resonance peak. 

The relationships between GMR wavelength, bandwidth and curvature are summarized in Figure 4, 

which shows that the resonance wavelength depends almost linearly on the curvature. This can be 

explained as follows: the modal field of a curved waveguide shifts to the outer side as the curvature 

increases [27]. In the structure of Figure 2(a), the average refractive index outside the grating layer is 

low, and so the mean optical path length for the guided mode becomes small as the curvature 

increases. This tends to shorten the resonance wavelength. 

We also confirmed that the peak reflectivity at the GMR wavelength remains at almost 100% for 

structures with m > 20. 

Figure 4. Relationships between the curvature of the grating, GMR wavelength and  

1-dB bandwidth. 

 

2.3. Effective High-Index Mirror Position 

As we will show in the next section, resonance wavelengths of a RG-type cylindrical cavity exhibit 

strange behavior near the GMR wavelength of the RG wall. We thought that the key physics behind 
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such behavior would be a rapid phase shift of the RG upon reflection. Because the phase of the 

reflection is directly connected with the effective reflection plane where the field amplitude becomes 

either minimum or maximum, it is convenient to regard RGs as a uniform medium with an effective 

reflection position. By substituting an effective cavity radius, which is a summation of the nominal 

cavity radius and the penetration depth of the effective reflection plane, into the equation for the 

conventional resonance condition, we will be able to obtain resonance wavelengths for the curved  

RG-type cavity. Also, through such calculation we will be able to explain the strange behavior of the 

resonance wavelength of the cavity. Note that outside GMR, the RG shows finite transmission. 

Therefore it is more reasonable to regard the RG as a high-index or low-index medium rather than a 

metallic mirror. The principle of calculating the effective reflection positions of curved RGs as a  

high-index medium is as follows. 

The electric field inside the curvature can be well approximated as a superposition of diverging and 

converging waves as follows, except for the region very close to the grating layer: 

( ) ( )( ) ( )( )ρρρ 01
2

001
1

001 knHAknHAknE dcz +=  ( )00 d−< ρρ  (3) 

where ( )1
0H  and ( )2

0H  denote the 0th-order Hankel function of the first and second kind, and 

correspond to converging and diverging waves, respectively. Ac and Ad are their complex amplitudes. 

k0 and ρ are the free space wave number and the radial coordinate, respectively. 

We define the effective mirror plane as the radial position beyond which the space can be regarded 

as an infinitely extending high-index medium. The amplitude reflectivity of the electric field on such a 
plane ( )effρρ =  should therefore be a negative real number. The electric field at such a plane can thus 

be expressed as: 

( ) ( )( )( )rknAHknE effeffz −= 101
2

001 ρρ  (4) 

where A and |r| are another complex amplitude and the norm of the amplitude reflectance, respectively. 

Considering Equation (3), the field inside the curvature can be expressed as follows. 
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Amplitude factors can be expressed using Equations (3) to (5) as follows: 
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We tried to calculate the relationship between the wavelength and the effective mirror position (ρeff). 

First, we calculated the field distribution at a wavelength of interest using the FDTD method. An 

example for the m = 50 structure is shown by the solid line in Figure 5. Then the data of ρ/Λ < 6 was 

least-squares fitted to Equation (3) to obtain Ac and Ad. The fitted field is shown by the dotted line in 

the figure. Finally, |r| and ρeff were calculated using Equation (6). The inset of Figure 5 is a magnified 

view of the fitted field near the grating layer. The calculated relationships between wavelength and 

effective mirror position for RGs and average index structures are summarized in Figure 6. This result 
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clarifies that the mirror positions for both structures behave similarly far from the GMR wavelength. 

For the average layer structure, as the wavelength moves across the minimum reflection point, the 

mirror position slowly shifts by about a quarter wavelength; this phenomenon can be commonly seen 

in a flat dielectric film. On the other hand, for a curved RG this shift is more abrupt: the mirror 

position appears almost to jump at the GMR wavelength. This can be interpreted to mean that the 

complex reflectivity of the RG follows a sharp Lorentzian function near the resonance wavelength as 

described by Fan et al. [28]. 

Figure 5. Example of a calculated field intensity profile upon reflection (solid line) and its 

extrapolated curve (dotted line), for the m = 50 structure. The latter is a linear summation 

of ( )( )ρ01
1

0 knH  and ( )( )ρ01
2

0 knH . 

 

Figure 6. Estimated effective high-index mirror positions, for the m = 50 structure. Solid 

and dashed lines are curved RG and average index slab, respectively. 
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3. Characteristics of RGC 

3.1. Resonance Wavelength of the Cavity Mode 

The relationships between the structural parameters of the cavity (such as radius and refractive 

index) and the resonance wavelength are fundamental information for the resonator. We calculated the 

resonance wavelengths of cylindrical cavities surrounded by the RG walls with various curvature radii. 

The domain for FDTD simulation was extended to the center of the cavity. 

We placed a point excitation source Ez at the center, and monitored the electromagnetic fields at two 

pitches outside the grating (ρ = ρ0 + 2Λ). Peak wavelengths contained in the monitored waveform 

were extracted using Fast Fourier Transformation (FFT). These wavelengths correspond to the 

resonance wavelengths of the cavity system. 

The above calculation was carried out for various cavity radii, and the results are plotted as a 

function of m in Figure 7(a). This figure shows that there are roughly two kinds of resonance series:  

(a) an almost linear series extending from the top right to bottom left; and (b) A wavy series located 

around 2.1 < λ/Λ < 2.2. The former is the resonance modes where RG almost serves as a mean 

dielectric structure as in Figure 2(b). The resonance wavelength and Q are determined by the Fresnel 

reflection constant of the multilayer, so we call these modes “Fresnel modes” hereafter. The latter 

series are dependent on the GMR spectrum of the RG, and we call them “Grating modes”  

for convenience. 

Figure 7. Calculated resonance wavelengths for various cavity sizes. The dashed line 

indicates the GMR wavelength of the curved RG wall. (a) Determined from the peaks of 
radiation spectra monitored outside the cavity; (b) Estimated by ( ) 0010 =effknJ ρ , where 

ρeff is the radial position of the effective high-index mirror. 

 

The resonance condition for TM modes of a hollow circular metallic cavity is given as zeros of a 

Bessel function as follows [29]: 

( ) 0010 =cknJ ρ  (7) 
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where  is the radius of the cavity. We tried to check whether or not this condition also applies to our 
RG-type resonator. We replaced the physical radius ( ) by the effective one ( ) and plotted the 

wavelengths which satisfy the above relationship for various cavity sizes (m). The effective position, 
, for various curvatures was calculated by the procedure described in Section 2.3. The result is 

shown in Figure 7(b). These results look similar for both Fresnel and Grating modes. It is clear that the 
deformation of the resonance curve near the GMR wavelength corresponds to the behavior of  

seen in Figure 6. This indicates that the resonance wavelength of the proposed cavity is also governed 

by the conventional resonance condition of Equation (7), regardless of the confinement mechanism 

(Fresnel reflection or resonant reflection) of the modes. 

3.2. Quality Factor 

Next, Q-factors of the resonance series marked by A-A’ in Figure 7(a) are evaluated using the 

following equation [30]: 

2
00τω=Q  (8) 

where ω0 and τ0 are the angular frequency and the decay time, respectively. The results are plotted as 

filled circles in Figure 8. Practically, the total number of gratings on the cavity wall (m) must be an 

integer number. However, according to our FDTD method, non-integer m can be handled without 

difficulty, because we need to specify only the azimuthal extent (θ0) of the unit grating. In Figure 8, 

the results for non-integer m structures are also plotted as a dotted line. 

Figure 8. Quality factor of the resonance series indicated by A-A’ in Figure 7(a). 

 

Figure 8 shows that Q of the grating mode (52 < m < 53) becomes extremely high, corresponding to 

the high reflectivity of the RG wall. Q of other Fresnel modes is less than 100. In other words, only 

one high-Q resonant mode exists in a wide range of wavelength, which means that this RG type cavity 

effectively behaves as a single-mode resonator. 

Electric field distributions of a Fresnel mode (point “F” in Figure 7) and high-Q grating mode (point 

“G” in Figures 7 and 8) are displayed in Figure 9(a,b), respectively. In Figure 9(a), the standing wave 
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ratio (SWR) inside the cavity looks small due to the low reflectivity of the cavity wall. The wavelength 

is far from GMR, and therefore the field intensity in the grating layer is of the same order as that inside 

the cavity. In addition, substantial field leakage is seen outside. On the contrary, in Figure 9(b) the 

field intensity in the grating layer is enhanced due to the guided mode resonance. This characteristic is 

well known for RGs [31]. Also, the high reflectivity of the wall keeps the SWR almost at infinity. 

There is almost no field leakage outside the cavity. 

Figure 9. (a) Electric field distribution of a Fresnel mode, indicated by “F” in Figure 7(a); 

(b) High-Q grating mode, indicated by “G” in Figure 7(a) and Figure 8. The size of the 

cavity is m = 52.47 (virtual structure). 

 

 

As we showed in Figure 3, the basic characteristics of our curved RG mirror are similar to those of 

the conventional flat RG, and so the tolerance to changes in various structural or material parameters 

will be approximately the same. The cavity characteristics (tolerance for achieving high-Q) will also 

have a similar level of tolerance. 
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4. Conclusions 

We clarified the resonance characteristics of cylindrical resonant cavities surrounded by a curved 

grating wall through numerical simulation. The cavity was found to support two kinds of resonant 

modes, whose Q are determined by the Fresnel and GMR reflection constant at the cavity/wall 

boundary, respectively. We also showed that, in the example structure, the quality factor of the latter 

modes can be increased by several orders of magnitude compared with the former modes. The 

proposed cavity was found to function as a large-area, effectively single-mode cavity. This type of 

structure will be a useful platform for realizing micro-photonic devices such as single-mode lasers, 

high-finesse wavelength filters and biosensors. Having clarified the fundamental characteristics, we 

will investigate as our next study the optimum structural design which is more robust against 

fabrication errors of size, shape, and refractive index. 
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