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Abstract: This paper presents an integrated sensor/actuator device with multi-input and 

multi-output designed on the basis of a standard control representation called a distributed 

port-Hamiltonian system. The device is made from soft material called an ionic polymer-metal 

composite (IPMC). The IPMC consists of a base film of a polyelectrolyte gel and a double 

layer of plated metal electrodes. The electrodes of the experimental IPMC are sectioned, 

and it is implemented as a control system with four pairs of inputs/outputs. We stabilize the 

system, and detect changes in dynamics by using the control representation. 
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1. Introduction 

Electro-active polymers (EAPs) are deformed by an electric stimulus. One of these EAPs, called an 

ionic polymer metal composite (IPMC, Figure 1) [1,2], is used as an integrated device composed of 

sensors and actuators. IPMC is a film of a polyelectrolyte gel sandwiched between two layers of metal 

(gold) electrodes plated by a chemical process. IPMC can be bent by applying a low voltage (1–2 V) 

between the electrodes at 10–100 Hz [1–4], and its deformation depends on the thickness of the film 

and the type of counter ions in the gel, e.g., sodium ions Na+ or tetraethyl-ammonium ions TEA+ [5,6]. 

IPMC is flexible, chemically stabile, noiseless, durable (it is possible to bend it over 1 × 106 times [1,7]), 

and lightweight. Thus, IPMC is expected to be used in sensor/actuator devices with back-drivability 

for a living environment, i.e., it is soft to the touch. 

Figure 1. Ionic polymer metal composite (IPMC). 

 

IPMC consists of three physical systems, i.e., the electrical system modeling the characteristic of 

the electrodes, the mechanical system as a flexible beam, and their electro-mechanical coupling system 

explained in the following. Cations (e.g., Na+ or TEA+) and water molecules in the gel are transferred 

to the side of the negative electrode by the potential between the electrodes. This side of the gel is 

swollen by the transfer. As a result, the swelling mechanically bends the whole film (Figure 2). This 

transfer process can be modeled by coupling the water transport generated by an electric field, called 

electro-osmosis, and the electric field generated by water transport, called streaming potential, in the 

polymer gel on a spatial scale of 100 μm, and a time scale of about 1 s (Na+)–100 s (TEA+) [8]. The 

mechanical motion of IPMC can be described as a flexible beam [9] on a spatial scale of 10 cm and a 

time scale of about 0.03 s. Hence, analytical models of IPMC are nonlinear systems of partial 

differential equations (PDEs). 

Figure 2. Mechanism for IPMC. 

 

This paper presents an experimental example of a micro-mechanical construction incorporating 

controls. Micro-devices used in sub-centimeter environments are affected by the viscosity of the 

medium; therefore, they are subject to nonlinearities and must be treated as distributed parameter 

systems when control models are constructed for them. However, the design of such controls generally 
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involves nonlinear systems and PDEs. An ordinary PDE control, for instance, assigns a state to the 

system domain. Thus, this method is based on analytical solutions to the systems.  

On the other hand, distributed port-Hamiltonian (DPH) systems [10] are a standard control 

representation using nonlinear PDEs for energy controls, called passivity-based controls [11]. 

Passivity-based controls create energy flows in order to vary energy levels or the global minimum state 

to stabilize the system. DPH systems are based on the energies of the systems, that is to say, their 

geometry, because they are described in the language of differential geometry, e.g., they invoke Stokes 

theorem. They are not so good for control designs depending on analytical solutions, e.g., ones based 

on control performances; however, they can be applied to wide classes of complicated systems, such as 

IPMC, that are difficult to treat analytically. 

Moreover, DPH systems satisfy a power balance equation between the change in energy distributed 

throughout the system domain inside a boundary and the energy on the boundary. We can use this 

power balance for passivity-based boundary controls. This paper presents two experimental examples, 

i.e., stabilizing IPMC in terms of boundary control inputs and detecting dynamical changes in IPMC in 

terms of boundary control outputs. These boundary control inputs/outputs are systematically derived 

from the DPH system representation. 

2. Experimental System and Control Model 

This section is devoted to explaining the experimental IPMC system and its control model. 

2.1. Construction of Sectioned IPMC and Experimental System  

IPMC acts as an actuator when we apply a voltage to electrodes and as a sensor when we measure 

the counteraction voltage between electrodes without the voltage input. The sensor mode has been 

studied in, e.g., [12–20]. The experimental IPMC was implemented as a control system with four 

distributed inputs and four distributed outputs. The pattern of inputs/outputs for the electrode was 

made by laser cutting (Figure 3).  

Figure 3. Sectioned IPMC with Multiple Inputs and Multiple Outputs. 

 

The spatial dimensions of the IPMC are 51 mm (length) × 19.2 mm (width) × 0.18 mm (thickness) 

(Figure 4). The sectioned electrodes consist of four actuator areas and four sensor areas, and they are 

connected to one side of the IPMC that is used as an interface connector to the control and 

measurement system. The control and measurement system is composed of a personal computer, an 
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A/D convertor, a D/A convertor, amplifiers, and a laser measurement device (Figure 5). The inputs and 

outputs are processed by the personal computer. The signals for the inputs/outputs are transmitted 

through the convertors and the amplifiers. The interface side of the IPMC is fixed at ݔ଴ in Figure 4. 

We positioned the IPMC horizontally with respect to the surface of the ground. We measured the share 

displacement ݓ௜ሺݔ௜, ௜ for 1 ൑ݔ ሻ vertically at each positionݐ ݅ ൑ 4 with a laser measurement device to 

verify the sensor output of the IPMC. We assumed that the spatial difference in velocity ݓ௧௜ െ  ௧௜ିଵݓ

for 1 ൑ ݅ ൑ 4 would be in proportion to the output voltage ௜ܸ  of the ݅-th sensor from the left, i.e., ௜ܸ ן ௧௜ݓ൫ܥ െ ௧଴ݓ is a constant and ܥ ௧௜ିଵ൯, whereݓ ൌ 0. Accordingly, we can approximate the spatial 

partial derivatives of the share displacements from the spatial differences.  

Figure 4. Functions of Sectioned IPMC. 

 

Figure 5. Experimental System. 

 

2.2. Control Model of IPMC 

Flexible structures are modeled in terms of PDEs. The mechanical characteristics of IPMC can be 

modeled, e.g., by using the Euler-Bernoulli beam model, the Timoshenko beam model, and the model 

with large deformations [21]. These beam models can be expressed as DPH systems [9]. The overall 

motion of IPMC is nonlinear; therefore, the large deformation beam would the best choice for the 

motion analysis. However, the large deformation beam is expressed by three physical variables, i.e., 

the axial displacement ݕ, shear displacement ݓ, and rotation ߠ, and we cannot directly obtain the 

output with respect to the rotation from the experimental IPMC. Thus, we decided to employ the 

Euler-Bernoulli beam model instead as a real-time control model. The Euler-Bernoulli beam model is 

actually a reduced large deformation beam made by assuming ݓ௫ ൌ  ,and making a simplification [9] ߠ

wherein the subscript ݔ means the derivative with respect to the spatial coordinate ݔ. However, we 

must measure (higher order) spatial derivatives of ݓ instead of ߠ. 

The Euler-Bernoulli beam model includes up to fourth-order spatial derivatives. Such higher-order 

PDEs are modeled in terms of higher-order DPH systems [22]. In the case of IPMC, the DPH system is 

only second order. The higher-order DPH systems have non-trivial higher-order boundary ports that 
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are derived from the integration by parts formula (see Appendices A.1 and A.2). These special 

inputs/outputs pairs never appear in the standard (first order) DPH systems; therefore, they offer the 

possibility of applying passivity-based controls to IPMC. We verified this possibility by means of the 

experimentation described in Section 3. 

On the other hand, film structures are modeled in terms of two-dimensional PDEs, i.e., flexible 

plate equations. The film model is used for, e.g., controlling the shape of the film. However,  

one-dimensional PDEs are appropriate control models in the case of the experimental IPMC, because, 

the control degree of the IPMC is unidirectional regardless of the dimension. Hence, we chose the 

DPH representation having a one dimensional Euler-Bernoulli beam equation as the control model. 

Let us consider the one-dimensional Euler-Bernoulli beam model on the interval ሾ0, ௧௧ݓఘܣ :ሿܮ ൅ ௫௫௫௫ݓܫܧ ൌ 0 (1) 

where ܮ  is the length of the beam, ܣఘ  is the mass per unit length, ܫܧ  is the flexural stiffness,  ݓ ൌ ,ݐሺݓ  ,is the spatial coordinate. Here ݔ is the time coordinate, and ݐ ,ሻ is the share displacementݔ

the subscript of ݓ means partial derivatives with respect to ݐ or ݔ. Equation (1) can be transformed 

into a second order DPH system: 

൤ ௣݂݂௤൨  ൌ ێێۏ 
ۍ 0 െ ∂ଶ∂ݔଶ∂ଶ∂ݔଶ 0 ۑۑے

ې ቂ݁௣݁௤ቃ (2) 

where we have defined the variables: 

൤ ௣݂݂௤൨ ൌ ൦െ ݐ߲߲ ݐ௧߲߲ݓఘܣ ௫௫ݓ ൪ , ቂ݁௣݁௤ቃ  ൌ ቂ  ௫௫ቃ (3)ݓܫܧ௧െݓ

Note that the first row in Equation (2) is equivalent to that in Equation (1), and the second row in 

Equation (2) is an identity [7]. The advantage of this system representation is that it always satisfies 

the power balance equation at an instant in time: න ൫݁௣ ௣݂  ൅ ݁௤ ௤݂൯݀ݔ௅
଴ ൅ ሺ݁ଵ௅ ଵ݂௅ ൅ ݁ଶ௅ ଶ݂௅ሻ െ ሺ݁ଵ଴ ଵ݂଴ ൅ ݁ଶ଴ ଶ݂଴ሻ ൌ 0 (4) 

where we have defined the variables at the boundaries ݔ ൌ 0, ቈ ,ܮ ଵ݂଴݁ଵ଴቉  ൌ ൤ ௫௫|௫ୀ଴൨, ቈݓܫܧ௧௫|௫ୀ଴ݓ ଶ݂଴݁ଶ଴቉ ൌ ൤  ௫௫௫|௫ୀ଴൨ and (5)ݓܫܧ௧|௫ୀ଴െݓ

൤ ଵ݂௅݁ଵ௅ ൨  ൌ ൤ ௫௫|௫ୀ௅൨, ቈݓܫܧ௧௫|௫ୀ௅ݓ ଶ݂௅݁ଶ௅ ቉ ൌ ൤ ௫௫௫|௫ୀ௅൨  (6)ݓܫܧ௧|௫ୀ௅െݓ

The first term in Equation (4) is equivalent to the time variation of the Hamiltonian (with a minus 

sign), i.e., the total energy change in the system (see Appendix A.1), and the second and third terms in 

Equation (4) mean energies flowing across the boundaries, which are derived in terms of Stokes 

theorem and integration by parts with respect to the first term in Equation (4) (see Appendix A.2). 

Thus, we can detect the total energy change by calculating the boundary energy flows instead of 
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integrating the first term in Equation (4) over the domain. This is the basic strategy of passivity-based 

boundary controls of DPH systems. 

3. Control Methods and Experimental Results 

We stabilize the IPMC and detect changes in its dynamics in terms of its power balance. 

3.1. Control Method I: Stabilization 

The pair ሺ ௝݂௜, ௝݁௜ሻ  for ݅ ൌ 0, ܮ  and ݆ ൌ 1,2  in Equations (5) and (6) means a collocated pair of 

boundary inputs and outputs for passivity-based controls. Let us consider the pair ሺ ଶ݂଴, ݁ଶ଴ሻ in Equation (5) 

for the IPMC. The third-order derivative of the share displacement ݓ௫௫௫଴.ହ  at ݔ଴.ହ ൌ ܮ 8⁄  can be 

approximated as ݓ௫௫௫଴.ହ ؆ ሼሺݓଶ െ ଵሻݓ െ ሺݓଵ െ ଴ሻሽݓ െ ሼሺݓଵ െ ଴ሻݓ െ ሺݓ଴ െ ଵሻሽିݓ ൌ ଶݓ െ ଵݓ3 , 

where ିݓଵ is the share displacement at virtual position ିݔଵ in Figure 4. We regard െݓ ܫܧ௫௫௫଴.ହ  as the 

output ݁ଶ଴ in Equation (5). Hence, we send the feedback input ଶ݂଴ ൌ െ݁ܭଶ଴ ൌ ଶݓሺܫܧ ܭ െ  ଵሻ to theݓ3

first actuator distributed on the interval ሾݔ଴,  ଵሿ, where the input voltage of the actuator is determinedݔ

by ଵܸ ൌ ௧ଵݓ ܥ  for a constant ܥ , and ܭ  is feedback gain. We applied a band-pass filter for  0.1 ൑ ݂ ൑ 1.0  Hz to the output voltages, because the above assumption is valid around that  

frequency range. 

The input voltage to the first actuator and the sharer displacements ݓଵ and ݓଶ are shown in Figure 6. 

The control input ଶ݂଴ is added to the first actuator after ݐ ൌ 5.0. Two impact disturbances are applied to 

the tip of the IPMC at ݐ ൌ 1.8 and ݐ ൌ 6.4. We can see that the residual vibration in the controlled IPMC 

after ݐ ൌ 5.0 decreases more rapidly than in the uncontrolled IPMC before this time. This means the total 

energy of the first term in Equation (4) is dissipated through the second and third terms in Equation (4), 

because the negative feedback applied to boundary variables ଶ݂଴ and ݁ଶ଴ acts as a dissipative element. 

Figure 6. Experimental Results for Stabilization. 
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3.2. Control Method II: Detection of Dynamical Changes 

This section explains how we detect the change in the dynamics of the IPMC in terms of the power 

balance Equation (4). Time-independent Hamiltonian systems are conservative, i.e., time invariant 

with respect to energy. However, actual systems have dissipative elements, e.g., viscosity damping or 

distributed registers. Indeed, the swelling of IPMC relaxes by dissipation, but this effect has not been 

modeled in Equation (1). If the total energy stored in the system is dissipated inside the system domain, 

the observed boundary energy flow calculated with the second and third term in Equation (4) will be 

less than the total energy. Moreover, the change in the dissipation rate can be detected from the 

difference in observed energies. 

We conducted experimental tests in two dissipative situations. The first situation was where one 

side of the overall motion of the IPMC was blocked around ݔଷ by placing an external object after ݐ ൌ 14.0. The second situation was where the tip of the IPMC was soaked in water and the water level 

was raised after ݐ ൌ 15.0 . We believed these environmental changes might increase the energy 

dissipated by the IPMC. 

Figures 7 and 8 plot the responses of the IPMC to a sinusoidal input of 3 Hz. The responses were 

detected by the laser measurement device placed at ݔଵ (laser output), and the total boundary energy 

flows in the first and second sensor areas (total pow1 and total pow2) were calculated from the time 

integral of the product of input ଶ݂଴ and output ݁ଶ଴ in Equation (5). The ranges of the figures have been 

normalized to be dimensionless. The estimated responses before the time of the change in dissipations 

are also plotted (estimates). 

Figure 7 indicates that dissipation increased when the object came into contact after ݐ ൌ 14.0, and 

the change in the dissipation rate can be seen as a change in the slopes of the second and third graphs. 

We can see from Figure 8 that a change in dissipation is detected, because dissipation constantly 

increases because of the viscous drag of the water after ݐ ൌ 15.0. 

Figure 7. Experimental Results on Detecting Dynamical Changes (obstacle). 
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Figure 8. Experimental Results on Detecting Dynamical Changes (water).  

 

It is difficult to detect the above changes solely from the laser outputs, which are the closest data to 

the real motion of the IPMC, because the amplitudes of the laser outputs are not so stable. We guess 

that the IPMC flexibly bends because of the obstruction. However, we can clearly detect the changes 

from the power balance from the change in the slopes calculated from the control model.  

The amount of energy dissipated in Figure 7, i.e., the difference in the slopes of the total measured 

power and the estimate, is larger than in Figure 8. The movement of the IPMC is completely blocked 

by the obstacle in the first situation. However, the viscous drag of the water in the second situation 

does not stop it from moving. Therefore, we can guess that the dissipated energy is much larger in the 

first situation than in the second situation. 

4. Conclusions 

This paper presented experimental results on a multi-input/multi-output integrated ionic polymer 

metal composite (MIMO-IPMC) controlled by the passivity-based controls having a distributed  

port-Hamiltonian (DPH) system representation. The sectioned electrodes in the experimental IPMC 

had four inputs and four outputs. The IPMC was modeled with an Euler-Bernoulli equation, and the 

model was transformed into a DPH system with four pairs of collocated inputs and outputs for  

passivity-based controls. We applied two passivity-based controls to the experimental IPMC, i.e., we 

stabilized the system and detected the change in the dissipative structure in terms of the power balance 

equation of the DPH system. These experimental results illustrated the effectiveness of the control 

methods for MIMO-IPMC. 

The DPH system representation can be applied to multi-physical and multi-scale systems including 

dissipative elements [9]. That is, particular pairs of control inputs and outputs for passivity-based 

controls are systematically derived from complicated system models. We expect this formalism will be 

used for various micro-machines. The continuous system representation can be extended to a 
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discretized system representation for numerical calculations [25]. We are interested in the applications 

of unified methods of numerical analyses and automatic controls based on DPH systems to  

micro-machines that require precise mechanical designs. 
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Appendixes 

A.1. Time Variational Derivative of Hamiltonians 

Let us consider the Hamiltonian ࣢ of the Euler-Bernoulli beam equation: ࣢ ൌ න ൜ ௧ݓ߲ࣦ߲ ௧ݓ െ ࣦൠ௅
଴ ,ݔ݀ ࣦ ൌ න 12 ൛ܣఘሺݓ௧ሻଶ െ ௫௫ሻଶൟ௅ݓሺܫܧ

଴  (A1) ,ݔ݀

where ࣦ  is the Lagrangian of the equation, the Hamiltonian has been defined by the Legendre 

transformation in the multisymplectic formalism [23], and we have denoted the momentum by using 

the coordinate of Lagrangian systems for simplicity. The time variation in the Hamiltonian is given by  
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ݐߜ࣢ߜ ൌ න ൬ܣఘݓ௧ ݐߜ௧ݓߜ ൅ ௧ݓ ݐߜߜ ௧ݓ߲ࣦ߲ െ ௧ݓఘܣ ݐߜ௧ݓߜ ൅ ௫௫ݓܫܧ ݐߜ௫௫ݓߜ ൰௅
଴ ൌݔ݀ න ൜ݓ௧ ൬ ݐ߲߲ ௧൰ݓఘܣ ൅ ௫௫ݓܫܧ ൬ ݐ߲߲ ௫௫൰ൠ௅ݓ

଴ ݔ݀ ൌ െ න ൫݁௣ ௣݂  ൅ ݁௤ ௤݂൯݀ݔ௅
଴ , (A2)

where ߜ ⁄ݐߜ  is the variational derivative with respect to time, and the variational derivatives are 

regarded as partial derivatives. 

A.2. Calculation of Boundary Variables 

The second term of the integrand in the second equality of (A2) can be transformed: න ሺݓܫܧ௫௫ ݓ௫௫௧ሻ௅
଴ ݔ݀ ൌ න ሺെݓܫܧ௫௫௫ ௫௧ሻ௅ݓ

଴ ݔ݀ ൅ ሾݓܫܧ௫௫ݓ௫௧ሿ௫ୀ଴,௅ൌ න ሺݓܫܧ௫௫௫௫ ݓ௧ሻ௅
଴ ݔ݀ ൅ ሾݓܫܧ௫௫ݓ௫௧ െ ௧ሿ௫ୀ଴,௅ൌݓ௫௫௫ݓܫܧ න ሺݓܫܧ௫௫௫௫ ௧ሻ௅ݓ
଴ ݔ݀ ൅ ሺ݁ଵ௅ ଵ݂௅ ൅ ݁ଶ௅ ଶ݂௅ሻ െ ሺ݁ଵ଴ ଵ݂଴ ൅ ݁ଶ଴ ଶ݂଴ሻ, (A3)

where we have used the Stokes theorem to change the spatial integrals into boundary terms, and we 

have applied integration by parts to the first term of each equation. Substituting (A3) into (A2), we 

obtain the relation: ݐߜ࣢ߜ ൌ න ൫ܣఘݓ௧௧ ൅ ௧௅ݓ௫௫௫௫൯ݓܫܧ
଴ ݔ݀ ൅ ሺ݁ଵ௅ ଵ݂௅ ൅ ݁ଶ௅ ଶ݂௅ሻ െ ሺ݁ଵ଴ ଵ݂଴ ൅ ݁ଶ଴ ଶ݂଴ሻൌ െ න ൫݁௣ ௣݂ ൅ ݁௤ ௤݂൯݀ݔ௅

଴ . (A4)

The integral term of the first equality in (A4) must vanish, because it is the system equation itself. 

Therefore, we obtain the power balance Equation (4) from ࣢ߜ ⁄ݐߜ ൌ 0. 
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