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Abstract: Simple and efficient approaches for filter design at optical frequencies using  

a large number of coupled microcavities are proposed. The design problem is formulated as 

an optimization problem with a unique global solution. Various efficient filter designs are 

obtained at both the drop and through ports. Our approaches are illustrated through  

a number of examples. 
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1. Introductions 

Multiple coupled microcavities have been widely utilized for optical communication systems [1–9]. 

For wavelength division multiplexing (WDM) techniques, optimal filter design is mandatory and flat 

responses are ultimately required [3]. Higher order coupled microcavities have been proposed as 

promising candidates for optical filtering. The dispersion analysis of large chain of microcavities has 

been recently introduced [5]. The application of multiple coupled microcavities can be extended to 

optical signal processing and routing. Systematic and rigorous design procedures are essential to obtain 

the required filter response especially with large number of microcavities.  

The design of coupled resonators is usually done through the coupling parameters [10–19].  

These parameters have a direct effect on the achievable transfer function of the filter. Once the 

coupling coefficient for each stage is determined, the geometrical specifications for each resonator are 

adjusted [11]. The design theory of coupled microcavities has been originally developed for 

microwave filters [20–22]. In the last decade, this work was extended to the design of optical filters [11] 
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using Bragg gratings and ring resonators. In [11,12], the design procedure utilizes a transmission line 

equivalent network. Distributed capacitances and inductances are utilized to build a filter prototype 

which is mapped to the corresponding equivalent resonator design [21]. The method is used successfully 

for the design of Chebyshev-based filters [11]. Other filter types can be readily designed using 

different cascading configurations [12]. This design approach is limited to narrow band responses [21]. 

It is also based on add drop filters, where the output is only at the drop port of the coupled structure. 

Other approaches are developed for the optimal placement of zeros and poles of the filter transfer 

function [23] and [24]. These approaches are intended for the design of parallel and series coupled ring 

resonators [24]. They utilize resonators of equal coupling parameters to overcome the complexity of 

the design. Using these approaches, tapering of the coupling parameters is done intuitively [24]. This 

intuitive tuning is successful for a small set of cascaded series or parallel ring resonators. For higher 

order filters, optimal responses are not guaranteed.  

We discuss in this review two simple structured optimization methods for the design optimization 

of coupled microcavities. Though these techniques are simple, they can design filters with tens of 

coupled microcavities in few seconds. These techniques are based on adopting simplified transfer 

functions that transform the nonlinear optimization problem of highly coupled parameters to a linear 

optimization problem with a global solution. In the first technique [25], the microcavity coupling 

parameters are assumed to vary around known mean values. A perturbation theory is developed to 

propose a design optimization problem in the perturbation parameters. By dumping the higher order 

perturbation terms, we ignore the effect of multiple reflections among the rings introduced by the small 

adjustment of the coupling coefficients. This is a first order accurate approach as it takes into account 

only multiple reflections introduced by the zero order terms. The design problem is then formulated as 

a linear least square design problem. This linear least square problem has a unique solution that can be 

obtained in few seconds for tens of design parameters [26]. This can be contrasted with other 

approaches that converge to a local solution [14–16]. 

Another efficient approach for filter design using a large number of cascaded microcavities is based 

on linear phase filter (LPF) approximation [27]. An approximate objective function is exploited to 

solve the design as a linear program (LP) problem. This allows for fast and efficient solution of large 

scale problems. In addition, no initial design is required. The LP solver can find a feasible starting 

point by solving an initial feasibility problem. The computational time is less than one second for 

structures that contains up to 150 coupled microcavities. 

This paper is organized as follows. The theory of cascaded series rings is summarized in Section 2. 

The perturbation approach is addressed in Section 3. Section 4 is dedicated for the linear phase filter 

approach. The conclusions are given in Section 5. 

2. Theory of Coupled Microcavities 

Complex ring configurations contain multiple ring to ring coupling stages. Each stage incorporates 

a directional coupler approximation. A single stage coupling is shown in Figure 1, where a, b, c, and d 

are the field values at the interfaces. The quantities σ and  represent the through and cross-port field 

coupling parameters, respectively. The relationship between the fields can be summarized using the 

scattering matrix [28]: 
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Figure 1. Coupled ring resonators. 

 

For the series-connected ring resonators shown in Figure 2, the a and b fields at the ith stage are 

related to the fields at the next stage through the relationship: 
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Here,  =   j is the complex propagation factor inside curved structures. θ is the phase factor due 

to the propagation inside the ring and is given by:
  2
eff c

f
n L

c


  (4)

where f is the light frequency, neff is the real part effective waveguide index, and Lc is the cavity length 

of the resonator. The parameter  is the field attenuation coefficient.  

Figure 2. The structure of cascaded coupled ring resonators. 

 

For N resonator stages, the total transfer matrix is given by: 
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The coupling parameters between the Nth ring and the output waveguide are σN+1 and N+1. Utilizing 

bN+1 = −σN+1aN+1, the transfer function for the through port (reflectivity) Rout = b1/a1 is given by: 

21 1 22
out

11 1 12

N

N

T T
R

T T

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
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



 (6)

Utilizing cN+1 = jN+1aN+1, the transfer function for the drop port (transmissivity) defined as cN+1/a1 

is given by: 
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The calculated transfer functions in Equations (6) and (7) are utilized for analyzing coupled 

resonators of known ring coupling parameters at every stage σi, i, i.  

It is a common procedure to transform a linear system to a suitable frequency domain 

representation. This representation can be further utilized to simplify both the analysis and synthesis of 

the cascaded system [24]. Similar to the procedure of discrete digital filters design, we utilize Z domain 

representation of the optical filter response [24]. This is accomplished by utilizing z−1 = e−jθ, where z−1 

includes only the phase factor. All the transfer matrices are thus z-dependent and both Rout and Tout are 

transformed to the Z domain: 
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The response of the coupled ring resonators follows the standard form of a linear discrete system 

(see Equation (8)). The calculated transfer function coefficients pn and qm controls the achievable 

response in terms of pass band and stop band quality and the extinction ratio as well. These 

coefficients are dependent on the ring coupling parameters (σi, i) and cavity loss parameter defined as 
cLe   for all rings. Control of the waveguide to ring and ring to ring scattering parameters allows 

for a high degree of freedom to achieve different targeted filter responses. The Optical filter realization 

can be realized from either the through or the drop ports.  

3. Efficient Perturbation Technique  

The filter coefficients in Equation (8) are of nonlinear dependence on the coupling parameters. 

Those nonlinear terms are the contribution of multiple coupling among the cascaded resonators.  

For large values of coupled parameters, we cannot neglect multiple coupling. Utilizing the perturbation 

theory, a simple formulation to reduce the complexity of the filter transfer function is developed. For 

global optimization of cascaded series rings filters, robust optimization techniques can be incorporated 

to provide optimal filter designs. For the proposed approach, the target design has a set of mean 

coupling parameters. Then we formulate a modified design optimization problem to estimate the 

required perturbation of the coupling parameters around the mean to achieve the desired filter 

response. The overall coupling coefficients are thus calculated. This approach does not neglect the 

multiple coupling effects and take into consideration the unavoidable resonator losses.  



Micromachines 2012, 3           

 

 

208

For N cascaded coupled resonators, the coupling coefficient at each stage is perturbed round a mean 

value as: 
1,2,..., 1     i i i i N  (9)

Substituting from Equation (9) in Equation (8), the polynomials A and B are of N + 1 order 

dependence on the individual perturbations δσi, i. Assuming small perturbations δσ = [δσ1, δσ2, , 

δσN+1]T, higher order terms can be neglected. By ignoring the higher order perturbation terms, we 

neglect the effect of multiple reflections among the rings introduced by the small adjustment of the 

parameters σ. This is a first order accurate approach as it takes into account only multiple reflections 

introduced by the zero order terms . A linear approximation of the polynomials B(z) and A(z) 

dependence on the perturbed through port coupling δσ can thus be formulated. In this case we have: 
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In Equation (10), ci and di are the zero order terms in δσ that can be calculated by substituting with 

 in Equation (8). The coefficients of the first order terms in δσ are represented by hi and gi, both are 

polynomials in . 

In order to achieve a filter response with specific z-dependence, we match the ring filter coefficients 

(p, q) to the targeted filter coefficients (b, a). The following system of linear equations is thus constructed: 
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In Equation (11), b and a are the vectors of the numerator and denominator polynomials of the 

target filter transfer function (8). The solution of the linear system of equation in Equation (11) 

produces the optimal δσ that satisfies the target filter transfer function. 

The system of linear Equation (11) is overdetermined. However, a least squares solution leads to the 

optimal perturbation parameters. The design problem can thus be cast as a constrained optimization 

problem with a quadratic objective function over linear constraints:  
2
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 (12)

In Equation (12), the first constraint is placed to ensure the total through coupling parameter less 

than unity. The second constraint imposes a trust region for the perturbation model. The parameterζ is 

the maximum allowable perturbation in the coupling parameters. This problem is convex and leads to a 

unique optimal design [26]. 

For lossy structures, the total loss of the ring modifies the optimization problem constraints. This 

can be taken into consideration by a direct modification of the system coefficients in Equations (10) 

and (11). The same system of equations is solved to get the perturbation in the coupling coefficients in 

the presence of the losses. 
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Our formulation can be contrasted with other conventional nonlinear least square problems. These 

approaches have complex dependence on parameters, computationally expensive and their solution is 

not globally optimal. 

The perturbation technique is verified through the design of fifth order and tenth order optical filters 

using series connected ring resonators. We carry out optimization for both lossless and lossy structures. 

The optimization algorithm achieves the required response efficiently within the trusted perturbation 

region. Our algorithm is also applied to a set of lossy structures to predict the change in the achievable 

design with a loss increase.  

3.1. Fifth Order Ring Resonator Filter 

For an ideal target response, we have applied our approach to the design of the fifth order drop  

filter [8]. The filter response is a typical IIR filter which can be controlled to have different pass band, 

stop band, and stop band reduction. For this filter, the pass band occupies approximately one seventh 

of the free spectral range. The pass band ripples are less than 0.4 dB and the stop band rejection is 

more than 40 dB. In order to achieve these specifications, a target z domain transfer function is 

constructed. For the realization of this transfer function using ring resonators, we assume a known 

waveguide to ring through coupling coefficient of 0.7416 [8]. The ring to ring mean through coupling 

is assumed to be 0.9. This value is an acceptable approximation for a required filter response from the 

drop port. It assures the validity of our algorithm for a high value of the mean through coupling 

coefficient. 

Figure 3. (a) The achieved fifth order filter response as compared to a targeted fifth order 

filter proposed in [8]. (b) The responses at the through port (R) and the drop port (T) for 

the five cascaded ring resonators. 
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Our algorithm is applied to extract the vector of perturbation in the through coupling parameters 

(δσ). The convexity of the optimization problem yields a unique solution regardless of the initial starting 

point. The application of our technique results in a perfect match with the target filter as shown in 

Figure 3. The exact transfer function is utilized to calculate the responses at both the through and drop 

ports (see Figure 3(b)). The optimal coupling perturbations δσ = [0.0602 0.0753 0.0753 0.0602]T result 

in a symmetric structure. The ring resonator drop port transfer function is as follows: 
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 (14)

3.2. Tenth Order Ring Resonator Filter 

Our technique is also utilized to design a number of ten series connected rings. For this example, 

the targeted filter has small pass band ripples with an increased normalized bandwidth and improved 

steep filter pass band to stop band transition. The targeted filter design is proposed using matlab digital 

filter design functions [29]. Our technique is then utilized to determine the best rings coupling 

parameters to achieve the target design. 

The target filter is a Chebyshev type I filter with a bandwidth of one third of the free spectral range 

and minimal pass band ripples. The (cheby1) matlab function [29] is utilized with ripple parameters  

of 0.001 and normalized band width of 0.33. The target vector of the denominator polynomial coefficients 

is a = [1.0000 −5.2448 13.8635 −23.6303 28.3988 −24.9452 16.1369 −7.5663 2.4561 −0.4980 0.0479]T. 

Figure 4. The coupling coefficients for the optimized tenth order optical filter utilizing the 

perturbation approach. 

 

Figure 5. (a) The achieved tenth order filter response as compared to the target response. 

(b) The responses at the through port (R) and the drop port (T) for the ten cascaded ring 

resonators. 
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For this problem, the number of optimization parameters is 11 representing the through coupling 

coefficient σi for all the stages. Equation (12) is utilized with average couplings  = [0.25 0.5 0.75 0.75 

0.75 0.75 0.75 0.75 0.75 0.5 0.25]T. The perturbation trust region size ζ is set to 0.1. The optimal 

coupling coefficients are shown in Figure 4. The achieved response and the target response are shown 

in Figure 5(a). Good match is achieved between the two responses. The response of the ring resonators 

at the through port (reflectivity) compared to the response at the drop port (transmissivity) is shown in 

Figure 5(b).  

3.3. Fifth Order Lossy Filter 

To illustrate the accuracy and correctness of the perturbation approach, we also compare our results 

to that is in [11]. We design the target filter in [11] utilizing both ideal and lossy coupled ring 

resonators. In [11], a fifth order filter is utilized to achieve a highly selective filter with a bandwidth  

of 20% of the free spectral range and a maximum passband flatness. Utilizing the method in [11], the 

achievable design has ring through couplings σ = [0.4186 0.821 0.909 0.909 0.821 0.4186]T. The target 

vector of the polynomial coefficients in Equation (8) is a = [1.0 −3.0083 4.0132 −2.8776 1.0944 

−0.1753]. 

We utilize our approach for the design of the same target filter. The average couplings  

 = [0.45 0.85 0.85 0.85 0.85 0.45]T are utilized. The perturbation trust region size ζ is set to 0.2. The 

optimal set of coupling are σ = [0.421 0.808 0.917 0.917 0.808 0.421]T utilizing lossless coupled ring 

resonators. The designed polynomial coefficients are a = [1 −3.0053 4.00 −2.8652 1.0939 −0.1776]. 

Figure 6 shows the filter response utilizing our approach. It has a good agreement with the target filter. 

The ability of our perturbation algorithm to predict the optimal design is best illustrated in Figure 7. 

The optimal coupling coefficients for the lossless case have a very good match with the results in [11]. 

Figure 6. The achieved fifth order filter response utilizing the perturbation approach for 

both lossless and lossy structures as compared to the target filter. 
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in Figure 7. 
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Figure 7. The optimal coupling coefficients for the optimized filter for both lossless and 

lossy case as compared to the coefficients predicted in [11]. 

 

4. Linear Phase Filter Realization 

For highly coupled microcavities, the through port coupling for each coupling stage (|σi|  1) is 

usually small. This allows for physically neglecting the higher order coupling between the microcavities 

as their amplitudes are proportional to σiσi+1. This assumption is mainly assumes that σiσi+1 « σi and can 

approximate the response to 

out
0

( )
N

n
n

n

R z b z



   (15)

Notice that by neglecting the higher order coupling terms, and using the recursive formula (15), the 

polynomial A(z) in Equation (8) becomes unity. For low loss coupled microcavities, the recursive 

formula for the reflectivity at a the ith stage is: 
1

1i i iR z R
   (16)

For symmetric coupled microcavities, the through coupling coefficients are symmetric around  

the middle coefficient. This is a practical assumption which allows for having a linear phase filter 

response [30]. The symmetry assumption implies that: 

2 , 1,2,..., 1i N i i N      (17)

The total through port coupling can be represented in terms of the normalized angular frequency  
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From Equation (18), the through port transfer function can be represented as ( /2)
out out( ) ( )j NR e R   

where out ( )R   is a real and periodic even function. It is thus sufficient to only consider [0, ]  . 

The developed approximate transfer function is a linear phase filter formulation [30]. It transforms the 

design procedure into a convex optimization problem whose solution can be efficiently and accurately 

estimated for large number of coupled microcavities. The general formulation of the problem is 
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In Equation (19), ωs is the normalized stop band angular frequency, ωp is the normalized pass band 

angular frequency, and ζ is the pass band ripples. The design parameters are the through coupling 

coefficients σ = 1 2 1[ ] .T
N     In Equation (19), the last constraint is added to ensure the physical 

realization of the designable coupling coefficients. 

The proposed technique is exploited in filter design problems. For this purpose, the interior  

point-based solver, SeDuMi, is used for solving the linear programming problem [31]. One of 

advantages of this solver is the ability to find a feasible starting point. Thus, there is no need to supply 

an initial design which is considered as a significant advantage especially for problems with large 

number of microcavities.  

Figure 8. The drop and through response of the optimized structure with 36 microcavities [27]. 

 

For the first example, a filter response with minimum ripples in the passband is obtained. The 

number of microcavities is 36. The pass band is 1.0 fo around the central frequency fo. The response of 

the through and drop port is given in Figure 8. The length of the cavity Lc is taken to be one quarter of 

the central wavelength. For the second example, the length of the cavity is taken to be half the central 

wavelength. Thus, the response is switched from band pass filter to band stop filter in the through port 

and vice versa in the drop port. The number of microcavities in this example is 30. The response in the 

through port has a rejection band of 0.4 fo centered around fo. This band has a flat response in the drop 

port as shown in Figure 9. For third example, a design of 150 rings is obtained for a flat response over 

0.2 fo and sharp roll off over 0.01 fo from each side of the transmission band as shown in Figure 10. 

The computation time of this example is 1.2 s. However, solving the non convex minimax problem [30], 

the computational time for this example is 1.5 × 105 s for a starting point in the middle of the feasible 

domain. This comparison is performed on a 2.2 GHz dual core processor computer with 2.0 GB of 

RAM. The optimized values of σ for all examples are given in Figure 11. A small change of 10% in 

the optimized parameters shifts the response by only 6%. 

The computational time for different number of coupled rings is show in Figure 12. It is clear that 

this problem is linear programming and hence the computational time has small dependence on the 

number of rings. 
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Figure 9. The drop and through response of the optimized structure with 30 microcavities [27]. 

 

Figure 10. The drop and through response of the optimized structure with 150 microcavities [27]. 

 

Figure 11. The coupling coefficient of the optimized design of both the 30, 36  

and 150 cascaded microcavities [27]. 
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Figure 12. The computational time for different number of microcavities. 

 

5. Conclusions 

Two novel design procedures for filters with large numbers of microcavities were reviewed. These 

procedures are efficient and simple. Both approaches exploit convex optimization techniques for 

formulating the design problem. This formulation allows for fast and accurate solution of the design 

problem. The accuracy and the efficiency of these approaches allow for solving design problems with 

few hundred of variables in less than one second. 

References 

1. Little, B.E.; Chu, S.T.; Haus, H.A.; Foresi, J.; Laine, J.-P. Microring resonator channel dropping 

filters. J. Lightwave Technol. 1997, 15, 998–1005. 

2. Blom, F.C.; van Dijk, D.R.; Hoesktra, H.J.W.M.; Driessen, A.; Popma, T.J.A. Experimental study 

of integrated-optics microcavity resonators: Toward an all-optical switching device. Appl. Phys. 

Lett. 1997, 71, 747–749. 

3. Little, B.E.; Foresi, J.S.; Steinmeyer, G.; Thoen, E.R.; Chu, S.T.; Haus, H.A.; Ippen, E.P.; 

Kimerling, L.C.; Greene, W. Ultra-compact Si/SiO2 microring resonator optical channel dropping 

filters. IEEE Photon. Technol. Lett. 1998, 10, 549–551. 

4. Yanagase, Y.; Suzuki, S.; Kokubun, T.; Chu, S.T. Vertical triple series-coupled microring 

resonator filter for passband flattening and expansion of free spectral range. Jpn. J. Appl. Phys. 

2002, 41, L141–L143. 

5. Ozturk, C.; Huntington, A.; Aydinli, A.; Byun, Y.T.; Dagli, N. Filtering characteristics of hybrid 

integrated polymer and compound semiconductor waveguides. J. Lightwave Technol. 2002, 20, 

1530–1536. 

6. Madsen, C.K.; Zhao, J.H. Optical Filter Design and Analysis: A Signal Processing Approach; 

Wiley: New York, NY, USA, 1999. 

7. Barwicz, T.; Popović, M.A.; Watts, M.R.; Rakich, P.T.; Ippen, E.P.; Smith, H.I. Fabrication of 

add-drop filters based on frequency matched microring resonators. J. Lightwave Technol. 2006, 

24, 2207–2218. 

8. Xia, F.; Sekaric, M.L.; Vlasov, Y. Ultra-compact high order ring resonator filters using submicron 

silicon photonic wires for on-chip optical interconnects. Opt. Express 2007, 15, 11934–11941. 

0 10 20 30 40

10
0

10
1

Number of Rings

T
im

e
 (

se
c.

)

 

 



Micromachines 2012, 3           

 

 

216

9. Little, B.E.; Chu, S.T.; Absil, P.P.; Hryniewicz, J.V.; Johnson, F.G.; Seiferth, F.; Gill, D.;  

Van, V.; King, O.; Trakalo, M. Very high order microring resonator filters for WDM applications. 

IEEE Photon. Technol. Lett. 2004, 16, 2263–2265. 

10. Schwelb, O. Transmission, group delay, and dispersion in single-ring optical resonators and 

add/drop filters-a tutorial overview. J. Lightwave Technol. 2004, 22, 1380–1394. 

11. Melloni A.; Martinelli, M. Synthesis of direct-coupled-resonators bandpass filters for WDM 

systems. J. Lightwave Technol. 2002, 20, 296–303. 

12. Melloni, A. Synthesis of a parallel-coupled ring-resonator filter. Opt. Lett. 2001, 26, 917–919. 

13. Chak, P.; Sipe, J.E. Minimizing finite-size effects in artificial resonance tunneling structures.  

Opt. Lett. 2006, 31, 2568–2570. 

14. Dowling, E.; MacFarlane, D. Lightwave lattice filters for optically multiplexed communication 

systems. J. Lightwave Technol. 1994, 12, 471–486. 

15. Madsen, C.K. General IIR optical filter design for WDM applications using all-pass filters.  

J. Lightwave Technol. 2000, 18, 860–868. 

16. Orta, R.; Savi, P.; Tascone, R.; Trinchero, D. Synthesis of multiple ring-resonator filters for 

optical systems. IEEE Photon. Technol. Lett. 1995, 7, 1447–1449. 

17. Poon, J.K.S.; Scheuer, J.; Mookherjea, S.; Paloczi, G.T.; Huang, Y.; Yariv, A. Matrix analysis of 

microring coupled-resonator optical waveguides. Opt. Express 2004, 12, 90–103. 

18. Little, B.E.; Chu, S.T.; Hryniewicz, J.V.; Absil, P.P. Filter synthesis for periodically coupled 

microring resonators. Opt. Lett. 2000, 25, 344–346. 

19. Ferrari, C.; Morichetti, F.; Melloni, A. Disorder in coupled-resonator optical waveguides. J. Opt. 

Soc. Am. B 2009, 26, 858–866. 

20. Matthaei, G.; Jones, E.; Young, L. Microwave Filters, Impedance-Matching Networks, and 

Coupling Structures; Artech House Publishers: London, UK and Boston, MA, USA, 1980. 

21. Cohn, S. Direct-coupled-resonator filters. Proc. IRE 1957, 45, 187–196. 

22. Young, L. Direct-coupled cavity filters for wide and narrow bandwidths. IEEE Trans. Microw. 

Theory Tech. 1963, 11, 162–178. 

23. Binh, L.N.; Ngo, N.Q.; Luk, S.F. Graphical representation and analysis of the Z-shaped  

double-coupler optical resonator. J. Lightwave Technol. 1993, 11, 1782–1792. 

24. Kaalund, C.J.; Peng, G.-D. Pole-zero diagram approach to the design of ring resonator-based 

filters for photonicapplications. J. Lightwave Technol. 2004, 22, 1548–1559. 

25. Ahmed, O.S.; Swillam, M.A.; Bakr, M.H.; Li, X. Efficient design optimization of ring  

resonator-based optical filters. J. Lightwave Technol. 2011, 29, 2812–2817. 

26. Boyd, S.; Vandenberghe, L. Convex Optimization; Cambridge: New York, NY, USA, 2004; 

Chapter 4. 

27. Swillam, M.A.; Ahmed, O.S.; Bakr, M.H.; Li, X. Filter design using coupled microcavities. 

Photon. Tech. Lett. 2011, 23, 1160–1162. 

28. Haus, H. Waves and Fields in Optoelectronics; Prentice-Hall: New York, NY, USA, 1984. 

29. Matlab, Version 7.1, 2005. Available online: http:// www.mathworks.com (accessed on 1 February 

2012). 

30. Swillam, M.A.; Bakr, M.H.; Li, X. The design of multilayer optical coatings using convex 

optimization. J. Lightwave Technol. 2007, 25, 1078–1085. 



Micromachines 2012, 3           

 

 

217

31. Sturm, J.F. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. 

Optim. Methods Softw. 1999, 11–12, 625–653. 

© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


