Next Article in Journal
Active and Precise Control of Microdroplet Division Using Horizontal Pneumatic Valves in Bifurcating Microchannel
Previous Article in Journal
Fabrication of a Polymer High-Aspect-Ratio Pillar Array Using UV Imprinting
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Review on Electrodynamic Energy Harvesters—A Classification Approach

Laboratory of Micro Actuators, University of Freiburg, IMTEK, Georges-Köhler-Allee 102, 79110 Freiburg, Germany
*
Author to whom correspondence should be addressed.
Micromachines 2013, 4(2), 168-196; https://doi.org/10.3390/mi4020168
Submission received: 29 December 2012 / Revised: 20 January 2013 / Accepted: 22 January 2013 / Published: 29 April 2013

Abstract

:
Beginning with a short historical sketch, electrodynamic energy harvesters with focus on vibration generators and volumes below 1 dm3 are reviewed. The current challenges to generate up to several milliwatts of power from practically relevant flows and vibrations are addressed, and the variety of available solutions is sketched. Sixty-seven different harvester concepts from more than 130 publications are classified with respect to excitation, additional boundary conditions, design and fabrication. A chronological list of the harvester concepts with corresponding references provides an impression about the developments. Besides resonant harvester concepts, the review includes broadband approaches and mechanisms to harvest from flow. Finally, a short overview of harvesters in applications and first market ready concepts is given.

1. Introduction

Energy harvesting, a term that was originally used in a publication about the photosynthesis of light in 1966 [1], is nowadays understood as the conversion of ambient energy from the environment to electricity at small scale. Environmental energy sources, such as radiation, motion, or heat, of course have always been available. However, due to several developments, energy harvesting became a hot research topic in the 1990s and still is.
  • The increasing efficiency of electronic components and circuits allows the use of low-power sources. Today, many sensors consume only between 0.1 to a few microwatts [2], a 1 MHz microprocessor can work with a milliwatt power and in standby mode survive with only a microwatt [3].
  • Cost reductions and improvements in mass production technologies enabled manufacturers to implement more and more electronics and sensors into products and created new markets [4]. Famous examples are tire pressure monitoring [5] or consumer electronics that are increasingly equipped with sensors and wireless functions.
  • The trends towards process automation, intelligent logistics, safety and comfort require more and more electronics for data acquisition, processing and communication [6,7]. The effort to connect the growing number of electronic devices and sensors increases dramatically. For example, disregarding installation costs, just replacing the connecting wires for sensors and switches in new and refurbished buildings can save 10,000 t of copper in Germany per year [8].
  • The demand for flexibility and the increasing number of mobile applications require wireless solutions for power supply. A good indicator for this development is the market for GPS-circuits that grows more than 7% per year [9].
  • The costs for battery supply, especially maintenance costs to exchange discharged batteries, make energy harvesters an attractive alternative. Simple calculations show that at a comparable volume harvesters can provide the energy of a battery within weeks to months [10].
This review focuses on electrodynamic energy harvesting from vibrations and provides an overview about research fields and questions that have been studied during the past 15 years. The paper gives an update to previous reviews [11,12,13,14] and, in contrast, discusses literature from a different point of view. By highlighting and classifying selected harvesters from literature the variety of answers and solutions is sketched. As electrodynamic energy harvesting has taken the step to first commercial products, explicit applications have been collected. An extended chronological table with published harvester concepts is added. As it requires a broader discussion of the theoretical background, the comparison of the output power of electrodynamic is not included in this paper.

2. Historical Sketch on Electrodynamic Energy Harvesting

The fundamentals of electrodynamic energy harvesting have been discovered nearly two centuries ago. The observation of the force (later named Lorentz force in honor of Hendrik Antoon Lorentz) generated by a magnetic field on moving charge carriers is attributed to Hans Christian Ørsted (1920) [15,16]. In 1821 Michael Faraday invented the electric motor by setting up his experiment with a permanent gyration of a current carrying wire in a magnetic field [16,17].
With the law of induction found by Faraday in 1831 [18] it was possible to explain the conversion from mechanical to electrical energy and vice versa. The energy harvesting mechanism is based on the change of the flux linkage in the harvester coil due to an ambient excitation of the harvester. According to the law of induction, a voltage is induced, and energy is partly supplied to an attached load and partly dissipated due to the coil resistance. The equivalent energy is extracted from the excitation due to Lorentz force. With the Maxwell equations, first comprehensively published in 1865 [19], the analytical description was given.
Many generators based on the rotating principle have been built. Already in 1831 Joseph Henry developed the first linear generator [15]. However, the primary need for rotating machines can be considered as reason for the low attention of linear generator concepts until the mid 1990s. Then, starting with the larger efficiency of electronic circuits and the increasing number of applications, research on linear generators for power generation, now called energy harvesters, has been kicked-off. Beginning with the Seiko AGS Quarts Watch sold since 1988 [20,21] and the publication of Williams and Yates in 1995 [22], research groups all over the world published several hundred papers on energy harvesting and more than a hundred on different prototypes.
Research and development in electrodynamic energy harvesting has been oriented to a broad variety of questions, firstly, to enable to harvest from practically relevant vibrations and, secondly, to harvest as much power as possible. Besides, three main groups of questions driven more by intellectual curiosity can be identified.
Harvesting principle: How can different motions be used or made usable to harvest from? Which physical phenomena can be utilized for harvesting and what are their harvesting mechanisms? Which design approaches can help to adapt to different operating conditions and excitation profiles and to extract the maximum power? Fabrication and materials: Which design opportunities and limitations result from the diverse fabrication processes and applied materials? What are the trade-offs between fabrication costs and, e.g., the output power? Suitability for application: Which requirements result from the environment? In which applications are harvesters beneficial compared with other solutions? How does the harvested power impact the excitation? Which power management is required to supply an application and to deal with situations of low harvested power?

3. Review on Published Prototypes

To review and discuss the differences of electrodynamic harvesters in terms of excitation type, boundary conditions, magnetic and mechanical design as well as manufacturing aspects, symbols are introduced to classify the harvesters. To illustrate the diverse categories of harvesters, representative designs are displayed in Figure 1, Figure 2, Figure 3, Figure 4, Figure 5 and Figure 6 on pages 172, 174, 176, 178, 180 and 182, and numbered for later reference. For a better overview the figures are partly cut, re-arranged, re-sketched and re-labeled. The average power and RMS load voltage of the harvesters at the frequency of maximum power are cited together with the corresponding sinusoidal excitation acceleration peak or flow rate. A comprehensive summary of prototypes from literature is attached in Table A1 in Appendix A. The copyright notices and reprint permissions can be found in Appendix B. Hybrid concepts of integrated electrodynamic and piezoelectric harvesters such as [23,24] are not included in the discussion.

3.1. Excitation and Motion

3.1.1. Excitation Type

  • Micromachines 04 00168 i068 vibration
  • Micromachines 04 00168 i069 flow
  • Micromachines 04 00168 i070 rotation
Harvesters have been designed for different kinds of motion of the energy source. The prototypes, such as (1–17,18–23,28–30), directly harvest from a vibrational source. Due to the vibration, an internal mass is directly excited to change the flux linkage in a coil. In contrast, harvesting from flow usually requires a mechanism to generate the internal motion. Harvester (26) contains a piece disturbing laminar flow. The created vortex causes a beam to oscillate and harvest energy. The Humendinger wind-belt (27) uses a ribbon flattering in air flow and harvests energy from its vertical motion. Equal to the principle of a classical windmill or turbine, such as harvester (24), flow can be converted into a rotational motion. From a rotatory motion one can, of course, directly harvest with a classical generator. In case the harvester cannot be mounted to the shaft, Toh et al. investigated harvesting from the rotation of a pendulum that is eccentrically fixed to the shaft [25].

3.1.2. Direction of Excitation

  • Micromachines 04 00168 i071 one-dimensional excitation
  • Micromachines 04 00168 i072 two-dimensional excitation
  • Micromachines 04 00168 i073 three-dimensional excitation
Most harvesters have been designed to harvest from one-dimensional motions. At vibrations with a preferred direction, the simpler design and potentially higher electrodynamic coupling can be exploited. In fact, many vibrations are multidirectional and a multi-domain harvester could be beneficial. Several principles such as harvesters (7–8,14,16) can also be used for two-dimensional harvesting. Although with limited electrodynamic coupling in the third dimension, (6) is the first and only three-dimensional design.

3.1.3. Excitation Form

  • Micromachines 04 00168 i074 single frequency vibration
  • Micromachines 04 00168 i075 vibration with frequency variation
  • Micromachines 04 00168 i076 broadband vibration
The excitation form or frequency spectrum is one of the main drivers for the broad variety of designs. To harvest from a single frequency, i.e., a harmonic vibration, resonant harvesters such as (1,12–17,18–23,26,28–30) have been developed. They allow to harvest high power but only from a narrow-band excitation. In case this frequency varies, tuning concepts such as (2) adapting the spring stiffness to the actual frequency have been applied. The simplest way to harvest not only at varying frequency but also from broadband vibrations is to use multiple oscillators with different resonant frequencies such as (3). Another option is to harvest with a single oscillator and its multiple resonance modes (16) or super-harmonics [32]. Energy from broadband motions can also be harvested with a rolling or sliding mass but no spring forces (4,6). An opportunity that goes back to the SEIKO AGS Kinetic Quartz Watch [20,21] is a pendulum harvester principle (7,8). The pendulum, once completely rotating, is capable to sustain the rotation at a certain range of accelerations and frequencies and able to harvest broadband under certain ambient conditions. Furthermore, nonlinear spring forces can be utilized. A stiffening or softening characteristics of the spring [33] or a mechanical bistability (5) helps to increase the bandwidth under certain boundary conditions. The approach of using a low frequency oscillator to excite a high frequency vibration (frequency step up) between coil and magnetic field by touching (10) or magnetically attracting (9) a second oscillator was implemented to harvest from broadband vibrations. However, for the excitation the low-frequency oscillator needs to reach a certain displacement that at higher frequencies requires strong accelerations. Finally, as the harvester is a coupled system of energy storages where the energy flow between the mechanical, magnetic and electrical domains defines the frequency behavior, it is possible to tune the frequency behavior on the electrical side [34]. For a comparison of broadband harvesting approaches, the reader should refer to [35].
Figure 1. Electrodynamic harvester prototypes (1)–(6) reprinted from [26,27,28,29,30,31].
Figure 1. Electrodynamic harvester prototypes (1)–(6) reprinted from [26,27,28,29,30,31].
Micromachines 04 00168 g001

3.1.4. Internal Motion of the Harvester/Principle of Changing Flux Linkage

  • Micromachines 04 00168 i077 continuous rotation
  • Micromachines 04 00168 i078 oscillatory linear/trajectory
  • Micromachines 04 00168 i079 pendulum motion with optional rotation
  • Micromachines 04 00168 i080 other
With respect to the internal motion, harvesters can be divided into four types. First, rotation devices that feature a continuous internal rotation between the magnetic field and the coil (25). Second, devices with an eccentric mass, which allows an oscillatory motion (7,8) and, under certain conditions, a rotatory motion. Third, devices that harvest from a linear or trajectory-kind relative motion (1–5,9–17,18–23,26,28–30). Fourth, harvesters with an internal motion that is not described by the first three types (6). The advantage of a rotational motion is that generator concepts have been investigated for a long time. Such as the pendulum harvester, the concept allows simple and cheap design with high coupling (e.g., the well-known one of a hub generator [36]). An equivalent has not been found for linear harvester concepts. In fact, the internal motion is not limited to a rotation, pendulum or defined trajectory. Free motions might feature the lowest coupling but allow multidimensional harvesting.

3.2. Operating Conditions

3.2.1. Volume & Aspect Ratio

  • Micromachines 04 00168 i081 no housing
  • Micromachines 04 00168 i082 open housing
  • Micromachines 04 00168 i083 closed housing
  • Micromachines 04 00168 i084 closed housing including electronic circuit
Figure 2. Electrodynamic harvester prototypes (7)–(11) reprinted from [37,38,39,40,41].
Figure 2. Electrodynamic harvester prototypes (7)–(11) reprinted from [37,38,39,40,41].
Micromachines 04 00168 g002
The prototypes in literature exhibit a wide range of volumes. The published values include different parts of the harvester, some only the oscillating parts, some additionally the volume penetrated by the oscillator, some the clamping, some a closed housing and some even the electronics. For a better comparison the reviewed prototypes are provided with the estimated comprising cylindrical or cuboid-shaped volume, which includes all harvester parts, a possibly existing electronic circuit as well as the volume penetrated by moving harvester components. The symbols denote whether a closed or open housing is enclosed. One can find devices with more than a hundred cubic centimeters (5,22,23,26), designed for output power in the milliwatt range as well as microdevices with less than a cubic centimeter (1,3,12,13,15,17,20,21,25,29) for microwatt power.
All these harvesters feature different aspect ratios with respect to the direction of excitation. Harvesters with aspect ratios in the range of 1 (1,22,23) benefit from the easier design of the magnetic circuit. Flat harvester designs with a low aspect ratio are mostly driven by planar fabrication technologies (12–15,17). From the motivation to replace batteries, harvesters in battery size have been built (19).

3.2.2. Weight

The total weight of the harvester can be important in applications, for example, when energy from human walking, in aeronautics or in vehicles should be harvested. Although investigations on the energy balance for harvesters used in vehicles or aircrafts have not been published yet, some authors used a minimum harvester weight as design criterion [42,43,44].

3.2.3. Output Voltage

The output voltage of a harvester depends of various parameters. To realize one of the standard voltage levels 1.2/1.8/2.4/3.3/5 V of electronic circuits, the harvester AC output voltage needs to be rectified and controlled. Especially in miniaturized harvesters voltage levels are very low. The minimum value of approximately 0.3 VDC required by boost and step-up converters that multiply the voltage is often not reached. As a solution, a nonlinear spring force in combination with an inhomogeneous magnetic field has been applied to generate voltage peaks (11). Alternatively, thin microfabricated coils (13,15) or thin wires with some ten micrometer thickness have been used (1,20). The latter is mainly limited by the capability of wire handling and bonding and with introduction of the fully automated wire bonding process in harvester (29) provides promising opportunities.

3.2.4. Robustness

  • Micromachines 04 00168 i085 none
  • Micromachines 04 00168 i086 temperature tolerant
  • Micromachines 04 00168 i087 shock resistant
  • Micromachines 04 00168 i088 temperature and shock resistant
The tolerance of a harvester for ambient temperatures can be important for its lifetime. Magnetic materials degenerate above their Curie temperature. Due to its high energy product NdFeB is mostly used to maximize the output power of harvesters. The strongest commercially available material, NdFeB N52, should not be used above 80 °C. For applications with temperatures above, authors had to use alternative materials such as SmCo (25). Besides magnetic degeneration, the ambient temperature can additionally affect the harvester characteristics, i.e., the frequency response, due to thermal expansion of mechanical components. Therefore, (23) includes compensation mechanisms.
Figure 3. Electrodynamic harvester prototypes (12)–(17) reprinted from [45,46,47,48,49].
Figure 3. Electrodynamic harvester prototypes (12)–(17) reprinted from [45,46,47,48,49].
Micromachines 04 00168 g003
In many applications harvesters have to withstand excitation peaks or shocks. In fact, every design can withstand a certain excitation level. However, additional design features were implemented to make a harvester more robust. Overloading at stable excitations with slowly changing magnitude can be prevented by tuning a harvester out of resonance (2). At quickly changing or random excitations a pendulum harvester (7,8) is a solution, because the pendulum itself limits the amplitude. Another option is a design such as (16). Here, the tensile stress in the two-sidedly clamped beam prevents a large amplitude and fatigue as well as overloading. Additionally, spring-like mechanical (18) or magnetic (5) end stops can be beneficially utilized.
Note, preferably the symbols for temperature and shock resistance would state the particular limit values. As these have rarely been reported, the symbols are only used as an indicator for higher robustness.

3.3. Internal Design Aspects

3.3.1. Magnetic Design

  • Micromachines 04 00168 i089 without back iron
  • Micromachines 04 00168 i090 back iron without relative motion of magnetic components
  • Micromachines 04 00168 i091 relative motion between magnetic components
In addition to the design aspects discussed in the previous sections, the design of the magnetic circuit is a key feature of the harvester. The simplest design is a simple magnet (3,5,8–10,14–16,19–21). Guiding the magnetic flux with the help of multiple magnets (12,13) and additional back iron parts (1,2,23,26,28–30) enables to increase the magnetic flux density. Hereby, the output power is increased and the magnetic field outside of the harvester reduced. The latter can be important, e.g., to minimize external forces on the magnetic circuit. Usually one prevents a relative displacement between magnetic components to avoid hysteresis loss and magnetic retention forces. However, in (11) the relative displacement is utilized.

3.3.2. Mechanical Design

  • Micromachines 04 00168 i092 moving magnetic circuit
  • Micromachines 04 00168 i093 moving coil
  • Micromachines 04 00168 i094 moving separate mass
  • Micromachines 04 00168 i095 no additional mass
  • Micromachines 04 00168 i096 additional mass
  • Micromachines 04 00168 i097 mechanical spring
  • Micromachines 04 00168 i098 magnetic spring
  • Micromachines 04 00168 i099 spring force due to gravitation
  • Micromachines 04 00168 i100 no spring
Figure 4. Electrodynamic harvester prototypes (18)–(23) reprinted from [50,51,52,53,54,55].
Figure 4. Electrodynamic harvester prototypes (18)–(23) reprinted from [50,51,52,53,54,55].
Micromachines 04 00168 g004
Optimization of the output power has driven the creativity for the mechanical design, as well. For reasons of component sizes, fabrication, wire bonding, etc., either the coil (3,12,13,18), the magnetic circuit/ the magnets (1,2,4–6,8,10,14–17,19–21,23,28–30) or a separate mass (7,9,11) has been used as oscillator. An additional mass was used to increase the quality factor of the oscillation (1,2,18). Mostly, mechanical beam or membrane springs have been used to mount and guide the oscillator (1–3,9–17,18–21,23). When counter magnets or even no spring forces are applied as magnetic springs, the oscillator has to be guided, e.g., in a tube (4,5) or sphere (6).

3.4. Fabrication & Development Stage

3.4.1. Fabrication and Assembly

  • Micromachines 04 00168 i101 manual
  • Micromachines 04 00168 i102 partly manual
  • Micromachines 04 00168 i103 computer controlled
  • Micromachines 04 00168 i104 non-integrated
  • Micromachines 04 00168 i105 semi-integrated
  • Micromachines 04 00168 i106 integrated
Besides the design, the fabrication process and its tolerances determines opportunities and limitations for the harvester design and characteristics. Some main drivers are the design freedom, tolerances and costs. The fabrication should be divided into the fabrication of harvester parts and the assembly. In research, many parts have been fabricated by hand. In fact, computer controlled processes such as CNC machining (1,2,9,18,23,28–30), rapid prototyping (6), lithography (3,12,13,15–17,20,24–25), or laser cutting (9,14,19) often help to quickly fabricate and to reduce costs and tolerances. Still, one main issue for minimum tolerances often is manual non-integrated assembly. Approaches for a semi-integrated fabrication are a PCB-based (14) or MEMS-based (12,13,15,17) concept. However, due to the challenge to integrate the fabrication of the magnetic circuit, permanent magnets often are attached separately. With the semi-integrated harvester concept (13) it was possible to reach very low tolerances as the manual assembly was limited to the uncritical stator part. Harvester (17) was the first fully integrated MEMS harvester and, although still with an disadvantageous magnetic design, points out the opportunities in microfabrication (for the challenge of integrated fabrication of permanent magnets refer to [56]).

3.4.2. Development Stage

  • Micromachines 04 00168 i107 laboratory A-sample
  • Micromachines 04 00168 i108 probably reproducible B-sample
  • Micromachines 04 00168 i109 reproducible commercial C-sample
The fabrication is closely connected to the development stage of a prototype. Some publications provide data based on single measurements of a laboratory sample. With A-samples such as (10,14,16,17,25,29,30) the measurements of a sample are reproducible but the reproducibility of the prototype and its behavior (e.g., when reassembled or rebuilt) is not clear. In case the reproducibility of the prototype is probable, a harvester is listed as B-sample here (1-9,11-13,15,18-21,24-26,28). Finally, there are C-samples such as (22,23,27), which are well reproducible and are or can be used commercially.
Figure 5. Electrodynamic harvester prototypes (24)–(27) reprinted from [57,58,59,60].
Figure 5. Electrodynamic harvester prototypes (24)–(27) reprinted from [57,58,59,60].
Micromachines 04 00168 g005

4. Prototypes in Applications

During the last years different harvesters have been designed for a range of specifically selected applications.
The probably best known harvester is the device of EnOcean GmbH [61] that is usually installed into light switches. The device harvests energy for sending three radio telegrams when the switch is pressed and allows a plug-and-play switch design. A study by the group of Beeby has shown that an energy harvesting latch can be used to power monitoring and safety systems in doors [62]. This harvester was operated when the door handle was pushed or the door shut. Another harvester has been developed in his group to harvest from air flow in air ducts [27]. Cymbet [63] harvested from air flow that was said to be typical in buildings. The power was suitable to measure the flow rate and transmit data to a receiver nearby.
The resonant-type PMG17 [55] or PMG27 [64] of Perpetuum Ltd. [7] (founded by Beeby et al.) are designed to fulfill industrial standards. Devices are certified for fabrication (RoHS—EU directive for the restriction of use of hazardous substances in electronics), waste and recycling (WEEE—EU directive for collection and recycling) and usage in hazardous environments (ATEX—EU directive allowing usage in an explosive atmosphere). They feature a temperature compensation to operate between −40 °C and 80 °C, use standard electrical connectors and harvest several milliwatts from many machines, e.g., in industrial or transportation applications. With the VEH460 [65] Ferro Solutions, Inc. builds a harvester for similar applications.
To power remote controls, Brother Inc. demonstrated a harvester in size of a AA battery probably featuring a design similar if not equal to harvester (22) [66]. Several authors published body worn [44,67,68,69] or implantable [70] prototypes, and prototypes to be integrated in a shoe [29,43] to harvest from human walking. A commercially available example with the form of a stick that can be put into a backpack is the nPowerPEG [71].
Electrodynamic harvesters were also designed for structural monitoring applications, e.g., by powering wireless sensor notes for transmission, temperature and acceleration monitoring on bridges [72,73]. A study about a harvester mounted to a car engine shows that enough power can permanently be harvested to supply different condition monitoring sensors [74].
Additional application-ready systems of harvesters can be found, which, in contrast, have not been designed for or tested in a specific application [51,75,76,77,78,79,80,81,82].
To any of these harvesters an electronic load circuit is attached that rectifies and controls or manages the output voltage. Meanwhile, lots of specific research was done on these electronic circuits. Some solutions are reviewed in [86,88,89,90]. Rectification can be done with a full bridge rectifier or voltage doubler, both passive with diodes or actively with switched transistors. The efficiency depends on the leakage currents and internal resistances. For voltage regulation buck-boost-converters such as the TI6120x from Texas Instruments are state-of-the-art. With the help of a resonating MHz-circuit the harvester voltage is chopped and the voltage peaks generated by the inductor of the resonating circuit are used to charge a capacitor. In a second step the load voltage is controlled to the required level. The efficiency of a buck-boost-converter depends on the harvester output voltage as well as the load current and can reach values of up to more than 90%. Besides the total efficiency of the rectifier and voltage control, the power transfer from the harvester to a load or buffer is important. Similar to an ideal voltage source that supplies most power into a matched load, the input resistance of the electronic circuit has to be adapted. Researchers at IMTEK developed a rectifying and voltage controlling circuit that adapts its input resistance for maximum power transfer [87]. This circuit still requires a second harvester to provide a reference signal. The next generation, which is currently under development, uses a maximum power point tracking component making the reference harvester obsolete.
Figure 6. Electrodynamic harvester prototypes (28)–(30) according to [88,89,90]-
Figure 6. Electrodynamic harvester prototypes (28)–(30) according to [88,89,90]-
Micromachines 04 00168 g006

5. Conclusions

After 15 years of research a huge variety of electrodynamic harvester concepts was investigated. To serve for a broad range of volumes (<1 cm3 to >100 cm3), form factors (cylindrical, cubical, etc.), excitation accelerations (<0.5 ms−2 to >100 ms−2) and excitation frequencies (≈1 Hz to >1 kHz), many different design approaches and fabrication technologies have been chosen and tested. Solutions for narrow- and broadband vibrations as well as flow were found. It has been proven that electrodynamic harvesters are capable of supplying low-power electronics, and first commercial products are available on the market.
However, despite the extensive research and promising results, some challenges still remain. First, an integrated manufacturing of harvesters at millimeter to centimeter scale as well as microprocessing of magnetic circuits for smaller harvesters would help to improve harvester tolerances and overcome current design limitations. Second, the comprehensive optimization, especially by considering the damping phenomena, would allow to increase the harvester power or generate the same power within a smaller volume or at weaker excitations. Finally, a detailed comparison of the harvester performance is missing. A benchmarking approach considering the physical impact of the boundary conditions would help to identify promising harvester designs. A first attempt to address this challenge of benchmarking is within our current research focus.

A. Table of Prototypes

Table A1. Extended chronological list of the harvester concepts from literature. A design number “(?)” denotes that the prototype of one of the corresponding references was included into the discussion of the previous section.
Table A1. Extended chronological list of the harvester concepts from literature. A design number “(?)” denotes that the prototype of one of the corresponding references was included into the discussion of the previous section.
No.1st ReferenceProperties according to Section 3Comments & additional references
[91] Micromachines 04 00168 i001[92]
(14)[93] Micromachines 04 00168 i002[46,94,95], see also [77]
(1)[96] Micromachines 04 00168 i003[26,78,80,81,97,98,99,100,101,100,102]
[103] Micromachines 04 00168 i004
(7)[104] Micromachines 04 00168 i005[37]
(19)[77] Micromachines 04 00168 i006[51], adapted from [93]
[105] Micromachines 04 00168 i007
[106] Micromachines 04 00168 i008[70]
(13)[107] Micromachines 04 00168 i009[45,108], adapted from [98,109,110]
(4)[29] Micromachines 04 00168 i010no power measurements
[111] Micromachines 04 00168 i011[112,113]
(12)[109] Micromachines 04 00168 i012[45,98,110,114,115], see also [107,108]
[116] Micromachines 04 00168 i013[117]
[118] Micromachines 04 00168 i014
[119] Micromachines 04 00168 i015[120,121,122]
[108] Micromachines 04 00168 i016[107], adapted from [98,109,110]
[123] Micromachines 04 00168 i017
[124] Micromachines 04 00168 i018[125]
(8)[38] Micromachines 04 00168 i019[125]
[126] Micromachines 04 00168 i020
(27)[60] Micromachines 04 00168 i021
[127] Micromachines 04 00168 i022[42,128,129,130,131,132,133]
[134] Micromachines 04 00168 i023
[135] Micromachines 04 00168 i024
(15)[136] Micromachines 04 00168 i025[47]
[54] Micromachines 04 00168 i026
(6)[137] Micromachines 04 00168 i027[31]
(25)[58] Micromachines 04 00168 i028
[138] Micromachines 04 00168 i029
[69] Micromachines 04 00168 i030
(18)[50] Micromachines 04 00168 i031
[68] Micromachines 04 00168 i032
[25] Micromachines 04 00168 i033[139,140,141,142]
[143] Micromachines 04 00168 i034[144]
[24] Micromachines 04 00168 i035[145,146,147]
[74] Micromachines 04 00168 i036[82,148,149,150,151]
(2)[152] Micromachines 04 00168 i037[27,153,154], adapted from [96]
[155] Micromachines 04 00168 i038[88,156]
(9)[39] Micromachines 04 00168 i039[72]
[157] Micromachines 04 00168 i040
(20)[52] Micromachines 04 00168 i041
[158] Micromachines 04 00168 i042
(24)[159] Micromachines 04 00168 i043[57]
[160] Micromachines 04 00168 i044
[161] Micromachines 04 00168 i045[162]
(23)[55] Micromachines 04 00168 i046
[64] Micromachines 04 00168 i047
[163] Micromachines 04 00168 i048[32,164,165]
(3)[28] Micromachines 04 00168 i049[111]
[23] Micromachines 04 00168 i050
(22)[65] Micromachines 04 00168 i051
(16)[48] Micromachines 04 00168 i052
(11)[41] Micromachines 04 00168 i053
[166] Micromachines 04 00168 i054[2]
[162] Micromachines 04 00168 i055
(5)[30] Micromachines 04 00168 i056
(21)[53] Micromachines 04 00168 i057
[167] Micromachines 04 00168 i058
[168] Micromachines 04 00168 i059
[90] Micromachines 04 00168 i060
[89] Micromachines 04 00168 i061
(17)[49] Micromachines 04 00168 i062
(26)[59] Micromachines 04 00168 i063
[169] Micromachines 04 00168 i064
(10)[40] Micromachines 04 00168 i065
[170] Micromachines 04 00168 i066
[171] Micromachines 04 00168 i067

B. Copyright notices

The figures of harvesters with the number in brackets were taken and adapted from cited papers with kind permission of the copyright holders:
  • (1), (2), (3), (6), (8), (16), (18), (24): © IOP Publishing. Reproduced by permission of IOP Publishing. All rights reserved.
  • (4), (10), (11), (12), (17), (19), (21), (24): © IEEE. Reprinted, with permission, from the respective reference.
  • (5), (9), (25): Reprinted from respective reference with permission from Elsevier.
  • (7), (15): © Springer. With kind permission from Springer Science and Business Media.
  • (13): Reprinted with permission from reference. Copyright 2006, American Institute of Physics.
  • (22): © Ferro Solutions.
  • (23): Reprinted with kind permission from Perpetuum. Note: A later harvester model is available at Perpetuum.
  • (14), (20), (26): Reprinted with kind permission from the authors.
  • (27): Reprinted with kind permission from Hummdingerwind.

Acknowledgements

The authors would like to thank the DFG for funding the graduate school 1322, Micro Energy Harvesting. Additionally, the first author thanks the Foundation of German Business (sdw) for his scholarship.

References

  1. Bertsch, W.; Azzi, J.; Davidson, J. Delayed light studies on photosynthetic energy conversion. I. Identification of the oxygen-evolving photoreaction as the delayed light emitter in mutants of Scenedesmus obliquus. Biochim. Biophys. Acta (BBA)-Bioenerg 1967, 143, 129–143. [Google Scholar]
  2. Khan, S. Vibration-based electromagnetic energy harvesters for MEMS applications. Ph.D. Thesis, University of British Columbia, Vancouver, Canada, 2011. [Google Scholar]
  3. Texas Instruments, Inc. 16-Bit-Ultra-Low-Power-MSP430 Mikrocontroller. Available online: http://www.ti.com/ww/de/msp430.html (accessed on 1 January 2013).
  4. Ko, W. Trends and frontiers of MEMS. Sens. Actuators A 2007, 136, 62–67. [Google Scholar] [CrossRef]
  5. Roundy, S. Energy harvesting for tire pressure monitoring systems: Design considerations. In Proceedings of PowerMEMS 2008, Sendai, Japan, 9–12 November 2008; pp. 1–6.
  6. Jämsä-Jounela, S. Future trends in process automation. Ann. Rev. Control 2007, 31, 211–220. [Google Scholar] [CrossRef]
  7. Perpetuum Ltd. 2009. Available online: http://www.perpetuum.co.uk (accessed on 23 August 2009).
  8. Kroener, M.; Woias, P. Klarmachen zum Ernten. 2012, pp. 14–23. Available online: Mikroproduktion, http://www.mikroproduktion.com (accessed on 29 June 2012).
  9. TechNavio. Global GPS IC Market. Available online: http://www.researchandmarkets.com/research/dhm2mn/ (accessed on 19 November 2012).
  10. Roundy, S. Energy scavenging for wireless sensor nodes with a focus on vibration to electricity conversion. Ph.D. Thesis, The University of California, Berkeley, CA, USA, Spring 2003. [Google Scholar]
  11. Beeby, S.P.; Tudor, M.J.; White, N.M. Energy harvesting vibration sources for microsystems applications. Meas. Sci. Technol. 2006, 17, R175–R195. [Google Scholar] [CrossRef]
  12. Arnold, D. Review of microscale magnetic power generation. Mag. IEEE Trans. 2007, 43, 3940–3951. [Google Scholar] [CrossRef]
  13. Mitcheson, P.D.; Yeatman, E.M.; Rao, G.K.; Holmes, A.S.; Green, T.C. Energy harvesting from human and machine motion for wireless electronic devices. Proc. IEEE 2008, 96, 1457–1486. [Google Scholar] [CrossRef] [Green Version]
  14. Khaligh, A.; Zeng, P.; Zheng, C. Kinetic energy harvesting using piezoelectric and electromagnetic technologies—State of the art. Ind. Electron. IEEE Trans. 2010, 57, 850–860. [Google Scholar] [CrossRef]
  15. Cardwell, D. On Michael Faraday, henry wilde, and the dynamo. Ann. Sci. 1992, 49, 479–487. [Google Scholar] [CrossRef]
  16. Faraday, M. On some new electro-magnetical motions, and on the theory of magnetism. Quarterly J. Sci. 1822, 12, 74–96. [Google Scholar]
  17. Faraday, M. Historical sketch of electro-magnetism. In The Annals of Philosophy; Baldwin, C., Ed.; London, UK, 1921; Volume 2. [Google Scholar]
  18. Faraday, M. Experimental researches in electricity. Philos. Trans. R. Soc. 1832, 122, 125–162. [Google Scholar] [CrossRef]
  19. Maxwell, J. A dynamical theory of the electromagnetic field. Philos. Trans. R. Soc. Lond. 1865, 155, 459–512. [Google Scholar] [CrossRef]
  20. Electronic wristwatch with generator. Patent US5001685, 1991.
  21. SEIKO Watch Corporation. SEIKO AGS kinetic quartz watch. Available online: http://www.seikowatches.com/story/landmarks/index.html#/Kinetic (accessed on 19 January 2013).
  22. Williams, C.; Yates, R. Analysis of a micro-electrical generator for microsystems. In Proceedings of Transducers’95, Stockholm, Sweden, 25–29 June 1995; pp. 369–372.
  23. Tadesse, Y.; Zhang, S.; Priya, S. Multimodal energy harvesting system: Piezoelectric and electrodynamic. J. Intell. Mater. Syst. Struct. 2009, 20, 625–632. [Google Scholar] [CrossRef]
  24. Wischke, M.; Woias, P. A Multi-functional cantilever for energy scavenging from vibrations. In Proceedings of PowerMEMS 2008, Sendai, Japan, 9–12 November 2008; pp. 73–76.
  25. Toh, T.; Mitcheson, P.; Yeatman, E. Continuously rotating energy harvester with improved power density. In Proceedings of PowerMEMS 2008, Sendai, Japan, 9–12 November 2008; pp. 221–224.
  26. Beeby, S.; Torah, R.; Tudor, M.; Glynne-Jones, P.; O’Donnell, T.; Saha, C.; Roy, S. A micro electromagnetic generator for vibration energy harvesting. J. Micromech. Microeng. 2007, 17, 1257–1265. [Google Scholar] [CrossRef]
  27. Ayala-Garcia, I.; Zhu, D.; Tudor, J.; Beeby, S. A tunable kinetic energy harvester with dynamic over range protection. Smart Mater. Struct. 2010, 19, 1–10. [Google Scholar] [CrossRef]
  28. Sari, I.; Balkan, T.; Kulah, H. An electromagnetic micro energy harvester based on an array of parylene cantilevers. J. Micromech. Microeng. 2009, 19, 105023–105035. [Google Scholar] [CrossRef]
  29. Duffy, M.; Carroll, D. Electromagnetic generators for power harvesting. In Proceedings of Power Electronics Specialists Conference, 2004. PESC 04. 2004 IEEE 35th Annual. IEEE, 20–26 June 2004; Volume 3, pp. 2075–2081.
  30. Mann, B.; Owens, B. Investigations of a nonlinear energy harvester with a bistable potential well. J. Sound Vib. 2010, 329, 1215–1226. [Google Scholar] [CrossRef]
  31. Bowers, B.; Arnold, D. Spherical, rolling magnet generators for passive energy harvesting from human motion. J. Micromech. Microeng. 2009, 19, 094008. [Google Scholar] [CrossRef]
  32. Barton, D.; Burrow, S.; Clare, L. Energy harvesting from vibrations with a nonlinear oscillator. J. Vib. Acoust. 2010, 132, 021009. [Google Scholar] [CrossRef]
  33. Nguyen, D.; Halvorsen, E. Analysis of vibration energy harvesters utilizing a variety of nonlinear springs. In Proceedings of PowerMEMS 2010, Leuven, Belgium, 30 November–3 December 2010.
  34. Cammarano, A.; Burrow, S.; Barton, D.; Carrella, A.; Clare, L. Tuning a resonant energy harvester using a generalized electrical load. Smart Mater. Struct. 2010, 19, 055003. [Google Scholar] [CrossRef]
  35. Zhu, D.; Tudor, M.J.; Beeby, S.P. Strategies for increasing the operating frequency range of vibration energy harvesters: A review. Meas. Sci. Technol. 2010, 21, 022001. [Google Scholar] [CrossRef]
  36. Hub generator, especially for bicycles. Patent EP0591724, 1994.
  37. Sasaki, K.; Osaki, Y.; Okazaki, J.; Hosaka, H.; Itao, K. Vibration-based automatic power-generation system. Microsyst. Technol. 2005, 11, 965–969. [Google Scholar] [CrossRef]
  38. Spreemann, D.; Manoli, Y.; Folkmer, B.; Mintenbeck, D. Non-resonant vibration conversation. J. Micromech. Microeng. 2006, 16, 169–173. [Google Scholar] [CrossRef]
  39. Galchev, T.; Kim, H.; Najafi, K. A parametric frequency increased power generator for scavenging low frequency ambient vibrations. Procedia Chem. 2009, 1, 1439–1442. [Google Scholar] [CrossRef]
  40. Zorlu, O.; Topal, E.; Kulah, H. A vibration-based electromagnetic energy harvester using mechanical frequency up-conversion method. Sens. J. IEEE 2011, 11, 481–488. [Google Scholar] [CrossRef]
  41. Xing, X.; Lou, J.; Yang, G.; Obi, O.; Driscoll, C.; Sun, N. Wideband vibration energy harvester with high permeability magnetic material. Appl. Phys. Lett. 2009, 95, 134103. [Google Scholar] [CrossRef]
  42. Hadaš, Z.; Singule, V.; Vechet, S.; Ondrusek, Č. Development of energy harvesting sources for remote Applications as Mechatronic Systems. In Proceedings of 14th Power Electronics and Motion Control Conference (EPE/PEMC), 2010. IEEE, Ohrid, Macedonia, 6–8 September 2010; pp. T10–T13.
  43. Kymissis, J.; Kendall, C.; Paradiso, J.; Gershenfeld, N. Parasitic power harvesting in shoes. In Proceedings of the Second International Symposium on Wearable Computers, 1998, Digest of Papers. IEEE, Pittsburgh, PA, USA, 19–20 October 1998; pp. 132–139.
  44. Paulo, J.; Gaspar, P. Review and Future Trend of Energy Harvesting Methods for Portable Medical Devices. In Proceedings of the World Congress on Engineering, San Francisco, CA, USA, 20–22 October 2010; Volume 2.
  45. Kulkarni, S.; Koukharenko, E.; Tudor, J.; Beeby, S.; O’Donnell, T.; Roy, S. Fabrication and test of integrated micro-scale vibration based electromagnetic generator. In Proceedings of Transducers’07, Lyon, France, 10–14 June 2007; pp. 879–882.
  46. Ching, N.N.H.; Wong, H.Y.; Li, W.J.; Leong, P.H.W.; Wen, Z. A laser-micromachined multi-modal resonating power transducer for wireless sensing systems. Sens. Actuators A 2002, 97–98, 685–690. [Google Scholar] [CrossRef]
  47. Wang, P.; Tanaka, K.; Sugiyama, S.; Dai, X.; Zhao, X.; Liu, J. A micro electromagnetic low level vibration energy harvester based on MEMS technology. Microsyst. Technol. 2009, 15, 941–951. [Google Scholar] [CrossRef]
  48. Yang, B.; Lee, C.; Xiang, W.; Xie, J.; He, J.; Kotlanka, R.; Low, S.; Feng, H. Electromagnetic energy harvesting from vibrations of multiple frequencies. J. Micromech. Microeng. 2009, 19, 035001. [Google Scholar] [CrossRef]
  49. Yuan, Q.; Sun, X.; Fang, D.; Zhang, H. Design and microfabrication of integrated magnetic MEMS energy harvester for low frequency application. In Proceedings of Transducers’11, Beijing, China, 5–9 June 2011; pp. 1855–1858.
  50. Soliman, M.; Abdel-Rahman, E.; El-Saadany, E.; Mansour, R. A wideband vibration-based energy harvester. J. Micromech. Microeng. 2008, 18, 115021. [Google Scholar] [CrossRef]
  51. Yuen, S.C.L.; Lee, J.M.H.; Li, W.J.; Leong, P.H.W. An AA-sized vibration-based microgenerator for wireless sensors. IEEE Pervasive Comput. 2007, 6, 64–72. [Google Scholar] [CrossRef]
  52. Hoffmann, D.; Kallenbach, C.; Dobmaier, M.; Folkmer, B.; Manoli, Y. Flexible polyimide film technology for vibration energy harvesting. In Proceedings of PowerMEMS 2009, Washington DC, USA, 1–4 December 2009; pp. 344–347.
  53. Park, J.; Bang, D.; Park, J. Micro-fabricated electromagnetic power generator to scavenge low ambient vibration. Magn. IEEE Trans. 2010, 46, 1937–1942. [Google Scholar] [CrossRef]
  54. VEH-360; Technical report; Ferro Solutions Inc.: Woburn, MA, USA, 2007.
  55. PMG17; Technical report; Perpetuum Ltd.: Southampton, UK, 2009.
  56. Arnold, D.; Wang, N. Permanent magnets for MEMS. Microelectromechan. Syst. J. 2009, 18, 1255–1266. [Google Scholar] [CrossRef]
  57. Howey, D.; Bansal, A.; Holmes, A. Design and performance of a centimetre-scale shrouded wind turbine for energy harvesting. Smart Mater. Struct. 2011, 20, 085021. [Google Scholar] [CrossRef]
  58. Herrault, F.; Arnold, D.; Zana, I.; Galle, P.; Allen, M. High temperature operation of multi-watt, axial-flux, permanent-magnet microgenerators. Sens. Actuators A 2008, 148, 299–305. [Google Scholar] [CrossRef]
  59. Zhu, D.; Beeby, S.; Tudor, J.; Harris, N.; White, N. Airflow energy harvester for wireless sensing in air duct. In Proceedigns of PowerMEMS 2011, Seoul, Korea, 15–18 November 2011.
  60. Frayne, S. Windbelt; Technical report; 2007. [Google Scholar]
  61. EnOcean GmbH. Available online: http://www.enocean.com (accessed on 1 January 2013).
  62. Beeby, S. Applications of energy harvesting; Technical report; Presentation, IMTEK: Freiburg, Germany, 20 January 2012. [Google Scholar]
  63. Cymbet, Corp. Available online: http://www.cymbet.com (accessed on 27 June 2012).
  64. PMG27; Technical report; Perpetuum Ltd.: Southampton, UK, 2009.
  65. VEH-460; Technical report; FerroSolutions Inc.: Woburn, MA, USA, 2010.
  66. AA-Vibration Harvester; Technical report; Brother Inc.: Bridgewater, NJ, USA, 2010.
  67. Starner, T. Human-powered wearable computing. IBM Syst. J. 2010, 35, 618–629. [Google Scholar] [CrossRef]
  68. Saha, C.; O’Donnell, T.; Wang, N.; McCloskey, P. Electromagnetic generator for harvesting energy from human motion. Sens. Actuators A 2008, 147, 248–253. [Google Scholar] [CrossRef]
  69. Niu, P.; Chapman, P.; Di Berardino, L.; Hsiao-Wecksler, E. Design and optimization of a biomechanical energy harvesting device. In Proceedings of the Power Electronics Specialists Conference (PESC), 2008. IEEE, Rhodes, Greece, 15–19 June 2008; pp. 4062–4069.
  70. Büren, T.; Tröster, G. Design and optimization of a linear vibration-driven electromagnetic micro-power generator. Sens. Actuators A 2007, 135, 765–775. [Google Scholar] [CrossRef]
  71. nPower PEG. Available online: http://www.npowerpeg.com (accessed on 1 October 2012).
  72. Galchev, T.; McCullagh, J.; Peterson, R.L.; Najafi, K. Harvesting traffic-Iinduced bridge vibrations. In Proceedings of Transducers’11, Beijing, China, 5–9 June 2011.
  73. Sazonov, E.; Li, H.; Curry, D.; Pillay, P. Self-powered sensors for monitoring of highway bridges. IEEE Sens. J. 2009, 9, 1422–1429. [Google Scholar] [CrossRef] [Green Version]
  74. Spreemann, D.; Willmann, A.; Folkmer, B.; Manoli, Y. Characterization and in situ test of vibration transducers for energy-harvesting in automobile applications. In Proceedings of PowerMEMS 2008, Sendai, Japan, 9–12 November 2008; pp. 261–264.
  75. Amirtharajah, R.; Chandrakasan, A.P. Self-powered signal processing using vibration-based power generation. IEEE J. Solid-State Circ. 1998, 33, 687–695. [Google Scholar] [CrossRef]
  76. Cao, X.; Chiang, W.J.; King, Y.C.; Lee, Y.K. Electromagnetic energy harvesting circuit with feedforward and feedback DC–DC PWM boost converter for vibration power generator system. Power Electron. IEEE Trans. 2007, 22, 679–685. [Google Scholar] [CrossRef]
  77. Lee, J.M.H.; Yuen, S.C.L.; Li, W.J.; Leong, P.H.W. Development of an AA Size Energy Transducer with Micro Resonators. In Proceedings of the IEEE International Symposium on Circuit and Systems, Bangkok, Thailand, 25–28 May 2003; pp. IV:876–IV:879.
  78. James, E.; Tudor, M.; Beeby, S.; Harris, N.; Glynne-Jones, P.; Ross, J.; White, N. An investigation of self-powered systems for condition monitoring applications. Sens. Actuators A 2004, 110, 171–176. [Google Scholar] [CrossRef]
  79. Maurath, D.; Hehn, T.; Spreemann, D.; Manoli, Y. An Autonomous Wireless Sensor Platform based on Microgenerators. In Proceedings of PowerMEMS 2007, Freiburg, Germany, 28–29 November 2007; pp. 351–354.
  80. Torah, R.; Tudor, M.; Patel, K.; Garcia, I.; Beeby, S. Autonomous low power microsystem powered by vibration energy harvesting. In Proceedings of IEEE Sensors, Atlanta, GA, USA, 28-31 October 2007; pp. 264–267.
  81. Torah, R.; Glynne-Jones, P.; Tudor, M.; Beeby, S. Energy Aware Wireless Microsystem Powered by Vibration Energy Harvesting. In Proceedings of PowerMEMS’07, Freiburg, Germany, 28–29 November 2007; pp. 323–326.
  82. Peters, C.; Spreemann, D.; Ortmanns, M.; Manoli, Y. A CMOS integrated voltage and power efficient ac’75dc converter for energy harvesting applications. J. Micromech. Microeng. 2008, 18, 104005–104013. [Google Scholar] [CrossRef]
  83. Spies, P.; Pollak, M.; Rohmer, G. Power management for energy harvesting applications. Technical report, Fraunhofer IIS; 2007. [Google Scholar]
  84. Singh, B.; Singh, B.; Chandra, A.; Al-Haddad, K.; Pandey, A.; Kothari, D. A review of single-phase improved power quality AC-DC converters. IEEE Trans. Ind. Electron. 2003, 50, 962–981. [Google Scholar] [CrossRef]
  85. Mitcheson, P.; Toh, T. Power Management Electronics. In Energy Harvesting for Autonomous Systems; Artech House Publishers: London, UK, 2010; pp. 159–210. [Google Scholar]
  86. Szarka, G.; Stark, B.; Burrow, S. Review of power conditioning for kinetic energy harvesting systems. IEEE Trans. Power Electron. 2012, 27, 803–815. [Google Scholar] [CrossRef]
  87. Leicht, J.; Maurath, D.; Manoli, Y. Autonomous and Self-Starting Efficient Micro Energy Harvesting Interface with Adaptive MPPT, Buffer Monitoring, and Voltage Stabilization. In Proceedings of ESSDERC-ESSCIRC 2012, Bordeaux, France, 17–21 September 2012.
  88. Cepnik, C.; Radler, O.; Rosenbaum, S.; Ströhla, T.; Wallrabe, U. Effective optimization of electromagnetic energy harvesters through direct computation of the electromagnetic coupling. Sens. Actuators A 2011, 167, 416–421. [Google Scholar] [CrossRef]
  89. Cepnik, C.; Wallrabe, U. A Micro Energy Harvester with 3d Wire Bonded Micro Coils. In Proceedins of Transducers’11, Beijing, China, 5–9 June 2011; pp. 665–668.
  90. Cepnik, C.; Wallrabe, U. A Flat High Performance Micro Energy Harvester Based on a Serpentine Coil with a Single Winding. In Proceedings of Transducers’11, Beijing, China, 5–9 June 2011; pp. 661–664.
  91. Shearwood, C.; Yates, R. Development of an electromagnetic microgenerator. Electron. Lett. 1997, 33, 1883–1884. [Google Scholar] [CrossRef]
  92. Williams, C.; Shearwood, C.; Harradine, M.; Mellow, P.; Birch, T.; Yates, R. Development of an electromagnetic micro-generator. IEEE Proc. Circ. Devices Syst. 2001, 148, 337–342. [Google Scholar] [CrossRef]
  93. Li, W.J.; Wen, Z.; Wong, P.K.; Chan, G.M.H.; Leong, P.H.W. A Micromachined Vibration-Induced Power Generator for Low Power Sensors of Robotic Systems. In Proceedings of the World Automation Congress, 8th International Symposium on Robotics with Applications, Mauim Hawaii, HI, USA, 11–16 June 2000.
  94. Li, W.J.; Ho, T.C.H.; Chan, G.M.H.; Leong, P.H.W.; Wong, H.Y. Infrared Signal Transmission by a Laser-Micromachined Vibration-Induced Power Generator. In Proceedings of the IEEE Midwest Symposium on Circuits and Systems, Mansing, MI, USA, 8–11 August 2000; pp. 236–239.
  95. Ching, N.N.H.; Chan, G.M.H.; Li, W.J.; Wong, H.Y.; Leong, P.H.W. PCB Integrated Micro-Generator for Wireless Systems. In Proceedings of the International Symposium on Smart Structures and Microsystems, Hongkong, 19–21 October 2000; pp. 876–879.
  96. El-Hami, M.; Glynne-Jones, P.; White, N.; Hill, M.; Beeby, S.; James, E.; Brown, A.; Ross, J. Design and fabrication of a new vibration-based electromechanical power generator. Sens. Actuators A 2001, 92, 335–342. [Google Scholar] [CrossRef]
  97. Glynne-Jones, P.; Tudor, M.; Beeby, S.; White, N. An electromagnetic, vibration-powered generator for intelligent sensor systems. Sens. Actuators A 2004, 110, 344–349. [Google Scholar] [CrossRef]
  98. Beeby, S.; Tudor, M.; Torah, R.; Koukharenko, E.; Roberts, S.; O’Donnell, T.; Roy, S. Macro and Micro Scale Electromagnetic Kinetic Energy Harvesting Generators. In Proceedings DTIP Conference, Citeseer, Stresa, Italy, 26–28 April 2006.
  99. Saha, C.; O’Donnell, T.; Loder, H.; Beeby, S.; Tudor, J. Optimization of an electromagnetic energy harvesting device. IEEE Trans. Magn. 2006, 42, 3509–3511. [Google Scholar] [CrossRef]
  100. Torah, R.; Beeby, S.; Tudor, M.; O’Donnell, T.; Roy, S. Development of a Cantilever Beam Generator Employing Vibration Energy Harvesting. In Proceedings of PowerMEMS 2006, Berkeley, CA, USA, 29 November–1 December 2006; pp. 181–184.
  101. Beeby, S.; Tudor, M.; Torah, R.; Roberts, S.; O’Donnell, T.; Roy, S. Experimental comparison of macro and micro scale electromagnetic vibration powered generators. Microsyst. Technol. 2007, 13, 1647–1653. [Google Scholar] [CrossRef]
  102. Wang, L.; Kazmierski, T.; Al-Hashimi, B.; Beeby, S.; Zhu, D. An Automated Design Flow for Vibration-Based Energy Harvester Systems. In Proceedings of the Conference on Design, Automation and Test in Europe. European Design and Automation Association, Nice, France, 20–24 April 2009; pp. 1391–1396.
  103. Nakano, K.; Saito, T.; Nakayama, A.; Kurose, T. A Portable Generator Using Vibration due to Human Walking. In Proceedings of PowerMEMS 2002, Tsukuba, Japan, 12–13 November 2002; pp. 114–117.
  104. Okazaki, J.; Osaki, Y.; Hosaka, H.; Sasaki, K.; Yamakawa, H.; Itao, K. Dynamic Analysis and Impedance Control of Automatic Power Generators Using Mechanical Vibration. In Proceedings of PowerMEMS 2002, Tsukuba, Japan, 12–13 November 2002; pp. 110–113.
  105. Mizuno, M.; Chetwynd, D.G. Investigation of a resonance microgenerator. J. Micromech. Microeng. 2003, 13, 209–216. [Google Scholar] [CrossRef]
  106. Baker, N.J.; Mueller, M.A.; Spooner, E. Permanent Magnet Air-Cored Tubular Linear Generator for Marine Energy Converters. In Proceedings of Power Electronics, Machines and Drives, 2004.(PEMD 2004). Second International Conference on (Conf. Publ. No. 498). IET, 31 March–2 April, 2004; Volume 2, pp. 862–867.
  107. Beeby, S.P.; Tudor, M.J.; Koukharenko, E.; White, N.M.; O’Donnell, T.; Saha, C.; Kulkarni, S.; Roy, S. Micromachined Silicon Generator for Harvesting Power from Vibrations. In Proceedings of PowerMEMS 2004, Kyoto, Japan, 28–30 November 2004.
  108. Kulkarni, S.; Roy, S.; O’Donnell, T.; Beeby, S.; Tudor, J. Vibration based electromagnetic micropower generator on silicon. J. Appl. Phys. 2006, 99, 08P511. [Google Scholar] [CrossRef]
  109. Beeby, S.; Tudor, M.; Koukharenko, E.; White, N.; O’Donnell, T.; Saha, C.; Kulkarni, S.; Roy, S. Design, Fabrication and Simulations of Microelectromagnetic Vibration Powered Generator for Low Power MEMS. In TIP ’05, Proceedings of Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS, Montreux, Switzerland, 1–3 June 2005; pp. 374–379.
  110. Koukharenko, E.; Beeby, S.P.; Tudor, M.J.; White, N.M.; O’Donnell, T.; Saha, C.; Kulkarni, S.; Roy, S. Microelectromechanical systems vibration powered electromagnetic generator for wireless sensor applications. Microsyst. Technol. 2006, 12, 1071–1077. [Google Scholar] [CrossRef]
  111. Kulah, H.; Najafi, K. An Electrodynamic Micro Power Generator for Low-Frequency Environmental Vibrations. In Proceedings of the IEEE International Conference on MEMS, Maastricht, The Netherlands, 25–29 January 2004; pp. 237–240.
  112. Kulah, H.; Najafi, K. Energy scavenging from low-frequency vibrations by using frequency up-conversion for wireless sensor applications. IEEE Sens. J. 2008, 8, 261–268. [Google Scholar] [CrossRef]
  113. Kulah, H.; Najafi, K. An electrodynamic micro power generator for low-frequency environmental vibrations. J. Microelectromechan. Syst. 2010, 19, 14–27. [Google Scholar]
  114. Kulkarni, S.; Koukharenko, E.; Torah, R.; Tudor, J.; Beeby, S.; O’Donnell, T.; Roy, S. Design, fabrication and test of integrated micro-scale vibration-based electromagnetic generator. Sens. Actuators A 2008, 145, 336–342. [Google Scholar] [CrossRef]
  115. Koukharenko, E.; Tudor, M.; Beeby, S. Performance improvement of a vibration-powered electromagnetic generator by reduced silicon surface roughness. Mater. Lett. 2008, 62, 651–654. [Google Scholar] [CrossRef]
  116. Das, S.; Arnold, D.P.; Zana, I.; Park, J.W.; Lang, J.H.; Allen, M.G. Multi-watt Electric Power from a Microfabricated Permanent-Magnet Generator. In Proceedings of PowerMEMS 2005, Tokyo, Japan, 28–30 November 2005; pp. 287–290.
  117. Arnold, D.; Herrault, F.; Zana, I.; Galle, P.; Park, J.; Das, S.; Lang, J.; Allen, M. Design optimization of an 8 W, microscale, axial-flux, permanent-magnet generator. J. Micromech. Microeng. 2006, 16. [Google Scholar] [CrossRef]
  118. Holmes, A.; Hong, G.; Pullen, K. Axial-flux permanent magnet machines for micropower generation. Microelectromechan. Syst. J. 2005, 14, 54–62. [Google Scholar] [CrossRef]
  119. Pérez-Rodríguez, A.; Serre, C.; Fondevilla, N.; Morante, J.; Montserrat, J.; Esteve, J. Electromagnetic Inertial Generator for Vibrational Energy Scavenging Compatible with Si Technology. In Proceedings of PowerMEMS 2005, Tokyo, Japan, 28–30 November 2005.
  120. Serre, C.; Pérez-Rodríguez, A.; Fondevilla, N.; Martincic, E.; Morante, J.; Montserrat, J.; Esteve, J. Optimization Keys for Vibrational Electromagnetic Generators. In Proceedings of MNE 2006, Barcelona, Spain, 17-20 September 2006.
  121. Serre, C.; Pérez-Rodríguez, A.; Fondevilla, N.; Morante, J.; Montserrat, J.; Esteve, J. Vibrational energy scavenging with Si technology electromagnetic inertial microgenerators. Microsyst. Technol. 2007, 13, 1655–1661. [Google Scholar] [CrossRef]
  122. Serre, C.; Pérez-Rodríguez, A.; Fondevilla, N.; Martincic, E.; Martínez, S.; Morante, J.; Montserrat, J.; Esteve, J. Design and implementation of mechanical resonators for optimized inertial electromagnetic microgenerators. Microsyst. Technol. 2008, 14, 653–658. [Google Scholar] [CrossRef]
  123. Raisigel, H.; Cugat, O.; Delamare, J. Permanent magnet planar micro-generators. Sens. Actuators A 2006, 130, 438–444. [Google Scholar] [CrossRef]
  124. Spreemann, D.; Folkmer, B.; Maurath, D.; Manoli, Y. Tunable Transducer for Low Frequency Vibrational Energy Scavenging. In Proceedings of Eurosensors 2006, Göteborg, Sweden, 17–20 September 2006; pp. 17–20.
  125. Spreemann, D.; Volkmer, B.; Maurath, D.; Manoli, Y. Innovative “Energy Harvesting" Prinzipien zur Wandlung von kinetischer Energie. In Proceedings of the VDE/VDI 4. GMM-Workshop “Energieautarke Sensorik”, Karlsruhe, Germany, 12–13 November 2006; pp. 7–12.
  126. Cheng, S.; Wang, N.; Arnold, D.P. Modeling of magnetic vibrational energy harvesters using equivalent circuit representations. J. Micromech. Microeng. 2007, 17, 2328–2335. [Google Scholar] [CrossRef]
  127. Hadaš, Z.; Kluge, M.; Singule, V.; Ondrusek, Č. Electromagnetic Vibration Power Generator. In Proceedings of the IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives (SDEMPED), Cracow, Poland, 6–8 September 2007; pp. 451–455.
  128. Hadaš, Z.; Zouhar, J.; Singule, V.; Ondrusek, Č. Design of Energy Harvesting Generator Base on Rapid Prototyping Parts. In Proceedings of 13th Power Electronics and Motion Control Conference (EPE/PEMC), Poznan, Poland, 1–3 September 2008; pp. 1665–1669.
  129. Hadaš, Z.; Singule, V.; Ondrusek, Č. Optimal design of vibration power generator for low frequency. Solid State Phenom. 2009, 147, 426–431. [Google Scholar]
  130. Hadaš, Z.; Ondrusek, Č; Kurfürst, J. Optimization of vibration power generator parameters using self-organizing migrating algorithm. Recent Adv. Mechatron. 2010, XIV, 245–250. [Google Scholar]
  131. Hadaš, Z.; Ondrusek, Č; Singule, V. Power sensitivity of vibration energy harvester. Microsyst. Technol. 2010, 16, 691–702. [Google Scholar]
  132. Hadaš, Z.; Singule, V.; Ondrusek, C. Verification of vibration power generator model for prediction of harvested power. Solid State Phenom. 2010, 164, 291–296. [Google Scholar] [CrossRef]
  133. Kurfürst, J. Optimization Algorithm SOMA Applied on the Vibration Generator. In Proceedings of the 16th Conference STUDENT EEICT 2010, Brno, Czechia, 29–29 April 2010.
  134. Huang, W.S.; Tzeng, K.E.; Cheng, M.C.; Huang, R.S. A silicon mems micro power generator for wearable micro devices. J. Chin. Inst. Eng. 2007, 30, 133–140. [Google Scholar] [CrossRef]
  135. Pan, C.T.; Wu, T.T. Development of a rotary electromagnetic microgenerator. J. Micromech. Microeng. 2007, 17, 120. [Google Scholar] [CrossRef]
  136. Wang, P.; Dai, X.; Fang, D.; Zhao, X. Design, fabrication and performance of a new vibration-based electromagnetic micro power generator. Microelectron. J. 2007, 38, 1175–1180. [Google Scholar] [CrossRef]
  137. Bowers, B.; Arnold, D. Spherical Magnetic Generators for Bio-Motional Energy Harvesting. In Proceedings of PowerMEMS 2008, Sendai, Japan, 9–12 November 2008.
  138. Hohlfeld, D.; Vullers, R.; Boeck, J. An Electromagnetic Energy Harvester for Low Frequency Excitation. In Proceedings of the 2nd European Conference & Exhibition on Integration Issues of Miniaturized Systems-MOMS, MOEMS, ICS and Electronic Components (SSI), Barcelona, Spain, 8–10 April 2008; pp. 1–8.
  139. Toh, T.; Mitcheson, P.; Holmes, A.; Yeatman, E.M. A continuously rotating energy harvester with maximum power point tracking. J. Micromech. Microeng. 2008, 18, 104008. [Google Scholar] [CrossRef]
  140. Thorner, L.; Mitcheson, P.D.; Holmes, A.S. Scaling Laws for Energy Harvesters in a Marine Environment. In Proceedings of PowerMEMS 2009, Washington DC, USA, 1–4 December 2009; pp. 75–78.
  141. Toh, T.; Mitcheson, P.D.; Yeatman, E.M. Wireless Sensor Node Using a Rotational Energy Harvester with Adaptive Power Conversion. In Proceedings of PowerMEMS 2009, Washington DC, USA, 1–4 December 2009; pp. 273–276.
  142. Toh, T.; Mitcheson, P.D.; Yeatman, E.M. Control models of Switch Mode Maximum Power Point Tracking Interfaces for Energy Harvesting Devices. In Proceedings of PowerMEMS 2010, Leuven, Belgium, 30 November–3 December 2010; pp. 155–158.
  143. Waters, R.; Chisum, B.; Jazo, H.; Fralick, M. Development of an Electro-Magnetic Transducer for Energy Harvesting of Kinetic Energy and Its’ Applicability to a MEMS-scale Device. In Proceedings Nanopower Forum, Irvine, CA, USA, 2–4 June 2008.
  144. Lumedyne Technologies. Energy Harvesting with Lumedyne’s V-POWER Technology. Available online: http://www.lumedynetechnologies.com (accessed on 7 May 2012).
  145. Wischke, M.; Masur, M.; Woias, P. A Hybrid Generator for Virbration Energy Harvesting Applications. In Proceedings of Transducers’09, Denver, CO, USA, 21–25 June 2009; pp. 521–524.
  146. Wischke, M.; Masur, M.; Goldschmidtboeing, F.; Woias, P. Electromagnetic vibration harvester with piezoelectrically tunable resonance frequency. J. Micromech. Microeng. 2010, 20. [Google Scholar] [CrossRef]
  147. Wischke, M.; Masur, M.; Goldschmidtboeing, F.; Woias, P. Piezoelectrically Tunable Electromagnetic Vibration Harvester. In Proceedings of the IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS), Hongkong, China, 24–28 January 2010; pp. 1199–1202.
  148. Spreemann, D.; Hoffmann, D.; Folkmer, B.; Manoli, Y. Numerical optimization approach for resonant electromagnetic vibration transducer designed for random vibration. J. Micromech. Microeng. 2008, 18, 104001–104010. [Google Scholar] [CrossRef]
  149. Spreemann, D.; Folkmer, B.; Manoli, Y. Comparative Study of Electrodynamic Coupling Architectures for Vibration Energy Harvesting Devices. In Proceedings of PowerMEMS 2008, Sendai, Japan, 9–12 November 2008; pp. 257–260.
  150. Spreemann, D.; Willmann, A.; Folkmer, B.; Manoli, Y. Optimization and Comparison of Back Iron Based Coupling Architectures for Electromagnetic Vibration Transducers Using Evolution Strategy. In Proceedings of PowerMEMS 2009, Washington DC, USA, 1–4 December 2009.
  151. Spreemann, D.; Hoffmann, D.; Folkmer, B.; Maurath, D.; Manoli, Y. Advanced Numerical Modeling of an Electromagnetic Vibration Transducer. In Proceedings of PowerMEMS 2007, Freiburg, Germany, 28–29 November 2009; pp. 97–100.
  152. Zhu, D.; Roberts, S.; Tudor, J.; Beeby, S. Closed Loop Frequency Tuning of a Vibration-Based Micro-Generator. In Proceedings of PowerMEMS 2008, Sendai, Japan, 9–12 November 2008; pp. 229–232.
  153. Ayala-Garcia, I.; Zhu, D.; Tudor, J.; Beeby, S. Autonomous Tunable Energy Harvester. In Proceedings of PowerMEMS 2009, Washington DC, USA, 1–4 December 2009; pp. 49–52.
  154. Zhu, D.; Roberts, S.; Tudor, M.; Beeby, S. Design and experimental characterization of a tunable vibration-based electromagnetic micro-generator. Sens. Actuators A 2010, 158, 284–293. [Google Scholar] [CrossRef]
  155. Cepnik, C. Entwurf und Aufbau eines kompakten elektrodynamischen Lineargenerators. Master’s Thesis, University of Technology Ilmenau, Ilmenau, Germany, 26 September 2009. [Google Scholar]
  156. Cepnik, C.; Radler, O.; Rosenbaum, S.; Ströhla, T. A Compact Electrodynamic Energy Harvester With High Power Density. In Proceedings of the Actuator10, Bremen, Germany, 14–16 June 2010; pp. 512–515.
  157. Hatipoglu, G.; Ürey, H. FR4-based electromagnetic energy harvester for wireless sensor nodes. Smart Mater. Struct. 2009, 19, 015022. [Google Scholar] [CrossRef]
  158. Kim, S.; Ji, C.; Galle, P.; Herrault, F.; Wu, X.; Lee, J.; Choi, C.; Allen, M. An electromagnetic energy scavenger from direct airflow. J. Micromech. Microeng 2009, 19, 094010. [Google Scholar] [CrossRef]
  159. Bansal, A.; Howey, D.; Holmes, A. Cm-scale Air Turbine and Generator for Energy Harvesting from Low-Speed Flows. In Proceedings of the Transducers’09, Denver, CO, USA, 21–25 June 2009; pp. 529–532.
  160. Liao, L.D.; Chao, P.C.P.; Chen, J.T.; Chen, W.D.; Hsu, W.H.; Chiu, C.W.; Lin, C.T. A miniaturized electromagnetic generator with planar coils and its energy harvest circuit. IEEE Trans. Magn. 2009, 45, 4621–4627. [Google Scholar] [CrossRef]
  161. Mack, B.; Kratt, K.; Stürmer, M.; Wallrabe, U. Electromagnetic Micro Generator Array Consisting of 3D Micro Coils Opposing a Magnetic PDMS Membrane. In Proceedings of the Transducers’09, Denver, CO, USA, 21–25 June 2009; pp. 1397–1400.
  162. Mack, B. Elektromagnetische Energiewandler mit dem Potential zur großflächigen Anwendung. Ph.D. Thesis, University of Freiburg, IMTEK, Freiburg, Germany, 2010. [Google Scholar]
  163. Ramhan, R. Effects of Non-linear Stiffness on Performance of an Energy Harvesting Device. Ph.D. Thesis, University of Southampton, Southampton, UK, September 2009. [Google Scholar]
  164. Barton, D.; Burrow, S. Numerical Continuation in a Physical Experiment: Investigation of a Nonlinear Energy Harvester. J. Comput. Nonlinear Dyn. 2011, 6, 011010. [Google Scholar] [CrossRef]
  165. Barton, D.; Mann, B.; Burrow, S. Control-based continuation for investigating nonlinear experiments. J. Vib. Control 2011, 225, 475–484. [Google Scholar] [CrossRef]
  166. Khan, F.; Sassani, F.; Stoeber, B. Copper foil-type vibration-based electromagnetic energy harvester. J. Micromech. Microeng. 2010, 20, 125006. [Google Scholar] [CrossRef]
  167. PMG FSH . Technical report, Perpetuum PMG FSH. Available online: http://www.perpetuum.com (accessed on 17 October 2010).
  168. Wang, D.; Chang, K. Electromagnetic energy harvesting from flow induced vibration. Microelectron. J. 2010, 41, 356–364. [Google Scholar] [CrossRef]
  169. Zhang, Q.; Chen, S.; Baumgartel, L.; Lin, A.; Kim, E. Microelectromagnetic Energy Harvester with Integrated Magnets. In Proceedings of the Transducers’11, Beijing, China, 5–9 June 2011; pp. 1657–1660.
  170. HyMini. Available online: http://www.hymini.com (accessed on 1 October 2012).
  171. iFan. Available online: http://www.tjeerdveenhoven.com (accessed on 1 October 2012).

Share and Cite

MDPI and ACS Style

Cepnik, C.; Lausecker, R.; Wallrabe, U. Review on Electrodynamic Energy Harvesters—A Classification Approach. Micromachines 2013, 4, 168-196. https://doi.org/10.3390/mi4020168

AMA Style

Cepnik C, Lausecker R, Wallrabe U. Review on Electrodynamic Energy Harvesters—A Classification Approach. Micromachines. 2013; 4(2):168-196. https://doi.org/10.3390/mi4020168

Chicago/Turabian Style

Cepnik, Clemens, Roland Lausecker, and Ulrike Wallrabe. 2013. "Review on Electrodynamic Energy Harvesters—A Classification Approach" Micromachines 4, no. 2: 168-196. https://doi.org/10.3390/mi4020168

Article Metrics

Back to TopTop