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Figure 13. (a) bright field image of atomic force microscopy (AFM) tip and the cell in the 
electroporation medium (cell A is electroporated while cell B and C are about 20 µm away 
from cell A); (b) Fluorescence image of rat fibroblast cell after electroporation; 
(c) Confocal fluorescence image of an electroporated cell; (d)–(h) Sequence of real time 
confocal fluorescence images of rat fibroblast cell after electroporation; (i) Calculated 
spatial distribution of electric field in the vicinity of the cell being electroporated. 
Permission to reprint obtained from American Institute of Physics (AIP) [29]. 

 

In recent years, Boukany et al. [30] showed nanochannel based localized single cell electroporation 
with a precise amount of biomolecules delivery. In this device, they positioned a single cell in one 
microchannel by optical tweezers and transfection agent was loaded to another microchannel. These 
two microchannels were connected by one nanochannel. To apply a very high electric field in between 
two microchannels, a transfection agent was delivered through the nanochannel using an 
electrophoretically driven process and finally drugs were delivered inside a single cell through a very 
small area of the cell membrane. In 2012, Chen et al. demonstrated another localized single cell 
membrane electroporation usimg ITO microelectrode based transparent chip [27]. Figure 14 shows 
microfluidic localized single cell membrane electroporation device. They deposited ITO films on a 
covered glass substrate and patterend it by standard lithographic process to form as ITO lines. After 
that, a thin SiO2 layer was deposited as a passivation layer by plasma enhanced chemical vapor 
deposition (PECVD) technique. The final ITO lines were cut by the focused ion beam (FIB) technique. 
The gap between two electrodes were 1 µm and width of each electrode was 2 µm. When single cell 
was strongly attached in between two electrodes gap, the electric field was intensed in only a 1 µm gap 
area on single cell membrane. As a result, they demonstrated localized single cell membrane 
electroporation with microfluidic device. Figure 14a shows localized electroporation process between 
two micro-electrodes and Figure 14b shows multiple number of electrodes for LSCMEP process. 
Figure 14 c and d shows the optical microscope image of patterened ITO microelectrodes and scanning 
electron microscope (SEM) image of ITO microelectrodse with micro-channel. According to their 
results, they achived 0.93 µm electroporation region with 60% cell viability for 8Vpp 20 ms pulse 
application. To reduce the gap between two electrodes, a high transfection rate can be achived by this 
technique. This device not only control the recovery of cell membranes (reversible electroporation) 
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without cell damage but also it provides clear optical view by using an inverted microscope (ITO 
based transparent chip). 

Figure 14. Localized single cell membrane electroporation (LSCMEP) device (a) localized 
electroporation process between two microelectrodes; (b) multiple number of 
microelectrodes for LSCMEP process; (c) optical microscope image of ITO 
microelectrodes; (d) scanning electron microscope image of ITO microelectrodes with 
microchannel. Permission to reprint obtained from Springer [27]. 

 

Figure 15. (a) Schematic diagram with electrical connection of the device and PDMS 
structure; (b) an array of transistors with nanowires and nanoribbons. Figure has been 
redrawn from reference [77]. 

 

4.2. LSCMEP for Cell Lysis 

Recently, another LSCMEP based device was proposed by Jokilaakso et al. [77] for single cell 
lysis. They reported a silicon nanowire and nanoribbon based biological field effect transistor for 
single cell positioning and lysis mechanism. Figure 15a shows the cross sectional view and electric 
connection with PDMS above the device and Figure 15b shows an array of the transistors with both 
nanowires and nanoribons. To position the single cell on this device, they used programmable 
magnetic field for magnetic manipulation of 7.9 µm COOH modified COMPEL magnetic 



Micromachines 2013, 4 350 
 
microsphere. After positioning the single cell (HT-29) on top of the transistor, cells were adhered for 
30 min prior to electroporation experiment. The applied electric field was 600–900 mVpp (peak to 
peak) at 10 MHz for 2 ms pulse. This electric field was connected with a shorted source and drain in 
one terminal and another terminal connected on the gate of the device. The electric field intensity was 
fringing in nature, which affected the cell membrane integrity leading to cell lysis. This device can 
perform single cell lysis which is potentially applicable to medical diagnostics and biological 
cell studies. 

5. Conclusions 

In summary, this article describes the details about bulk electroporation (BEP), single cell 
electroporation (SCEP), and localized single cell membrane electroporation (LSCMEP) by using 
micro/nanofluidic devices with their advantages and disadvantages. All of these processes can deliver 
drugs, DNA, RNA, oligonucleotides, proteins, etc. However, to analyze cell to cell behavior with their 
organelles and intracellular biochemical effect, single cell analysis must be executed. 
Micro/nanofluidic devices are the potential candidates to analyze single cells, because of their 
dimension reduction to the dimension of single cell level. These devices provide easy performance 
such as cell handling, lower power consumption, low toxicity, small sample volume, lower 
contamination rate, high cell viability, and high transfection rate when compared to conventional 
electroporation. To reduce the electrode area and gap between two electrodes by using 
micro/nanofluidic devices, selective and localized drug delivery is possible. This new approach is 
called localized single cell membrane electroporation (LSCMEP). However, until now this technique 
is in the development stage. In the future, the LSCMEP process can provide selective and specific 
single cell manipulation from millions of populations of cells together. Micro/nanofluidic devices can 
approach this level in the near future, which will be potentially beneficial for medical diagnostics, 
proteomics analysis and biological studies. 
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