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Abstract: In this paper, the dynamic performance of a Kalman filter (KF) was analyzed, 
which is used to combine multiple measurements of a gyroscopes array to reduce the noise 
and improve the accuracy of the individual sensors. A principle for accuracy improvement 
by the KF was briefly presented to obtain an optimal estimate of input rate signal. In 
particular, the influences of some crucial factors on the KF dynamic performance were 
analyzed by simulations such as the factors input signal frequency, signal sampling, and KF 
filtering rate. Finally, a system that was comprised of a six-gyroscope array was designed 
and implemented to test the dynamic performance. Experimental results indicated that the 
1σ error for the combined rate signal was reduced to about 0.2°/s in the constant rate test, 
which was a reduction by a factor of more than eight compared to the single gyroscope. The 
1σ error was also reduced from 1.6°/s to 0.48°/s in the swing test. It showed that the estimated 
angular rate signal could well reflect the dynamic characteristic of the input signal in 
dynamic conditions. 

Keywords: microelectromechanical systems (MEMS) gyroscope; array signal; filtering; 
dynamic performance; noise reduction 
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1. Introduction 

Although there is still a great distance between the accuracy of microelectromechanical systems 
(MEMS) vibratory gyroscopes and traditional gyroscopes such as the fiber-optics gyroscopes, MEMS 
gyroscopes have recently received more and more attention because of their low cost, small device size, 
low power consumption, and high reliability combined with ease of fabrication in large numbers on a 
single wafer [1,2]. MEMS gyroscopes are important components of inertial measurement units (IMU) 
and are applicable in many sectors such as vehicle navigation, automotive applications, and rollover 
detection or consumer electronics [3–6]. To date, low accuracy is one of the biggest bottlenecks in 
development of the MEMS gyroscope, which limits its applications requiring high-precision angular rate 
signals such as navigation and guidance. Recently, some researchers have explored the possibility to 
design an array structure of MEMS gyroscopes to improve the signal-to-noise ratio and sensitivity of the 
device [7,8], in which the sense units are connected to increase the overall detective capacity.  
Wang et al. [7] designed a gyroscope array, which combines several gyroscope cells by using a unique 
detection mass to increase the gain of sense-mode and improve the system sensitivity. Fortunately, the 
technology of multi-signal fusion for the gyroscope array is becoming an effective approach to reduce 
the measurement noise and improve the accuracy of the MEMS gyroscope [9–11], which is called the 
technology of virtual gyroscope [11]. Its principle lies in several gyroscopes with the same specification 
that can be combined with each other to form a sensor array and fuse multiple outputs to obtain an 
optimal rate estimate with a filtering technique. 

Signal processing of the gyroscopes array with an optimal estimate algorithm makes it possible to 
demonstrate significant improvements in measuring angular rates. It was developed to reduce noise and 
decrease bias drifts existing in the single gyroscopes. In the year of 2003, Bayard and Ploen first 
proposed the technology of virtual gyroscopes [11]. Previously, an integrated MEMS gyroscope array 
had been presented by three separate sensors, and a two-level optimal filtering scheme was designed to 
reduce the bias drift [12]. Additionally, a virtual gyroscope that was composed of a six-gyroscope array 
was designed [13]. The factors that affected the accuracy improvement were analyzed in detail. 
Particularly, the influence of correlation factors on the accuracy improvement was evaluated. The results 
indicated that the performance of the Kalman filter (KF) was better than that of the arithmetic averaging 
process. In addition, an approach for combining multiple uncorrelated MEMS gyroscopes was presented 
to improve the accuracy [14]. A KF was designed to fuse the outputs of the several uncorrelated sensors, 
and the improvement was better than that of an averaging process under certain conditions. 

Recently, the redundant MEMS IMUs have been utilized to improve navigation performance. 
Numerous studies have been undertaken on redundant IMU integration [15,16], into what can be called 
a virtual IMU (VIMU). In [15], three mechanization approaches of the system and an observation model 
for the multiple IMUs integration were described. In [16], an approach for reducing the noise of the 
inertial sensors was studied by using multiple MEMS IMUs; furthermore, the inertial navigation system 
(INS)/global positioning system (GPS) integrator based on the synthetic IMU, extended IMU, and 
geometrically constrained IMU mechanization were presented for integration of GPS with redundant 
MEMS-IMUs. It was shown that the idea of a virtual gyroscope is essentially identical with the VIMU, 
since both of them fuse multiple measurements to create a combined signal for improving performance. 
Additionally, some important studies are carried out to analyze the stochastic modeling of IMU to 
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enhance the performance of INS/global navigation satellite systems (GNSS) [17,18]. Usually, the error 
features and the INS error calibration model of an IMU depend on the environmental conditions that 
mainly include temperature and dynamics. A method for IMU error analysis was proposed in [17], which 
consisted of using a reference IMU together with the IMU under test for the simultaneous measurement 
of two IMU signals. The relationship between the IMU errors and motion dynamics was investigated as 
well. In [18], an estimator based on the Generalized Method of Wavelet Moments (GMWM) was presented. 
It applied the GMWM on error signals from MEMS inertial sensors by building and estimating 
composite stochastic processes, which could solve the problem of identifying correct error-state 
parameters of inertial sensors when several stochastic processes were superposed. 

For the creation of a gyroscope array, the dynamic performance of the KF is a key factor to improve 
the overall accuracy of the gyroscope in a dynamic condition. However, the previous reported virtual 
gyroscope approaches [11–14] primarily focused on the analysis and evaluation of noise reduction in a 
static condition. Unfortunately, few of the previous works have analyzed the dynamic performance of 
KF. Furthermore, the output of a MEMS gyroscope is widely modeled as a summation of the true angular 
rate signal and random noise. The terms of the random noise are determined by the type of sensor and 
its application environment. The true angular rate signal is directly modeled to obtain an optimal 
estimate—this is the foundation and prominent characteristic of the virtual gyroscope technology. 
However, as for such modeling, the dynamic performance of KF is heavily related to designing 
parameters such as noise variance driving for true angular rate signal and KF filtering rate. In this study, 
the dynamic performance of a virtual gyroscope is evaluated, furthermore, the influence of noise 
variance for driving true angular rate signals, input signal frequency, signal sampling rate, and KF 
filtering rate on the performance improvement is also studied. The research provides a useful basis and 
guidance for practical system implementation and application. 

This paper is organized as follows. In Section 2 the principle model of the virtual gyroscope is briefly 
described. In Section 3 the dynamic performance of the virtual gyroscope is analyzed. In Section 4 the 
dynamic performance is verified by various simulations. In Section 5 some dynamic experiments are 
conducted including constant rate and swinging rate tests in the turn-table. Lastly, some conclusions  
are drawn. 

2. Principle Model of the Virtual Gyroscope 

The output of the gyroscope is corrupted by some typical errors such as bias, drift, and scale factor 
error [19]. Hence, a general gyroscope measurement model can be formed as follows: 

0( ) (1 ) ( ) ( ) ( )

( ) ( )
sf

b

y t g t b b t n t

b t w t

ω= + + + +


= 
 (1) 

where y is the measured angular rate, ω is the true angular rate, b0 is the bias, wb is the rate random walk 
(RRW) white noise, b is the bias drift driven by noise wb, n(t) is the angular random walk (ARW) white 
noise, and gsf is the scale factor error. The bias b0 is a constant offset from the sensor’s output, which 
can be determined and compensated through averaging the long-term data acquired from the sensor 
output subjected to zero input. The scale factor error gsf will seriously affect the outputs of MEMS 
gyroscope during a high rate maneuvering. 
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In this paper, bias b0 can be known through averaging the long-term data. For MEMS gyroscopes 
with a lower accuracy, numerous experiments have demonstrated that the RRW and ARW are considered 
the most dominant error sources. The results in [20] demonstrated that the ARW is a dominant error in 
the short cluster time, whereas the bias drift term is the dominant error in the long cluster time. The RRW 
term will affect the long-term accuracy of the MEMS gyroscope. In this paper, the scale factor error can 
be removed from the general measurement Equation (1) because of the lower dynamic environment. 
With a short time application, the bias drift can be ignored. Therefore, to reduce the dimension of KF 
and estimate the true angular rate signal from the gyroscope’s measurement, a simplified model was 
taken to describe the gyroscope as: 

( ) ( ) ( )y t t n tω= +  (2) 

As for a gyroscope array with a component device number of N, Equation (2) can be expressed in 
vector form as: 

( ) ( ) ( )t t tω= ⋅ +Z H v  (3) 

with 

[ ]1 2( ) , , , T
Nt y y y= Z , [ ] 11,1, ,1 T

N×
= H , [ ]1 2( ) , , , T

Nt n n n= v  (4) 

where iy  is the output of rate signal of the ith gyroscope, ( )tZ  is the output measurements of the 
gyroscope array, H  is the measurement matrix, in  is the ARW white noise of the ith gyroscope, ( )tv  is 

the white noise vector with [ ( )] 0E t =v  and [ ( ) ( )] ( )TE t t τ δ τ+ =v v R , representing system 
measurement noise, and R is the covariance matrix of the noise vector ( )tv . 

In order to get a considerable noise reduction, the true angular rate signal is modeled to design a KF. 
Here, the true angular rate signal is described by a process of random walk driven by a zero-mean white 
noise nω [13]: 

nωω =  (5) 

where nω is a zero-mean white noise with [ ( ) ( )] ( )TE n t n t qω ω ωτ δ τ+ = , and qω  is the variance of white 

noise nω. Using a KF technique, setting the true angular rate ω as the system estimated quantity, based 
on the gyroscope model of Equation (3) and true angular rate model of Equation (5), thus the filtering 
state-space model for virtual the gyroscope system can be expressed as: 

( ) ( ) ( )
( ) ( ) ( )

X t F X t w t
t X t t

 = ⋅ +


= ⋅ +



Z H v
 (6) 

where KF system state is ( )X t ω= , the coefficient scalar 0F = , and the system process noise ( )w t nω=  
with [ ( ) ( )] ( )TE w t w t qωτ δ τ+ = . 

Based on Equation (6), the continuous KF for the true angular rate estimate can be given as: 

ˆ ˆ( ) ( ) ( ) ( )X t t t X t = − 
 K Z H  (7) 

1( ) ( ) Tt P t −=K H R  (8) 
1( ) ( ) ( )TP t q P t P tω

−= − H R H  (9) 
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where ˆ ( )X t is the estimate of the system state, ( )tK  is the filter gain, and ( )P t  is the estimated covariance. 
Previously, an analytic approach was used to solve the continuous-time KF from Equation (7) to 
Equation (9) in [13], and led to a steady-state covariance and gain, thus the discrete-time KF for rate 
signal estimate can be given as: 

1 1
1 1

ˆ ˆ (1 )Cq T Cq T T
k k kX e X C eω ω− −− −
+ += + − H R Z  (10)  

where 1TC −= H R H , and T is the filtering period. Hence the true angular rate signal can be estimated 
and obtained by the discrete-time KF of Equation (10). 

If we define the parameter α exp( )Cq Tω= −  and the matrix 1 1(1 α) TQ C H R− −= ⋅ − ⋅  (here β is the 

component values of the matrix Q), then the discrete-time KF of Equation (10) can be expressed as: 

[ ]1 11
ˆ ˆα β 1,1, , 1k k kNX X+ +×

= ⋅ + ⋅ ⋅ Z  (11) 

Therefore, the parameters α and β can be regarded as the KF weight factor corresponding to the estimated 
value ˆ

kX  and system measurement 1k+Z , which satisfies the relationship of α + N·β = 1.0. Equation (11) 

shows that the values of factors α and β are mainly determined by the parameter qω. The expression of 
factor α indicates that the value of α is a negative exponential function with parameter qω , thus it will 

quickly decrease with increasing qω, and eventually it will approach zero while qω increases to a larger 
value. On the contrary, factor β will increase with increasing qω, and eventually approach to 1/N. In this 
case, the performance of KF will be comparable with that of an arithmetic averaging process. 

It can be seen in Equations (5) and (10) that the true angular rate signal is modeled directly to obtain 
an optimal estimate. The advantage of this lies in that a complete state-space model for KF can be 
designed and an optimal estimate of the true angular rate can be directly obtained using a KF technique. 
Furthermore, the performance of KF and accuracy of a combined rate signal can be analyzed by the 
covariance P(t), providing a basis for parameter adjustment. However, the random walk process as 
described in Equation (5) cannot always be used to accurately represent and reflect the practical 
characteristics of the input rate signal, especially in a high dynamic condition. However, practically, if 
the input rate signal has a small variation or is nearly constant, the true angular rate signal could be 
modeled with a small driven white noise variance qω. If the input rate has a more dynamic behavior, the true 
angular rate signal can be modeled with a larger driven white noise variance qω. Thus, the variance qω can 
be used to set a different KF bandwidth to satisfy the requirement of dynamic characteristics. 

In the designing of KF, the number N of individual gyroscopes in the array can be chosen as any 
integer. Due to the characteristics of MEMS technology, it can design and fabricate multiple sensor 
arrays in a small size. Therefore, the focus of this paper is not on the geometrical layout of the gyroscope 
array. Furthermore, the performance of a virtual gyroscope can be evaluated by P(t) since it represents 
the estimated variance of the state vector X(t) [13]. Previous work in [13] demonstrates that the noise 
reduction can be increased and the performance of KF can be further improved by increasing the number 
of N. However, it should try to select the components of the gyroscope that have the same specification 
to construct a sensor array, thus one needs to consider the sensor array complexity and uniformity 
between the component gyroscopes. In this paper, the six-gyro array (N = 6) is selected to construct the 
virtual gyroscope and analyze the performance. It should be noted that N = 6 is really not an optimal 
choice, it is only chosen to analyze the dynamic performance of the KF. 
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3. Dynamic Performance Analysis of Virtual Gyroscope 

In our previous studies [13], a steady-state covariance P∞(t) was obtained using an analytic solution. 
Furthermore, the relationship between the correlation factors among the cells of the sensor array and the 
noise reduction was analyzed in detail. Here we will focus on the dynamic characteristics analysis of the 
virtual gyroscope system. 

3.1. Analysis of KF Weight Factor on Performance 

The discrete-time KF of Equation (11) indicates that the rate estimate 1
ˆ

kX + , i.e., 1ˆkω +  for the time 
point tk+1 is composed of two parts, i.e., the rate estimate ˆ

kX  for the time point tk and the outputs of 
gyroscope array 1k+Z  at tk+1 time point, the weight of which are determined by the factors α and β. With 
the sensors number of N = 6, the assumption is made that the ARW noise for the single gyroscope is 
6.3°/ h  and the sampling rate is set to 200 Hz. When using the expression of α and β, the values of α 
and β versus a different parameter qω are plotted in Figure 1. 

Figure 1. Plot of Kalman filter (KF) weight factors versus different values of qω . 

 

Figure 1 shows that the factors α and β vary with qω. In particular, factor α decreases and factor β 
increases when qω is increased. Furthermore, the values of α are bigger than those of β when qω is located 
within a small range, now ˆ

kX  will dominate the values of 1
ˆ

kX +  compared to the 1k+Z . In this case, the 
performance of KF is higher than that of an averaging process. The factor α will converge to zero and β 
will approach an averaging effect factor of 1/6 with increasing values of qω, at this point the output of 
the KF 1

ˆ
kX +  entirely depends on the measurements of 1k+Z , and it is approximately equal to the effect 

of an averaging process. Therefore, by analyzing the KF weight factor, the KF dependency on the 
estimated value ˆ

kX  and measurement value 1k+Z  can be observed directly. Meanwhile, the relationship 
between the performance of KF and a simple averaging process is revealed, providing a basis for 
choosing the system designing parameters. 
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3.2. Analysis of Sampling and Filtering Rate on Accuracy Improvement 

In Section 2, the true angular rate signal ω is modeled as a random walk driven by a white noise nω, i.e., 
( )t nωω = , thus the discrete-time model for describing the true angular rate signal can be expressed as: 

1k k kWω ω+ = +  (12) 

where Wk is a sequence of the white noise nω. The transition matrix for the KF system of Equation (6) is 
, 1 1k kΦ − =  due to the F = 0. Thus, according to the Equation (12), the KF filtering model of Equations (6) 

and (10) will be more accurate when the input rate signal is nearly zero or with a constant characteristic, 
in such a situation, a considerable accuracy improvement can be obtained by the KF. On the contrary, 
the accuracy improvement would be degraded due to an inexact filtering model when the input rate 
signals have a high dynamic characteristic, because the variations between the values of the two input 
rate signals associated with the adjacent time points increase in a high dynamic condition, while the KF 
model requires a smaller variations. To overcome this problem, the sensors sampling rate and KF 
filtering rate can be increased to reduce the variations between the values of two input rate signals. In 
the simulation sections, the influence of the sensors sampling rate and KF filtering rate on accuracy 
improvement will be analyzed and evaluated. 

4. Dynamic Simulation of Virtual Gyroscope 

In previous works, the static performance of virtual gyroscope was analyzed and evaluated in [13]. 
The simulations in this study will focus on analyzing the influence of some factors on the dynamic 
performance improvement, i.e., frequency of input signal, parameter qω, sensors signal sampling, and 
KF filtering rate. The standard deviation (1σ) of the estimated errors is used to quantify the accuracy 
before and after KF filtering in the dynamic condition, thus the improvement factor (IF) can be defined as: 

σ / σsingle VgIF =  (13) 

where σsingle is the 1σ error for the component gyroscopes, and σVg is the 1σ error of the estimated errors 
for the virtual gyroscope outputs. The mathematical definition of the 1σ error is defined as: 

2
,

1

1 ˆσ ( )
1

n

i i true
in

ω ω
=

= −
− ∑  (14) 

where ˆiω  is the estimate of the true angular rate associated with the ith time, and ,i trueω  is the true angular 

rate associated with the ith time, and n is the length number of samples. The simulink model for  
discrete-time KF (Equation (10)) is shown as Figure 2. 

Figure 2. Simulink filtering model for discrete-time KF. 

 

Unit Delay

z

1

To File

Virtual gyro .mat

Gain Matrix

K

From File

Gyros_drifts .mat

FeedBack

FD



Micromachines 2014, 5 1041 
 
4.1. Influence of Signal Frequency on Dynamic Performance Improvement 

The model of a virtual gyroscope shows that the performance of the KF is heavily affected by qω. 
This point had been demonstrated in previous works in [13]. As for a swing input rate signal  
ω = A·sin(2πft) with the frequency f, the improvement factor IF will be different with the various choices 
of qω. Concretely, when qω is small, the IF is lower than one; this implies that there is a large attenuation. 
In this case, the virtual gyroscope signal cannot accurately reproduce the dynamic behaviors of the input 
rate signals. As qω increases, the IF becomes bigger and reaches the maximum value at the specified 
point corresponding to the optimal qω . After the peak, the IF begins to decline and eventually reaches 

the steady-state value. There exists a peak corresponding to the maximum IF during the whole range of 
parameter qω under a frequency f. Consequently, in this work, based on the multiple simulations, we 
analyze the influence of frequency f on the KF dynamic performance improvement, where f is the 
frequency of the input swing rate signal. It can be concluded that the maximum improvement factor can 
be determined and achieved for a dynamic input rate signal having a frequency of f. It can also be found 
that the maximum improvement factor is different with the various frequency f of the input rate signal. 
Thus, the relationship between the maximum improvement factor and input signal frequency f will  
be analyzed. 

The input rate signals are generated by the gyroscope model of Equation (2) with a sampling rate of 
200 Hz. The ARW noises for the gyroscopes are assumed to be 2.0°/ h . The true angular rate signal is 
assumed to be a swing input signal ω = A·sin(2πft), with an amplitude of A = 5 and 10°/s, respectively. The 
frequency f is chosen to be in the range from 0 to 10 Hz. The maximum improvement factor versus 
frequency f is plotted in Figure 3. Note that a specific value of qω corresponds to each frequency in 
Figure 3, by choosing such values, the maximum improvement factor can be obtained, i.e., the optimal qω 
varies with f. 

Figure 3. Plot of maximum improvement factor IF versus frequency of the input rate signal, 
f ranges from 0 to 10 Hz. 

 

As the graph indicates, the maximum improvement factor decreases with increasing input frequencies 
f and eventually approaches 6 . The graph also shows that the improvement factor is higher than 6  

0 2 4 6 8 10
2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

Frequency f (Hz)

Im
pr

ov
em

en
t f

ac
to

r (
IF

)

 

 

A=10deg/s
A=5deg/s
Arithmetic average

ω=5*sin(2π ft)

ω=10*sin(2π ft)

√6



Micromachines 2014, 5 1042 
 
for the frequency f range from 0 to 10 Hz. In addition, it displays a greater slope of the improvement 
factor for lower input frequencies (0 to 3 Hz) than for higher frequency. Furthermore, the improvement 
factor obtained by a smaller amplitude (A = 5°/s) is higher than that of the input rate signal with a larger 
amplitude, this is because the signal’s dynamic property is determined by both of the amplitude  
and frequency. 

4.2. Influence of Sampling and Filtering Rate on Accuracy Improvement 

As discussed in Section 3.2, the sensors sampling rate and KF filtering rate will affect the accuracy 
improvement. Firstly, the KF filtering rate will be analyzed. The input rate signals are generated by the 
Equation (2) with a sampling rate of 500 Hz. The ARW noises for the gyroscopes are assumed to be 
4.0°/ h . The input rate signal is assumed to be a sinusoidal signal of ω = A·sin(2πft) with the amplitude 
A = 30°/s and frequency f = 10 Hz. Three different KF filtering rates are chosen, i.e., fKF = 500, 250, and 
100 Hz. For the filtering rate fKF = 250 and 100 Hz, there exist two methods for processing the raw data: 
(1) Interval average filtering, i.e., calculating the arithmetic average of the input rate signal contained in 
a filtering period, and then regarding the averaged rate signals as a new measurement sequence for KF 
processing; (2) Interval sampling filtering, i.e., selecting one of the input rate signals in a filtering period 
as the new measurement sequences for KF processing. Using the simulink model (Figure 2), the outputs 
of virtual gyroscope are shown in Figure 4. The detailed results are illustrated in Table 1. 

Figure 4. Plot of improvement factor IF for various qω  for two different processing 

methods with filtering rates of fKF = 500, 250, 100 Hz. (a) Interval average filtering.  
(b) Interval sampling filtering. 
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Table 1. Simulation results of a virtual gyroscope with different filtering rates. 

Terms 500 Hz 
Interval average filtering Interval sampling filtering 

250 Hz 100 Hz 250 Hz 100 Hz 
Optimal qω  (°/h) 154,900 123,100 76,000 214,300 295,200 

Estimated error (1σ, °/s) 0.5946 0.4301 0.2730 0.6044 0.6044 
Maximum improvement factor (IF) 2.6037 3.4669 5.4612 2.4670 2.4670 

10
3

10
4

10
5

10
6

0

1

2

3

4

5

6

Im
pr

ov
e 

fa
ct

or
 (I

F)

sqrt(q
ω
) (deg/h)

 

 

f
KF

= 500Hz

f
KF

= 250Hz

f
KF

= 100Hz

√6

10
3

10
4

10
5

10
6

0

0.5

1.0

1.5

2.0

2.5

3.0

sqrt(q
ω
) (deg/h)

Im
pr

ov
e 

fa
ct

or
 (I

F)

 

 

f
KF

= 500Hz

f
KF

= 250Hz

f
KF

= 100Hz

√6



Micromachines 2014, 5 1043 
 

The results show that the different filtering rates lead to different performances. Table 1 indicates that 
the maximum IF associated to the filtering rate of 250 Hz and 100 Hz for the interval average filtering 
are higher than that of 500 Hz. This is because the multiple rate signals are averaged in a filtering period 
to form a new measurement for KF for the interval average filtering. In particular, the maximum IF is 
found to be approximately 6· m , where m is the number of rate signals that were contained in a 
filtering period. However, the method of the interval average filtering is not suitable for application 
having a larger dynamic characteristic. It may result in an inaccuracy of measurements for KF due to the 
average process, and this inaccuracy will increase with increasing numbers of rate signals in a filtering 
period. As for the method of interval sampling filtering, the maximum IF associated with the filtering 
rate 250 Hz is 2.467, which is lower than that of 500 Hz, namely 2.6037. The reason lies in that the 
variations between the values of two input rate signals associated with adjacent time points are increased 
through interval sampling, resulting in a larger model error than that of the filtering rate fKF = 500 Hz, 
and eventually degrading the KF performance. Therefore, the KF filtering rate should be set to be the 
same as the sensors sampling rate to reduce the estimated error. 

Secondly, the influence of the sensors sampling rate on KF performance is analyzed. The input rate 
signal is assumed to be a sinusoidal signal of ω = A·sin(2πft), with A = 30°/s and f = 0.25 Hz. Different 
sampling rates, such as fs = 100, 200, 250, 500, 1000, 2000, and 3000 Hz, are chosen to collect the 
sensors signal to evaluate the KF performance. In the KF implementation, the KF filtering rate is set to 
be the same as the sensors sampling rate, i.e., fKF = fs. Using the simulink model (Figure 2), the 
relationship between the improvement factor and the sampling rates versus different values of qω  is 

obtained as shown in Figure 5. The detailed results are shown in Table 2. 
Figure 5 indicates that the IF varies with sampling rates fs. In particular, it will expand with an increase 

in the sampling rate and will eventually approach 6  with larger values of qω , i.e., the averaging 

effect. Table 2 indicates that the 1σ error is reduced from 2.9893°/s to 0.7715°/s when the fs = 100 Hz, 
which is larger than the result of 0.2738°/s corresponding to the sampling rate 3 kHz. This is because 
the amplitude variation between the two signals for the adjacent time point becomes smaller with 
increasing sampling rate, implying that the KF model error is decreased. In addition, the plot also 
illustrates that the optimal range for qω  located in which the IF is higher than 6  will be magnified 

with increasing fs. 
However, from the plot of 1σ estimated errors (Figure 6), it can be seen that graph slope of the 1σ 

errors gradually becomes smaller with increase of the sensor sampling rate. This means that the 
decreasing magnitude of the 1σ errors is smaller than that of the increasing magnitude of the sensor 
sampling rates, and the 1σ errors would not be decreased unlimitedly with the increase of sensor 
sampling rates. The influence of sampling rate on the reduction of 1σ errors becomes smaller and smaller 
as the sampling rate increases. Thus some conclusions can be formulated: under the premise of satisfying 
the requirements of system hardware, the sampling rate should be increased in order to reduce the KF 
model error with the aim of obtaining a better performance while the input rate signal has a larger 
dynamic characteristic. On the contrary, a lower sampling rate should be used to reduce the 
computational load while the input rate signal is nearly constant or has a smaller dynamic characteristic. 
In addition, the KF filtering rate should be kept at the same value as the sampling rate. 
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Figure 5. Plot of improvement factor versus different values of qω  under different 

sampling rates fs = 100, 200, 250, 500, 1000, 2000, 3000 Hz. 

 

Table 2. Simulation results of virtual gyroscope with different sampling rates. 

Sampling rate fs (Hz) 
Estimated error 1σ (°/s) 

Maximum improvement factor 
Single gyro Virtual gyro 

100 2.9839 0.7715 3.8677 
200 2.9837 0.6380 4.6766 
250 2.9813 0.5941 5.0182 
500 2.9812 0.4836 6.1646 

1000 2.9807 0.3903 7.6369 
2000 2.9820 0.3116 9.5700 
3000 2.9802 0.2738 10.8846 

Figure 6. Plot of the 1σ estimated errors versus the sensor sampling rate. 

 

10
2

10
3

10
4

10
5

10
6

0

1

2

3

4

5

6

7

8

9

10

sqrt(q
ω
) (deg/h)

 

 

Im
pr

ov
e 

fa
ct

or
 (I

F)
fs = 2kHz

fs = 1kHz

fs = 500Hz

fs = 100Hz

fs = 200Hz

√6

fs = 250Hz

0 500 1000 1500 2000 2500 3000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Sampling rate (Hz)

E
st

im
at

ed
 e

rr
or

 (
1 σ

) 
(d

eg
/s

)



Micromachines 2014, 5 1045 
 
5. Experiments 

In this section, the dynamic experiments are carried out to evaluate the performance of KF and 
quantify the accuracy of the virtual gyroscope signal. The prototype of the designed virtual gyroscope is 
shown in Figure 7. It is mainly composed of a gyroscope array and a digital signal processing (DSP) 
unit. Six MEMS gyroscopes ADXRS300 [21] are used to form a gyroscope array; its bandwidth is about 
40 Hz. Here, a DSP chip TMS320VC5416 [22] is chosen as the core processor. The A/D data acquisition 
unit uses a 16-bit ADS7807 [23] to collect voltage signals from gyroscopes array. 

The noise statistics of the gyroscope array can be identified and quantified by using the Allan variance 
technique [20,24]. By using a conventional Allan variance approach in [20] to analyze the data of the 
component gyroscopes, the results are illustrated in Table 3, where the confidence interval was taken as 
90% for estimating the parameters of the gyroscopes. It can be seen that the inconformity of the ARW 
and bias instability are relatively small for component gyroscopes, thus these component gyroscopes can 
be regarded as having the same specification and are suitable to form a virtual gyroscope array. The 
dynamic tests are implemented on a horizontal turntable. The 1σ error is used to evaluate the angular 
rate signals before and after KF filtering. The improvement factor is also defined by Equation (13). The 
constant and swing input rate signal tests are chosen to test the virtual gyroscope system. 

Figure 7. Prototype of the developed virtual gyroscope system. 

 

Table 3. Allan variance analyses of component gyroscopes for noise parameters of angular 
random walk (ARW) and bias instability with associated 90% confidence intervals. 

Term Gyro1 Gyro2 Gyro3 Gyro4 Gyro5 Gyro6 
ARW (°/ h ) 6.3032 6.2308 6.2308 6.3382 6.2845 6.2555 

Bias Instability (°/h) 59.2476 58.3598 60.3401 60.1159 57.7861 60.0119 

The computational burden is an important issue and should be considered. In this work, a simplified 
model of Equation (2) was taken to describe the gyroscope and then design the KF algorithm. Finally, a 
discrete-time KF of Equation (10) for combined rate signal estimate was established. Equation (10) 
shows that the Cq Te ω−  and C are single variables. Hence, the system computation is mainly dependent 
on the matrix operation of 1

1
T

k
−

+H R Z . Furthermore, the number of N and noise statistics of the 
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gyroscopes will be determined and fixed while the sensors array is determined. At this time, the 
covariance matrix R can be determined. Therefore, the value of parameter Cq Te ω−  and matrix 

1 1(1 )Cq T TC e H Rω−− −−  can be calculated off-line in advance, and then these parameters can be written into 
the program for real-time processing of the information coming from the sensors array, in which case 
the computational burden becomes a matrix product with the matrix dimensioned of 1 × N multiplied by 
the matrix dimensioned of N × 1, with computational complexity of only O(N). Thus, a DSP processor 
could completely satisfy the system requirements of real-time processing. 

5.1. Constant Rate Signal Test 

Five different constant rates of ω = 10, 30, 50, 80, and 120°/s were given to test the dynamic 
performance of KF on a turntable. The turntable is controlled to rotate from the static condition. The 
outputs of the virtual gyroscope are shown in Figure 8. The detailed results are illustrated in Table 4. 
The 1σ estimated errors for the original rate signal and combined rate signal before and after KF filtering 
can be found in Table 4. The bandwidth of KF is set as 20 Hz. 

Figure 8 shows that the noises of the input rate signals are remarkably reduced by the presented KF. 
The basic ideal of improving the accuracy lies in the constant or small dynamic characteristic of the 
input signal, which is well in accordance with the requirement of the KF model. As can be seen in Table 4, 
the 1σ errors are reduced by a factor of more than eight by the KF, which demonstrates a considerable 
noise reduction for the gyroscope. 

Figure 8. Plot of virtual gyroscope test with constant input rate on the turntable. 
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Table 4. Constant rate test results of virtual gyroscope. 

Input rate ω (°/s) 
Estimated error 1σ (°/s) 

Improvement factor IF 
Single gyro Virtual gyro 

10 2.0094 0.2027 9.9132 
30 2.0189 0.2015 10.0194 
50 2.0391 0.2063 9.8841 
80 2.5253 0.2743 9.2063 

120 2.9225 0.3395 8.6082 

5.2. Swing Rate Signal Test 

In the swing rate signal test, maybe the random walk model cannot reflect the sinusoidal signal well; 
here we try to use the random walk model to describe the input rate signal to meet the majority 
application. The swing rate signal test was carried out to only evaluate the ability of KF for reducing the 
noise and reproducing the dynamic characteristic of the input signal. 

The input rate signal was set as ω = 10·sin(2πft + φ0)°/s with the three frequencies f = 0.1, 0.3, and 
0.5 Hz, and initial phase φ0 = 0. The comparison of the outputs of component gyroscopes and virtual 
gyroscope is shown in Figure 9. The results are illustrated in Table 5, where the bandwidth of KF is set 
as 20 Hz. The 1σ estimated errors for the angular rate signal can be found in Table 5. 

Figure 9 indicates that the combined rate signal could reproduce the dynamic characteristic of the 
input signal well. The swings test results (Table 5) illustrate that the amplitude of the virtual gyroscope 
signal combined with the KF nearly reaches 10.5°/s, which is basically in accordance with the 
experimental setting of 10°/s without larger attenuation. Here the term “attenuation” means that the 
amplitude of the combined rate signal obtained by the KF is smaller than that of the original input rate 
signal in the dynamic test, because if the choice of qω accurately or closely reflects the dynamic 
characteristics of the input rate signal, the KF will reach the best performance, and the virtual gyroscope 
signal with the best accuracy can be obtained; while if qω were smaller than this “value”, it would result 
in a signal attenuation, and the performance of the KF would be degraded. Furthermore, the 1σ errors 
are reduced from 1.6°/s to 0.30, 0.47 and 0.48°/s for the input rate signal with different frequencies, 
which are much smaller than that of the single devices in the array. Additionally, it indicates an increase 
of 1σ errors with increasing frequency f. This is because the dynamic characteristics of input rate signals 
increases with increasing frequency f, resulting in a larger model error for KF. 

Table 5. Swing rate test results of the virtual gyroscope. 

Frequency f (Hz) 
Single gyro (°/s) Virtual gyro (°/s) Improvement factor (IF) 

amplitude 1σ error amplitude 1σ error experiment simulation error (%) 
0.1 12.4463 1.5724 10.5238 0.3023 5.2015 4.9252 5.6099 
0.3 12.5270 1.6121 10.6258 0.4767 3.3818 3.6660 7.7523 
0.5 12.6268 1.6954 10.6293 0.4858 3.4899 3.2357 7.8561 
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Figure 9. Swing rate test results of the virtual gyroscope for the input rate signals with 
various frequencies. (a) f = 0.1 Hz. (b) f = 0.3 Hz. (c) f = 0.5 Hz. 
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6. Conclusions 

In this paper, the dynamic performance of the KF was analyzed to improve the accuracy of a MEMS 
gyroscope by combining the multiple measurements of a gyroscopes array. Six MEMS gyroscopes with 
the same specification were used to construct a virtual system. It displayed a 1σ noise of 0.2°/s for the 
combined rate signal in the constant rate test, which reduced the noise by a factor of more than eight 
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compared to the single gyroscope in the array. It also showed that the combined rate signal could 
reproduce the dynamic characteristic of the input rate signal in the dynamic condition. 
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