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Abstract: An analytical model of the dynamic properties is established for a piezoelectric structure
under impact load, without considering noise and perturbations in this paper. Based on the general
theory of piezo-elasticity and impact mechanics, the theoretical solutions of the mechanical and
electrical fields of the smart structure are obtained with the standing and traveling wave methods,
respectively. The comparisons between the two methods have shown that the standing wave
method is better for studying long-time response after an impact load. In addition, good agreements
are found between the theoretical and the numerical results. To simulate the impact load, both
triangle and step pulse loads are used and comparisons are given. Furthermore, the influence of
several parameters is discussed so as to provide some advices for practical use. It can be seen that the
proposed analytical model would benefit, to some extent, the design and application (especially the
airport runway) of the related smart devices by taking into account their impact load performance.

Keywords: piezoelectric structure; impact response; theoretical solutions; standing wave method
and travelling wave method

1. Introduction

Impact load is a common threat for many structures. Some hidden damages (for example, matrix
cracking, fiber breakage, etc.) could be induced by even low-velocity impact loads in the structures.
As stressing members, the safety risk of the structures could be increased by these types of damages.
Therefore, it is very important to seek new ways to reduce the severity of impact damages and help
identify the impact possibility. Adaptive piezoelectric structures might be suitable candidates for
impact parameter identification, damage monitoring and assessment, especially for the application in
the airplane taking-off and landing safety by monitoring the deformation of the runway in real time.

Piezoelectric materials have found wide applications in such fields such as ultrasonic
transducers, sensors, actuators, generators, and transformers [1–6], due to their ability to convert
electrical energy from and into mechanical energy. This reciprocity in energy conversion makes
piezoelectric materials such as PZT (lead zirconium titanate) very attractive for a wide variety
of applications, ranging from aeronautical and automotive systems (e.g., shape control of large
space antennas, active or passive control of vibration) [7–10], to miniature positioning devices (e.g.,
micro-robots, medical apparatus, micro-pumps) [11], to name only a few. With regard to applications
of dynamic properties, Irschik et al. have done a series of work on the static and dynamic shape
control of certain structures by piezoelectric actuation and given useful conclusions [12,13]. Moreover,
typical uses of dynamic impact response are found to be related with energy conversion. Basari et al.
have presented an analytical and experimental study on the effect of mechanical impact parameters
on impact-mode piezoelectric ceramic power generators [14]. An impact energy harvester through
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piezoelectric device was investigated by utilizing the piezoelectric material to convert mechanical
energy into electrical energy [15,16]. These studies would benefit the design of an impact-mode
piezoelectric power generator to harvest vibration energy in the vehicle systems and industry.
On the other hand, theoretical studies of piezoelectric material performances under impact load,
especially in the aspect of basic theory, are quite few when compared to extensive experimental
studies. Saravanos and Christoforou established a semi-analytical model for the impact response
of composite plates with distributed active and sensor piezoelectric layers. The active control of
the impact response of the composite plates and shells by means of piezoelectric layers and patches
towards the minimization of contact force was studied. An analytical solution was developed based
on the first-order shear kinematics for the composite laminate and a linear layer-wise approximation
of the electric potential [17,18]. Plagianakos and Papadopoulos have presented an efficient model
reduction based methodology to predict the global and through-thickness local dynamic response
of pristine simply-supported cross-ply composite and sandwich composite plates with piezoelectric
sensory layers subjected to low-energy impact [19]. In Krommer’s work, the influence of the
electro-mechanical coupling is considered by means of the direct and inverse piezoelectric effect
upon the mechanical and electrical behavior of Reissner-Mindlin-type composite plates [20]. Shi and
his coworkers have studied the static and dynamic properties for multilayer structures, including
multilayered piezoelectric cantilevers, multilayered piezoelectric curved actuators, 2–2 cement-based
piezoelectric composites and piezoelectric composite stack transducers [21–25]. S. Ueda had studied
the impact response of a functionally graded piezoelectric material strip with a vertical crack [26,27].

In this work, an analytical model is established for the dynamic properties of a piezoelectric
structure under impact load without considering the noise and perturbations. The basic equations are
listed in Section 2. In Section 3, by using the standing wave method and traveling wave method, the
theoretical solutions are obtained for this type of piezoelectric structure under impact load. Section 4
is focused on the comparisons and discussions between the theoretical and numerical results. The
triangle pulse load and the step pulse load are used to simulate the impact load, respectively. The
finite element analysis model of the 0–3 cement-based piezoelectric smart structures under impact
load is established by solid5 element in ANSYS. The influence of the material parameters, load
type and magnitude of the load on the impact behavior of the devices is discussed. Consistency
is found between the theoretical results and the numerical results, proving the validity of the present
study. Besides, the influences of the material parameters and frequency of the impact load on the
displacement and potential of the piezoelectric structure are also discussed.

2. Basic Equations

Figure 1 is a schematic of a piezoelectric structure with one end fixed and the other free. The free
end of the structure is subjected to an impact load. The height of the structure is l. Referring to the
Cartesian coordinate system, symbols ε, σ, D and E denote the strain, stress, induction and electric
field, respectively. This paper considers the structure only in one dimension, i.e., in the z direction.

For the above structure, according to the model and without the consideration of the body force
and body charge, the basic equations for piezoelectric materials can be written as:

#

σ “ cE
33ε´ e33E

D “ e33ε` εε
33E

(1)

It can be known from the basic knowledge of physics that the geometric equation is:

#

ε “ Bu
Bz

E “ ´ Bϕ
Bz

(2)
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Without external source of electric load, the equation of motion is:

#

ρB
2u
Bt2 “

Bσ
Bz

BD
Bz “ 0

(3)

where e33 and εε
33 are coefficients of the piezoelectric and dielectric impermeability for the 0–3 cement

based piezoelectric structure, respectively; ρ is the density of the piezoelectric material; cE
33 is the

coefficient of elastic stiffness.

Micromachines 2015, 6, page–page 

3 

u
z

E
z

∂ε = ∂
 ∂ϕ = −
 ∂

 (2) 

Without external source of electric load, the equation of motion is: 
2

2

σ

0

u
t z

D
z

 ∂ ∂
ρ = ∂ ∂

∂ =

 ∂

 (3) 

where 33e  and 33
εε  are coefficients of the piezoelectric and dielectric impermeability for the  

0–3 cement based piezoelectric structure, respectively; ρ  is the density of the piezoelectric material; 

33
Ec  is the coefficient of elastic stiffness. 
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ε 2
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ε
33

ε
ρε

E

b
c eC +

=  (5) 

Considering the impact load ( ) ( )f t t= δ  (for t < 0, f(t) = 0) and the boundary conditions of the 
structure, the equations of motion and the definite conditions are assumed to be: 

2 2

2 2 2

0

1 0,0

( ,0) ( ,0) 0
( , )(0, ) 0,σ( , ) ( )

b

u u z l
z c t

u z u z
u l tu t l t E f t

z

∂ ∂
− = < <∂ ∂

 = =
 ∂ = = =
 ∂

  (6) 
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By combining Equations (1)–(3), one obtains:

B2u
Bz2 ´

1
c2

b

B2u
Bt2 “ 0 (4)

with

Cb “

d

cE
33εε

33 ` e2
33

ρεε
33

(5)

Considering the impact load f ptq “ δptq (for t < 0, f (t) = 0) and the boundary conditions of the
structure, the equations of motion and the definite conditions are assumed to be:

$

’

’

&

’

’

%

B2u
Bz2 ´

1
c2

b

B2u
Bt2 “ 0, 0 ă z ă l

upz, 0q “
.
upz, 0q “ 0

up0, tq “ 0,σpl, tq “ E0
Bupl,tq
Bz “ f ptq

(6)

where E0 “ cE
33 `

e2
33

εε
33

is the modulus of elasticity of the material.

3. Analytical Solutions of the Piezoelectric Structure under Impact Load

In this section, the theoretical solutions of the mechanical and electrical fields of the structure
will be obtained by utilizing standing wave method and traveling wave method, respectively.

(1) Theoretical solutions following the standing wave method
Firstly, in order to use the standing wave method, the nonhomogeneous condition need to be

homogeneously transformed, therefore the solution can be assumed to have the form:

upz, tq “ Upz, tq `Qpz, tq (7)
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where Q(z,t) satisfies:

Qp0, tq “ 0, E0
BQpl, tq
Bz

“ f ptq (8)

Obviously, there are many forms of Q(z,t) satisfying Equation (8). Here, Q(z,t) is chosen to have
the form:

Qpz, tq “
1

E0
f ptq

ż z

0

ż ξ

0
δpz´ lqdzdξ (9)

Moreover, attention should be paid that Q(z,t) = 0 when z < l, and U(z,t) = u(z,t) when 0 ď z ď l.
Therefore, the substitution of Equation (7) into Equation (6) gives:

$

’

’

&

’

’

%

B2U
Bz2 ´

1
c2

b

B2U
Bt2 “ ´

1
E0

f ptqδpz´ lq, 0 ă z ă l

Upz, 0q “
.

Upz, 0q “ 0
Up0, tq “ BUpl,tq

Bz “ 0

(10)

If Equation (10) is a homogeneous equation, the natural frequency of the above equations can be
readily obtained to be:

Xnpzq “ sinp
nπ
2l

zq (11)

and the corresponding normal modes are:

Xnpzq “ sinp
nπ
2l

zq (12)

If Equation (10) is a nonhomogeneous equation, it can be assumed that:

U “

8
ÿ

n“1,3,...

Tnptqsinp
nπ
2l

zq (13)

By substituting Equation (13) into the first equation of Equation (10), one obtains:

..
Tn `ω

2
nTn “

2
ρl

f ptq
ż l

0
sinp

nπ
2l

zqδpz´ lqdz “
2
ρl
p´1qpn´1q{2 f ptq, n “ 1, 3, 5, ..... (14)

Meanwhile, the substitution of the second equation of Equation (10) into Equation (13) results in
the initial condition of Tn:

Tnp0q “
.
Tnp0q “ 0 (15)

and an algebraic equation about Tnppq can be obtained by the Laplace transform:

Tnppq “
2p´1qpn´1q{2

ρl
¨

f ppq
p2 `ω2

n
. (16)

If ƒ(t) = δ(t) (the free end of the structure is under an impact load f ppq “ 1), it can be readily
obtained from the Laplace transform table:

L´1
ˆ

1
p2 `ω2

n

˙

“
1
ωn

sinωnt (17)

Therefore, the exact solution of the displacement of the piezoelectric structure under impact load
can be obtained as:

upz, tq “
2
ρcbl

8
ÿ

n“1,3,...

p´1qpn´1q{2

kn
sinpknzqsinpωntq (18)

where kn “
nπ
2l ,ωn “

nπcb
2l , n “ 1, 3, 5, ....
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Using the boundary condition of the free end, the exact solutions of the mechanical and electrical
quantities of the piezoelectric structure under impact load are obtained as follows:

Stress:

σpz, tq “
2cb

l

8
ÿ

n“1,3,...

p´1qpn´1q{2cospknzqsinpωntq (19)

Strain:

εpz, tq “
2
ρcbl

8
ÿ

n“1,3,...

p´1qpn´1q{2cospknzqsinpωntq (20)

Velocity:

vpz, tq “
2
ρl

8
ÿ

n“1,3,...

p´1qpn´1q{2sinpknzqcospωntq (21)

Accelerated velocity:

apz, tq “ ´
2cn

ρl

8
ÿ

n“1,3,...

p´1qpn´1q{2knsinpknzqsinpωntq (22)

Electric field intensity:

Epz, tq “ ´
2e33

εε
33ρcbl

8
ÿ

n“1,3,...

p´1qpn´1q{2cospknzqsinpωntq (23)

Electric potential:

ϕpz, tq “
2e33

εε
33ρcbl

8
ÿ

n“1,3,...

p´1qpn´1q{2

kn
sinpknzqsinpωntq (24)

Up to now, the exact mechanical and electrical fields of the piezoelectric structure under the
impact load have been fully determined by the standing wave method.

(2) Theoretical solutions following the traveling wave method
By utilizing the method for solving the semi-unbounded domain wave equation, the solution of

Equation (6) can be obtained as:

upz, tq “
cb
E0

H
ˆ

t`
z´ l

cb

˙

(25)

where H( . . . ) is the Heaviside step function.
For the structure under consideration, waves obtained by Equation (25) will be reflected at

the fixed end (z = 0). The reflection coefficient of displacement wave at the fixed end is ´1,
so displacement of particles in the structure becomes zero after a reflected wave. The reflection
coefficient of the displacement wave at the free end is 1, because the reflection occurs again when
the reflected wave reaches the free end (z = 1). Therefore, the elastic waves are reflected back and
forth between the two ends, and the expression of the displacement has the form:

upz, tq “ cb
E0

!

H
´

t` z´l
cb

¯

´ H
´

t´ z`l
cb

¯

´ H
´

t` z´3l
cb

¯

` H
´

t´ z`3l
cb

¯

+H
´

t` z´5l
cb

¯

´ H
´

t´ z`5l
cb

¯

´ ...u

(26)
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which can be simplified to:

upz, tq “
cb
E0

8
ÿ

n“1,3,...

"

p´1qpn´1q{2H
ˆ

t`
z´ nl

cb

˙

` p´1qpn`1q{2H
ˆ

t´
z` nl

cb

˙*

(27)

Here, the exact displacement of the piezoelectric structure under the impact load has been
obtained by the travelling wave method.

4. Numerical Analysis

Traditional piezoelectric structure has poor compatibility with cement structure, therefore
limiting its precision in the application of real time monitoring of airport pavement. In contrast,
piezoelectric composite structures such as the cement-based smart structure have found more and
more applications due to their good compatibility. The solutions obtained in the previous section
could be used with 0–3 cement-based piezoelectric composite structure. Based on the schematic and
data of Li’s experiment [28], we assume the following parameter values for the 0–3 cement based
piezoelectric structure: h = 40 mm (thickness), ρ “ 5.7 g{cm3, CE

33 “ 60 GPa, e33 “ 0.75 C{m2,
εs

33 “ 52.5 ε0 (ε0 is the vacuum dielectric constant). ANSYS is used for the numerical simulation,
where an analytical model of the size 4 mm ˆ 4 mm ˆ 40 mm is considered. The direction of the
polarization is along Z-axis. The unit partition of the model is divided into 12 segments along X-axis
and Y-axis, and 10 segments along Z-axis. Detailed form of the load is shown in Figure 2. Here, two
types of triangular and step load forms are assumed for the simulation.
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Figure 2. Schematic of the triangular load (a) and the step load (b). 
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Figure 2. Schematic of the triangular load (a) and the step load (b).

(1) Comparisons between the standing wave and traveling wave methods
The displacements at the free end and the midpoint are shown in Figures 3 and 4 respectively,

with different nmax values. The convergence of the traveling wave method is faster than that the
standing wave method, indicating that the former is more suitable for simulating the short-term
response of the model under investigation. However, the traveling wave method also has limitations.
The displacement of the structure obtained by the traveling wave method remains zero when t is
greater than about 2.4 ˆ 10´4 s. The reason is that by definition the Heaviside step function H(0)
equals 0.5. From this point of view, it is better to use the standing wave method to study the response
after a long time since the beginning of the impact load. Moreover, it can be seen that the convergence
of the exact solutions following the standing wave method becomes better as nmax increases.
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Furthermore, for this model, a balance position exists for each point. The central point is the
balance position of the center-of-mass vibration of the model.

(2) Comparison between results following the standing wave method and the numerical results.
The influences of the impact load on the displacement u(z) at the free end in case of the two

types of triangular and step load forms are shown in Figures 5 and 6 respectively. Good agreements
between theoretical and numerical results are found. Although the lasting time and magnitude of the
impact load are different, the total impact energy remains the same, therefore the magnitude of the
free end displacement u(z) keeps unchanged. To be brief and clear, the following numerical results in
Figures 7–9 are obtained under the triangular impact load of 200 kpa.
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Figure 5. Influence of the load on displacement u(z) at the free end with triangular load.
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Figure 9. Influence of ε33{ε0 on the displacement amplitude umax(z) (a) and the electric potential the
amplitude ϕmaxpzq (b) at the free end under impact load.

Figure 7a,b shows how the displacement amplitude umax(z) and the electric potential amplitude
ϕmaxpzq change with the coefficient of the elastic stiffness cE

33, respectively. It can be found that the
displacement amplitude umax(z) and the electric potential amplitude ϕmaxpzq decrease as cE

33 increases.
Besides, with the increasing of cE

33, the changes of both the displacement amplitude and electric
potential amplitude become flatter. The influences of the piezoelectric stress constant e33 on umax(z)
and ϕmaxpzq of the free end are shown in Figure 8a,b. It can be seen that umax(z) decreases with e33,
but changes quite slowly in Figure 8a, while ϕmaxpzq increases almost linearly with e33 in Figure 8b.
Moreover, the two figures show that e33 has larger influence on ϕmaxpzq, providing the guidance
for the desired larger electric potential. Figure 9a,b shows the influence of the relative dielectric
constant ε33{ε0 on umax(z) and ϕmaxpzq at the free end under the impact load. It can be seen that
umax(z) increases quite slowly, while ϕmaxpzq decreases faster as ε33{ε0 increases. Furthermore, it can
be noticed that ε33{ε0 has larger influence on ϕmaxpzq. Figures 7–9 can be for study of the influence of
different parameters on the mechanical and electrical behaviors of this structure, and the guiding role
of these parameters in the configuration of the devices. For example, the displacement for this kind
of devices used for some sensors might be large enough. Therefore, one could be referenced to the
influence given by the theory on the displacement, and as a result piezoelectric material that could
provide larger displacement could be selected.
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5. Conclusions

The paper established an analytical model of the dynamic properties of a piezoelectric structure
under impact load. The theoretical solutions are obtained by using the standing wave method and
the traveling wave method, respectively. The results indicate:

(1) Although we applied two approaches to obtain the solutions, they should be mathematically
equivalent but attention should be paid when applied for different situations. For studying short
time response of piezoelectric bar under impact load, the convergence of the traveling wave method
solution is fast. On the other hand, the always existing damping in realistic material increases as
the frequency increases. Therefore, the standing wave method solution is better due to the fast
attenuation of high-frequency terms. In this case, the lowest frequency term and next few terms
would be enough.

(2) The trend of the displacement as a function of t approximates a rectangular wave; and the
magnitude of the impact load has weak influence on the displacement of the structure along the
axial direction.

(3) The coefficient cE
33 has obvious influence on both ϕmaxpzq and umax(z); while e33 and ε33{ε0

have larger influence on ϕmaxpzq than umax(z) in the structure. By selecting different piezoelectric
materials, one could obtain experimentally the piezoelectric structures with different mechanical and
electrical components, therefore satisfying different applications. Furthermore, this characteristics
may benefit the collection of the electric potential.

Moreover, the obtained analytical solutions can provide some guidance for the design of the
piezoelectric smart devices under impact load, which would benefit the application in the airplane
take-off and landing safety by monitoring the deformation of the runway in real time. The research
of the piezoelectric structure has been attracting more and more attentions and needs further
investigations. Among others, the study of the piezoelectric structure is of special importance for
the application of the piezoelectric device in civil engineering.
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