
Micromachines 2015, 6, 684-698; doi:10.3390/mi6060684 
 

micromachines 
ISSN 2072-666X 

www.mdpi.com/journal/micromachines 

Article 

Signal Processing Technique for Combining Numerous MEMS 
Gyroscopes Based on Dynamic Conditional Correlation 

Jieyu Liu *, Qiang Shen and Weiwei Qin 

Xi’an Research Institute of High-tech, Hongqing Town, Xi’an 710025, China;  

E-Mails: shenq110@163.com (Q.S.); qww_1982@163.com (W.Q.) 

* Author to whom correspondence should be addressed; E-Mail: ostar@stu.xjtu.edu.cn. 

Academic Editors: Naser El-Sheimy and Aboelmagd Noureldin 

Received: 10 April 2015 / Accepted: 2 June 2015 / Published: 12 June 2015 

 

Abstract: A signal processing technique is presented to improve the angular rate accuracy of 

Micro-Electro-Mechanical System (MEMS) gyroscope by combining numerous gyroscopes. 

Based on the conditional correlation between gyroscopes, a dynamic data fusion model is 

established. Firstly, the gyroscope error model is built through Generalized Autoregressive 

Conditional Heteroskedasticity (GARCH) process to improve overall performance. Then the 

conditional covariance obtained through dynamic conditional correlation (DCC) estimator is 

used to describe the correlation quantitatively. Finally, the approach is validated by a 

prototype of the virtual gyroscope, which consists of six-gyroscope array. The experimental 

results indicate that the weights of gyroscopes change with the value of error. Also, the 

accuracy of combined rate signal is improved dramatically compared to individual 

gyroscope. The results indicate that the approach not only improves the accuracy of the 

MEMS gyroscope, but also discovers the fault gyroscope and eliminates its influence. 

Keywords: MEMS gyroscope array; Generalized Autoregressive Conditional 

Heteroskedasticity; dynamic conditional correlation; data fusion; accuracy improvement 

 

1. Introduction 

Inertial measurement sensors require smaller size, reliability, low cost and above all accuracy [1]. 

MEMS technology is widely used in inertial sensors because MEMS gyros have the advantage of low 

cost, smaller size and easy fabrication in large numbers on a single chip [2,3]. However, these inertial 

sensors cannot provide highly accurate measurement for the space applications. The accuracy of 
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individual MEMS gyroscope has reached its technology limit. In order to improve the accuracy 

without breakthrough on hardware, virtual gyroscope technology is presented and accepted by the 

industry [4]. The method combines multiple gyroscopes to measure the same signal and get the best 

estimate with data fusion. A “virtual gyroscope” using a four-gyro array was proposed by Bayard and 

Ploen in [4]. The simulation results showed that the gyroscopes with drifts of 8.66 °/h could be reduced 

to a virtual gyroscope with a drift of 0.062 °/h when the component gyroscopes are assumed to have a 

correlation factor of −0.33329. Another two-level optimal filtering method for fusing three gyroscopes 

was presented by Honglong Chang in [5]. It achieved higher accuracy than individual gyroscope but 

the continuous-time Kalman filter was not solved to reveal the system property. Stubberud discussed 

the method of an extend Kalman filter of multiple sensors to improve the accuracy in [6]. Al-Majed 

and Alsuwaidan presented a multi-filters adaptive estimator to improve the angular rate accuracy by 

using the noise correlation in [7] but with no simulation or experimental results. Jiang and Xue used 

six-gyro array in [8–11]. They also adopted a novel optimal Kalman filter to combine the gyroscopes [8]. 

Their further study used a first-order Markov process to model the rate signal to improve the 

performance in dynamic condition [11]. 

Even the approaches mentioned above have been proven to improve the accuracy effectively, some 

errors occurring in one or several sensors of the virtual gyroscope may lead to severe accuracy 

degradation, even wrong results. The key of combining multiple gyroscopes to improve accuracy is the 

error modeling of individual gyroscope. In above approaches, the random walk, Markov process and 

Auto Regressive Moving Average (ARMA) were used. All these modeling methods assume that the 

measured time series has the statistical property at different time. Due to the small size and special 

structure, MEMS gyro is in fact very sensitive to the change of the surrounding environment. If the 

power consumption and surrounding temperature change, the statistical features of MEMS gyroscope 

random drift have big fluctuation. And it exhibits heteroskedasticity. The traditional time series 

analysis method is not suitable for modeling the random drift error with heteroskedasticity. Unlike the 

conventional method, Generalized Autoregressive Conditional Heteroskedasticity (GARCH) is able to 

handle the time series with heteroskedasticity. 

In this paper, based on dynamic conditional correlation (DCC) multivariate GARCH, a dynamic 

weighted multi-sensors data fusion algorithm is proposed. Firstly, the GARCH process is utilized to model 

the error of individual MEMS gyroscope. Then the DCC estimator is designed to calculate correlations 

between multivariate gyroscopes. The DCC estimator has the flexibility of multivariate GARCH but not 

the complexity. At last, based on the correlation, the optimal weight distribution principle for combining 

numerous MEMS gyroscope is derived by using quadratic programming. The experimental results 

show that this approach effectively reduces the noise and eliminates the influence of gyroscope faults. 

The paper is organized as follows. The gyroscope error model used in this research is detailed in 

Section 2. The correlation analysis of gyroscopes based on DCC Multivariate GARCH is derived in 

Section 3. Mathematical models for combining MEMS Gyroscopes are deduced in Section 4. 

Numerical experimental results are presented in Section 5. Conclusions are drawn in Section 6. 
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2. Gyroscope Error Model Based on GARCH 

To construct a virtual gyroscope for accuracy improvement, a gyroscope error model is given built 

firstly. The gyroscope error has heteroskedasticity when surroundings change with time, for instance, 

temperature. The GARCH process introduced by Bollerslev (1986) [12] is the extension of the 

Autoregressive Conditional Heteroskedasticity (ARCH) process. This type of model has been proven 

useful in modeling the time series with heteroskedasticity [13–15]. 

Assume that εt is a real-valued discrete-time stochastic process and Ψt is the information set of all 

information through time t. Following [12], the GARCH (p, q) process is then given as: 
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αi has to be assumed greater than 0, otherwise the GARCH (p, q) model may not be identified. 
max( , )

1
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i i
i=

+ <  defines a sufficient (but not necessary unless p = q = 1) condition for weak stationarity. 

In GARCH process, the conditional variance ht is a linear function of past sample variances, and 

allows lagged conditional variances to enter as well, The conditional variance changes with time, that 

is, with heteroskedasticity. Its conditionality shows that this process depends on adjacent empirical 

information. For the MEMS gyroscopes, “conditional” of ht means that the random drift is related to its 

adjacent observations, and reflects autocorrelation of variance of MEMS gyroscope. Auto regression 

represents the feedback mechanism that the predicted values are associated with the past time. So the 

GARCH model is suitable for modeling MEMS gyroscope error with heteroskedasticity. In this model, 

the conditional variance can be estimated with maximum likelihood method. 

3. Correlation Analysis of Gyroscopes Based on DCC Multivariate GARCH 

In order to determine the weights of each sensor for output data fusion, correlations between MEMS 

gyroscope should be analyzed. In fact, correlations between gyros are not constant. Especially, when 

there is large deviation in some gyroscope output, the correlations between the gyroscopes will also 

dramatically change accordingly. Reliable estimates of correlation and its variation are significant for 

reducing error influenced by gyroscope faults. 
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3.1. DCC Model 

Multivariate GARCH model can examine the dynamic relationship between multiple time series. 

While univariate GARCH models have achieved widespread empirical success, the question on 

estimations of multivariate GARCH models with time-varying correlations has been the motivation for 

countless academic articles and practitioner conferences. The methods, such as the BEKK (named after 

Baba, Engle, Kraft and Kroner) and constant conditional correlation (CCC) model, are widely  

used [16,17]. In most cases, if the number of estimated parameters is large, the computation load could 

be too huge to carry on, especially when there are more than five data sequences considered. The DCC 

multivariate GARCH model is proposed by Engle (2002) [18]. Compared to other models, DCC 

ensures positive definiteness but does not produce valid correlation generally. It preserves the 

parsimony of univariate GARCH models, and greatly decreases the number of estimated parameters, 

as well as the number of simultaneously estimated parameters. The virtual gyroscope in this paper is 

composed of six gyroscopes, which means that six data sequences will be considered and DCC models 

have to be used to estimate the large conditional covariance matrix which can be used to describe the 

correlation between gyroscopes. In addition, for the extended models of DCC, the conditioning set in 

them may be too large. 

Assuming that the residuals of output rate signal of n gyroscopes are conditionally multivariate 

normal with zero expected value and covariance matrix Ht, the multivariate GARCH model is given  

by [18]: 

1 ~ (0, )t t tr N H−Ω  (2)

and 

{ },,    where t t t t t i tH D R D D diag h= =  (3)

where rt refers to output rate signal of gyroscopes, Ωt−1 is the information set through time t − 1 and Rt 

is the time varying correlation. The expression for h is proposed to write as univariate GARCH model 

as Equation (1). The proposed dynamic correlation structure is given as follows [18]: 
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In Equation (5), “°” is the Hadamard product of two identically sized matrices. qij,t is the element of 

Qt, so that the typical element of Rt is deduced as: 
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3.2. Estimating Parameters 

The model parameters can be estimated through maximum likelihood (ML). The log likelihood of 

this estimator can be expressed as: 
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Let θ stand for the parameters in Dt and ϕ stand for the additional parameters in Rt. The log 

likelihood is rewritten as follows: 

(θ, ) (θ) (θ, )V CL L Lφ = + φ  (8)

where, Lv(θ) is the volatility and Lc(θ, ϕ) is the correlation. 

The volatility term is shown as: 
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and the correlation component is expressed as: 
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The DCC model is designed and used in two stage estimation. In the first stage, unvariate GARCH 

models are estimated and the volatility part is the sum of individual GARCH likelihoods: 
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In the second stage, the correlation parameters can be estimated by using correlation part likelihood, 

conditioning on the parameters estimated in first stage. 

The two-step approach to maximizing can be expressed as follows: 

{ }θ̂ arg max (θ)VL=  (12)

{ }ˆ(ma θ, )x CL
φ

φ  (13)

Then the conditional covariance matrix Ht is obtained and the correlations between outputs of 

gyroscopes are estimated. Since the number of parameters estimated in the correlation process is 

independent of the number of series correlated, large correlation matrices can be estimated. 
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3.3. Hypothesis Testing 

After estimating the parameters in model, the hypothesis test needs to be done for Rt in order to 

judge the presence of dynamic time-varying relationship between multiple gyroscopes. The method is 

described as follows: 

0 1:            :t tH R R H R R= ≠  (14)

Then the test is carried out through the distribution approach proposed by Engle [19], meanwhile 

the P-value is obtained. 

4. Mathematical Models for Combining MEMS Gyroscopes 

To make full use of the time-varying correlation information of MEMS gyroscopes for accuracy 

improvement, dynamic weighted multi-sensors data fusion method is proposed in this paper. 

Assume that wt = (w1t, …, wnt) are the weights of gyroscopes, where 
1

1
n

it
i

w
=

= , t = 1, 2, …, T, n  

is the number of gyroscopes, and T is sampling number. Then the conditional covariance after data 

fusion is: 

, , , ,
1 1

,
1 1

ρ
n n

f t it jt i t j t ij t
i j

n n

it jt ij t
i j

T
t t t

h w w h h

w w h

w H w

= =

= =

=

=

=



  (15)

where ρij,t is correlation coefficient in Equation (6), and Ht is conditional covariance which is defined 

in Section 3. Then the quadratic programming model for dynamic weighted fusion can be given by: 
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This model is used to obtain the weight of each gyroscope, which can minimize the conditional 

variance of the outputs from virtual gyroscope. The first constraint condition means that the sum of 

weights must be 1 and the weights should between 0 and 1. The second constraint means that the 

conditional variance matrix Ht is computed by DCC multivariate GARCH models. 

The weights wt can be obtained by solving this model with active set method. Then the output of the 

gyroscope array can be expressed as: 

ˆ , 1, 2, ,t t tY Y w t T′= =   (17)

where Yt = (y1t, y2t, …, ynt) and ynt is output rate signal of individual MEMS gyroscope. To update the 

gyroscope weights in real time, a rolling window is used in re-estimating the model, which means that 

the models are estimated first from the data in time T, and then the weights are calculated. After 
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obtaining new observations in a period of time t0, the models are re-estimated and new weights 

calculated for time T + t0. 

5. Experiments and Results 

Six separate ADXRS300 [20] gyroscopes were taken to construct a gyroscope array. A prototype of 

the virtual gyroscope is shown in Figure 1. 

The bandwidth of individual gyroscope is set to 40 Hz by choosing proper application circuit. To 

satisfy the Nyquist theorem, the sampling rate is set to 200 Hz. The original output signal of the 

ADXRS300 is a voltage proportional to angular rate. To obtain the output angular rate signal, we 

acquire the relationship between the output voltage of gyroscopes and input angular rates through the 

calibration, which is shown in Figure 2. Then the output voltage is converted to the rate signal. 

 

Figure 1. Prototype of the virtual gyroscope. 
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Figure 2. Scale factor plot of the individual gyroscopes. 
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3600 observations are collected when the input angular rate maintains zero. Output rate signals of 

the individual gyroscopes are shown in Figure 3. The experiments are performed at the room 

temperature (around 25 °C), meanwhile the gyros internal temperature, which is shown in Figure 4, 

changes with time because of self-heating. 
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Figure 3. Outputs of the individual gyroscopes. 

0 500 1000 1500 2000 2500 3000 3500 4000
24

25

26

27

28

29

30

Time/ s

T
em

pe
ra

tu
re

/ °
C

 

Figure 4. Internal temperature of gyros 

From Figure 3, it can be seen that the error of Gyro 4 is for larger than usual, especially from 1000 s 

to 3600 s, while outputs of other gyroscopes appear normally. The environmental conditions of each 
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gyro in the array are identical, so the output of Gyro 4 is not normal and the abnormality of Gyro 4 is 

due to internal fault. If Kalman filter or other conditional approaches to combining the gyroscopes are 

used, the accuracy will be decreased. 

Autoregressive Conditional Heteroskedasticity (ARCH) effect is the precondition to apply GARCH 

model to the measured time series, so that ARCH effect test is necessary before gyroscopes are 

modeled. The commonly used method Lagrange multiplier (LM) proposed by Engle (1982) [19] is 

applied to test the ARCH effect of outputs of gyroscopes. The test results under the condition of 1 lag 

interval are shown in Table 1. 

Table 1. Test results of Autoregressive Conditional Heteroskedasticity (ARCH) effect. 

Gyros P-Value LM-Statistic 

Gyro 1 0.0000 138.0458 

Gyro 2 0.0000 284.1072 

Gyro 3 0.0000 835.0323 

Gyro 4 0.0000 1621.1489 

Gyro 5 0.0000 305.1508 

Gyro 6 0.0000 293.7068 

Table 1 shows that the LM statistics of each gyroscope are larger than critical value, and the value 

of P is almost zero. Therefore, we reject the null hypothesis and ARCH effect is of certification in the 

measured time series of each single gyroscope, which means that the GARCH model can correctly 

describe the measured time series. 

Therefore, we use GARCH model to combine the gyroscopes. Firstly, we determine the order of 

GARCH model. To reduce the complexity of model, p and q should be as small as possible. And in 

general case, GARCH (1, 1) model can feature the data well, so we choose GARCH (1, 1) to model 

individual gyroscopes. For the rolling window, the size of the window is set to be 360, and the 

movement speed of the window is set to be 30. 

Obtaining conditional covariance matrix Ht is performed in two steps. Now first 360 observations 

are taken as example to estimate the parameters of GARCH. 

Step 1: GARCH (1, 1) is used to model each gyroscope, which means that the parameters in 

Equation (11) are estimated under the condition of p = q = 1.The mean equation and variance equation 
can be given by: 2 2 2

1 0 1 1ε ; α αε βt t t t t ty y h h− − −= + = + + , where yt is the residuals of output rate signal of 

individual MEMS gyroscope. The estimated results of GARCH (1, 1) for individual gyroscope are 

shown in Table 2. In this table, α0 is the constant term in GARCH model according to Equation (1), α 

is the coefficient of past sample variances of MEMS gyroscopes, and β is the coefficient of lagged 

conditional variances of MEMS gyroscopes. In general, the outputs of each gyroscope accord with the 

assumptions of GARCH (1, 1). 

Step 2: After Estimating the parameters in Equation (10) through ML method in Equation (13),  

a = 0.0310, b = 0.9484 are obtained, whose standard deviation are 1.57 × 10−5 and 0.0084. The results 

show that all dynamic correlation coefficient are greater than zero, which means that the correlation 

coefficient matrix and prophase influence have positive correlation. Moreover, the closer the value of  

b to 1, the greater correlation coefficient influenced by prophase part. 
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Table 2. Estimated results of Generalized Autoregressive Conditional Heteroskedasticity 

(GARCH) (1, 1). 

Gyros 
α0 α β 

Value Standard Deviation Value Standard Deviation Value Standard Deviation 

Gyro 1 4.94 × 10−4 7.08 × 10−9 0.031432 1.57 × 10−5 0.685944 0.001411 

Gyro 2 1.07 × 10−4 4.32 × 10−9 0.039131 0.000914 0.904651 0.000235 

Gyro 3 1.43 × 10−4 8.16 × 10−9 0.086132 0.000565 0.865696 6.87 × 10−5 

Gyro 4 8.60 × 10−5 1.62 × 10−9 0.081163 3.24 × 10−5 0.916089 0.001028 

Gyro 5 1.28 × 10−4 1.89 × 10−9 0.039739 0.004628 0.906221 5.47 × 10−5 

Gyro 6 5.19 × 10−4 3.25 × 10−9 0.057514 0.001625 0.681433 0.000963 

Meanwhile, according to the hypothesis test in Equation (14), P-value is 0 and chi-square value is 

180.24. The chi-square test shows obvious statistical significance. So the null hypothesis H0 in 

Equation (14) is rejected and H1 is admitted, which means that there is dynamic time-varying 

relationship between multiple gyroscopes. 

Then move the window and re-estimate the models. In every window, once all parameters in DCC 

have been estimated, Ht and correlation coefficient matrix Rt is also estimated, which is shown in 

Figures 5 and 6, respectively. Due to hij,t = hji,t, ρij,t = ρji,t, ρii,t = 1 (i, j = 1, 2, …, 6), only the curves of 

hij,t (i < j)  and ρij,t (i < j)  are given in the figures. 

Then take Ht in Equation (16) and solve the quadratic programming. The obtained weights are 

depicted in Figure 7. 
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Figure 5. Ht estimated. 
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Figure 7. Weights of the individual gyroscopes. 

From Figure 7, it can be seen that the weight of each gyroscope is time-varying, and the variation 

corresponds to conditional correlation coefficient. It is worth noting that the weight of Gyro 4 has a 

declining trend, as expected, especially near zero after 2500 s, which is relevant to the large error of 

Gyro 4. Because the error of Gyro 4 is larger than other gyros, the accuracy may be decreased when 

combining the gyroscopes to a virtual gyroscope with other approaches. However, with the method in 

this article, according to Equation (17), when the weight of the Gyro 4 is smaller, the influence of  
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Gyro 4 on accuracy of virtual gyroscope is weaker. In addition, the weights are obtained through the 

model in Section 4, and this model is used to obtain the weight of each gyroscope, which can minimize 

the conditional variance of the outputs from virtual gyroscope. So the accuracy can be improved more 

compared to the six gyroscopes when the weight of the Gyro 4 is smaller. It proves that the data fusion 

scheme can eliminate the influence of malfunction gyroscope in gyroscope array. Then the outputs of 

MEMS gyroscope can be combined by Equation (17). Finally, the outputs of virtual gyroscope are 

shown in Figure 8. The comparisons of Allan variance measurements between the virtual gyro and 

single gyro are shown in Figure 9. And the detailed results are illustrated in Table 3. The simple 

average and the Kalman filter in [8,9,11] are competitors. In this paper, the accuracy means the 

closeness between the results of measurement and the true angular rate, which can be represented by 

the amount of measurements errors. Then the standard deviation (1σ), the mean of the estimated errors, 

the angular random walk (ARW) noise and bias drift are used to evaluate the accuracy of the rate 

signal, thus the improvement factor is define as: 

/i Sgyro VgyroIF i i=  (18)

where IFi is the improvement factor and I refers to 1σ errors, mean, ARW noise and bias drift. iSgyro is 

1σ errors, mean, ARW noise or bias drift for the single gyroscope in the array, and iVgyro is that for the 

virtual gyroscope. Alternatively, we use the average of the six gyroscopes to represent the single 

gyroscope here when calculate IFi because the accuracy of the gyroscopes is different. 

Table 3 shows that the 1σ estimated errors of gyroscopes are reduced from 0.0418–0.0545 °/s (except 

Gyro 4) to 0.0189–0.0231 °/s by five different models. Therefore, the performance improvement by 

these five different models is nearly equivalent, and the DCC multivariate GARCH has a slight edge. 

However, in the view of mean, we know it increases from 0.0066–0.0110 °/s (except Gyro 4) to 

0.0239–0.0243 °/s by simple average and Kalman filters, which indicates that these four models are 

out of work for performance improvement under the influence of Gyro 4. Compared with other 

models, the mean of virtual gyroscope combined by DCC model is reduced to 0.0047 °/s, so that the 

performance is also improved, and the improvement factor of the accuracy is about 5.17. 
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Figure 8. Outputs of virtual gyroscope. 
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Figure 9. Allan variance results of the virtual gyro compared to the single gyro. 

Table 3. Experiments results. 

Model Mean (°/s) 1σ (°/s) ARW ( h° ) Bias Drift (°/h) 

Gyro 1 0.0086 0.0418 1.74 38.02 
Gyro 2 0.0092 0.0436 1.74 38.88 
Gyro 3 0.0110 0.0545 1.86 42.52 
Gyro 4 0.1022 0.1051 2.94 73.19 
Gyro 5 0.0082 0.0484 1.85 47.02 
Gyro 6 0.0066 0.0446 1.73 32.78 

Simple average 0.0243 0.0231 1.03 19.91 
Kalman filter [8] 0.0240 0.0227 1.02 19.18 
Kalman filter [9] 0.0239 0.0227 1.01 19.18 

Kalman filter [11] 0.0239 0.0225 0.96 18.96 
DCC 0.0047 0.0189 0.93 11.02 

IF of DCC 5.17 2.98 2.13 4.09 

From the Allan variance plot, both the ARW noise and bias drift are reduced by fusing multiple 

measurements from gyro array. Table 3 reveals that the ARW noise of the gyroscope is reduced from 

1.73–2.94 h°  to 0.96–1.93 h°  by simple average and Kalman filters. Meanwhile, the bias drift is 

reduced from 32.78–73.19 °/h to 18.96–19.91 °/h. The ARW noise and bias drift are reduced to  

0.93 h°  and 11.02 °/h by the DCC model, indicating a bias drift reduction factor of about 4.09, 

which is larger than the other models. 

From the experimental results above, we find out that fusing multiple measurements from gyroscope 

array for accuracy improvement has higher reliability and effectiveness based on DCC model. 

6. Conclusions 

In this paper, based on DCC multivariate GARCH, a dynamic weighted multi-sensors data fusion 

algorithm is proposed to improve the overall accuracy of the MEMS gyroscopes. The GARCH model 
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has been established to model the rate signal for MEMS gyroscope, and the dynamic conditional 

correlation between gyroscopes, which is significant for combining numerous gyroscopes, is analyzed 

by DCC multivariate GARCH. It indicates that the six-gyroscope array with an ARW noise of  

1.73–2.94 h°  and a bias drift of 32.78–73.19 °/h are combined into a rate signal having an ARW 

noise of 0.93 h°  and a bias drift of 11.02 °/h, even the error of one gyroscope in the array is larger 

than usual. Compare to other fusion approaches, the proposed method can not only improve the 

accuracy more greatly, but also eliminate the influence of faulty gyros. It proved that the dynamic 

weighted multi-sensors data fusion algorithm based on DCC multivariate GARCH is efficient and 

reliable for modeling rate signal to improve the system overall performance. 

In the future fabrication of a number of MEMS gyroscopes on a single chip would enhance the 

uniformity between the gyroscopes and the correlation between the gyroscopes in the same array 

would be more significant. Through the proposed method, the MEMS industry can produce gyroscopes 

with higher accuracy and higher reliability at a low cost. 
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