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Abstract: This paper presents a WiFi-aided magnetic matching (MM) algorithm for indoor 

pedestrian navigation with consumer portable devices. This algorithm reduces both the 

mismatching rate (i.e., the rate of matching to an incorrect point that is more than 20 m 

away from the true value) and computational load of MM by using WiFi positioning 

solutions to limit the MM search space. Walking tests with Samsung Galaxy S3 and S4 

smartphones in two different indoor environments (i.e., Environment #1 with abundant 

WiFi APs and significant magnetic features, and Environment #2 with less WiFi and 

magnetic information) were conducted to evaluate the proposed algorithm. It was found 

that WiFi fingerprinting accuracy is related to the signal distributions. MM provided results 

with small fluctuations but had a significant mismatch rate; when aided by WiFi, MM’s 

robustness was significantly improved. The outcome of this research indicates that WiFi 

and MM have complementary characteristics as the former is a point-by-point matching 

approach and the latter is based on profile-matching. Furthermore, performance improvement 

through integrating WiFi and MM depends on the environment (e.g., the signal 

distributions of magnetic intensity and WiFi RSS): In Environment #1 tests, WiFi-aided 

MM and WiFi provided similar results; in Environment #2 tests, the former was approximately 

41.6% better. Our results supported that the WiFi-aided MM algorithm provided more 

reliable solutions than both WiFi and MM in the areas that have poor WiFi signal 

distribution or indistinctive magnetic-gradient features. 
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1. Introduction 

While Global Navigation Satellite Systems (GNSS) based outdoor navigation has greatly advanced 

over the past few decades, positioning and navigation in indoor and deep urban areas are still open 

issues [1]. The challenges include unavailable or degraded GNSS signals, complex indoor environments, 

necessity of using low-grade devices, etc. Wireless positioning technologies have been applied to 

provide long-term absolute positions [2]. Especially, as WiFi receivers are ubiquitous in consumer 

devices such as smartphones, it is feasible to implement WiFi positioning in public areas with existing 

WiFi infrastructures. WiFi fingerprinting approaches based on received signal strengths (RSS) have 

gained a large amount of attention, as they can provide position without any knowledge of the access 

point (AP) location or signal-propagation model [3]. However, the utilization of WiFi requires the creation 

and maintenance of a network. Furthermore, RSS fluctuate significantly due to obstructions, reflections [4], 

and multipath effects [5]. Fluctuations of RSS have limited the promotion of wireless positioning 

technologies [6]. 

Advances in Micro-Electro-Mechanical Systems (MEMS) technology have made it possible to 

produce chip-based sensors, such as inertial sensors (i.e., accelerometers and gyros) and magnetometers. 

MEMS sensors have become appropriate candidates for motion tracking and navigation applications 

because they are small and lightweight, consume little power, and are extremely low-cost [7]. 

Especially, inertial sensors are ideal for providing continuous information in indoor/outdoor 

environments because they are not dependent on the transmission or reception of signals from an 

external source [8]. However, inertial sensors provide only short-term accuracy and suffer from 

accuracy degradation over time due to the existence of sensor errors [9]. Calibration is a useful way to 

remove many deterministic sensor errors and improve sensor-based navigation [10]; however, MEMS 

inertial sensors suffer from significant run-to-run biases and thermal drifts [11]. Especially, the 

heading error will grow when there is no aiding information [12]. Magnetometers can assist the heading 

estimation by sensing the geomagnetic field [13]. Nevertheless, the local magnetic field is susceptible to 

interferences from man-made infrastructure in indoor or urban environments [14], which makes 

magnetometer-derived heading angle unreliable. Magnetic interference is a critical issue when 

magnetometers are used as a compass indoors. 

However, the indoor magnetic interference can also be exploited as an advantage by leveraging the 

magnetic abnormalities as fingerprints [15,16]. The magnetic matching (MM) approach has been 

proposed based on the hypothesis that the indoor magnetic field is stable over time and non-uniform 

(i.e., changes significantly) with location [17,18]. MM is achieved in two phases (steps): The offline 

training (pre-survey) phase and the online positioning phase. The training phase is conducted to build 

or update a “location, magnetic intensity” database (DB) that consists of a set of reference points (RPs) 

with known coordinates and the magnetic intensity on these RPs, while the positioning step is 

implemented to find the closest match between the features of the measured magnetic intensity and 
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those stored in the DB. While MM utilizes a similar idea to WiFi fingerprinting, it is independent from 

any infrastructure, as the magnetic field is omnipresent. The challenge for MM is that magnetic data 

only consists of three components. Because the heading is generally unknown, it is only feasible to 

extract two components with the help of accelerometers, i.e., vertical magnetic intensity and horizontal 

magnetic intensity (or total magnetic intensity and inclination). To increase the magnetic fingerprint 

dimension without extra sensors, the profile-matching method has been proposed [19]. A sequence of 

observations are saved in the memory and then compared with the candidate profiles stored in the DB. 

There are well-developed profile-matching methods such as terrain contour matching (TERCOM) [18,19] 

and iterative closest contour point (ICCP) [20]. To obtain the optimal match, the profile length should 

be long enough to show the profile feature; moreover, the length of the measured profile should be the 

same as that of the stored profiles. However, for indoor cases, sensors are low-end and there is no effective 

constraint if the device is not fixed on the body (e.g., on-foot or in-belt). Thus, the sensor-based navigation 

error will accumulate quickly and make it difficult to measure the accurate moving distance [21]. In this 

paper, we calculate the rough length of the measured profile using the steps detected by accelerometers. 

Because accurate and real-time step-length estimation is still an open issue in pedestrian navigation, we 

utilize the dynamic time warping (DTW) algorithm for matching with inaccurate profile length [22]. 

This paper presents a WiFi-aided MM navigation algorithm that uses off-the-shelf sensors in consumer 

portable devices and existing WiFi infrastructures. The basic idea is using WiFi results to limit the MM 

search space, so as to reduce both the mismatching rate and the computational load. This algorithm 

was designed after comparing WiFi and MM, and taking advantage of the merits of each technology. 

We found that MM results had small error fluctuations but had a significant mismatch rate (i.e., the 

rate of matching to an incorrect point that was more than 20 m away from the true value). In contrast, 

WiFi fingerprinting can provided results with low mismatch rate; however, the WiFi fingerprinting 

accuracy strongly depended on the signal distributions. Finally, the proposed WiFi-aided MM provided 

more reliable results than either the independent use of WiFi or MM and had a lower mismatch rate. 

The paper is organized as follows: Section 2 outlines the architecture of the WiFi-aid magnetic 

matching algorithm and a detailed description of each component; Section 3 investigates the 

navigation performance of different technologies; and Section 4 draws the conclusions. 

2. WiFi-Aided Magnetic Matching Algorithm 

The block diagram of the algorithm architecture is shown in Figure 1. This section first describes 

the principle of magnetic matching and WiFi fingerprinting, and then it introduces the WiFi-aided 

magnetic matching algorithm. 

WiFi
WiFi 

Fingerprinting
MM Searching 

Space

MMMagnetometers Location

Accelerometers Step Detection

 

Figure 1. Algorithm architecture. 
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MM and WiFi fingerprinting utilize similar ideas and both consist of the training phase and the 

positioning phase. This section introduces these two phases separately. 

2.1. Training Phase for WiFi Fingerprinting and Magnetic Matching 

The purpose of training is to build or update a “location, RSS” DB and a “location, magnetic 

intensity” DB. The key to generating reliable DBs is obtaining accurate RP coordinates. The choice of 

the DB training method is a trade-off between cost and accuracy. Different training approaches have 

been researched according to various requirements. The first approach is to survey at every RP and record 

its fingerprint. This point-by-point method can improve the DB reliability by averaging the measurements 

(RSS or magnetic intensity) at each RP [23] and even provide a rough estimate of orientation [24]. 

However, it is time- and labor-consuming when dense RPs are selected to cover an entire area of 

interest, and a surveyor needs to mark the position of all RPs manually [25]. The point-by-point 

training can take up to several hours even for a small building [26]. 

To reduce the time and labor costs, we adopt the walk-survey method. The walk-survey method is 

used based on landmarks (i.e., points with known coordinates) or floor plans (i.e., the true positions of 

corners and intersections and the true orientation of corridors) and a constant-speed assumption.  

A surveyor has to walk with a constant speed along each link between landmarks, such as corners or 

intersections, over the pre-designed path. The positions of landmarks are determined on a digital map, 

while those of other RPs and the links between landmarks are calculated by the arrival time and the 

distance between landmarks. Although the DB generated by walk-survey tends to be less accurate than 

that from the point-by-point approach, walk-survey is significantly more time-effective. Furthermore, 

with inertial sensors on smartphones, we utilize the steps detected by accelerometers to replace the 

constant-speed assumption by a constant-step-length assumption, and we use the heading changes 

calculated from gyros to remove the requirement for straight walking. The procedure of training and 

positioning is shown in Figure 2. 

……

AP1 AP2 APmi⁞ 

m1 m2 m3 mnm1,1 m1.2 m1,3 m1,4 m2,1 m2,2 m2,3 m2,4

pos1,σpos1,mac1,1,RSS1,1,mac1,2,RSS1,2,……,mac1,n1,RSS1,n1

pos2,σpos2,mac2,1,RSS2,1,mac2,2,RSS2,2,……,mac2,n2,RSS2,n2

⁞ 
posn,σposn,macn,1,RSSn,1,macn,2,RSSn,2,……,macn,nn,RSSn,nn

pos1, σpos1, m1

pos1,1, σpos1,1, m1,1 
pos1,2, σpos1,2, m1,2 

⁞ 
pos2, σpos2, m2

⁞ 
posn, σposn, mn

Database
Magnetic Intensity

WiFi RSS

 

Figure 2. Procedure of training phases for magnetic matching and WiFi fingerprinting. 

Magnetometers on smartphones have a higher sampling rate (commonly more than 10 Hz). 

Therefore, we store every step as a RP. Furthermore, we assume that the device moves with a constant 

speed within each step; thus, we calculate the magnetic intensity at a set of points within this step 

through interpolation. The interpolated points are also stored as MM RPs. The MM fingerprint at the  

k-th RP is recorded as: 
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{ }, ,k k posk k=FM pos σ m  (1)

where posk and σposk are the location of RPk and its accuracy, mk is the magnetic intensity vector at 

RPk. The approach for determining the σpos values is related with the DB training method used. 

According to the DB training method we use, we calculate the value σpos for the step points on the i-th 

link (or arc) by ,
i

pos p
i

L

N

α ⋅=σ , where Li is the length of the i-th link, Ni is the number of steps on this 

link, and α is a scale factor. σpos is an optional parameter. If there is no σpos in the fingerprints, all RPs 

have the same weight in the DB. The fingerprints on the interpolated points between two adjacent step 

points (e.g., m1 and m2) are set by the following method: Assuming the fingerprints at m1 and m2 are 

FMm1 and FMm2, and there are n interpolated points between m1 and m2, then the fingerprints at the  

i-th interpolated point is 1 2 1( )
1m m m

i

n +
+ −FM FM FM , where 1 i n≤ ≤ . 

In general, more elements in each fingerprint are better for matching. With accelerometers on 

smartphones, we detect the roll and pitch angles and in turn extract the vertical and horizontal 

magnetic intensities. The roll and pitch angles are calculated as: 

2 2

tan 2( , )

tan 2( , )

y z

x y z

a f f

a f f f

φ = − −

θ = +
 (2)

where Φ and θ are the roll and pitch angles, fi (i = x, y, z) is the accelerometer-measured specific force 

along the i-th axis. 

We can transfer the magnetic vector in body-frame (i.e., the magnetometer measurements) to that in 

navigation frame (i.e., the local magnetic vector) by using [27]: 
n n b

b=B C B  (3)

where n
bC  is the direction cosine matrix (DCM), which can be represented by the roll, pitch, and 

heading angles as: 

c c s s s c s s c s c

c s c c s s s s c c s s

s s c c c

n
b

cθ ψ − φ ψ + φ θ ψ φ ψ + φ θ ψ 
 = θ ψ φ ψ + φ θ ψ − φ ψ + φ θ ψ 
 − θ φ θ φ θ 

C  (4)

where Ψ is the heading angle. s and c are the shorthand notations of sin( ) and cos( ), respectively. 

Let 
Tb

x y zB B B =  B  and [ ]Tn
N E DB B B=B , the vertical magnetic intensity can be 

calculated by: 

sin sin cos cos cosD x y zB B B B= − θ⋅ + φ θ⋅ + φ θ⋅  (5)

Therefore, we construct the magnetic intensity vector as [ ]D HB B B=m , where bB = B  is the 

total magnetic intensity, and 2 2
H DB B B= −  is the horizontal magnetic intensity. 

Compared with WiFi, android smartphones commonly have low WiFi update rates (e.g., approximate 

0.3 Hz for Samsung Galaxy smartphones). Thus, we combine the RSS and the coordinates of the latest 

step as a fingerprint when the RSS is updated. The WiFi fingerprint at the i-th RP is recorded as: 
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 (6)

where posi and σposi are the coordinate of RPk and its accuracy, maci,j and RSSi,j are the MAC address 

and RSS of the j-th AP received at RPi, and mi is the number of available APs at RPi. 

2.2. Positioning Phase for WiFi Fingerprinting and Magnetic Matching 

MM is a profile-matching method, while WiFi fingerprinting is based on point-by-point matching. 

Therefore, these two techniques are described separately. 

2.2.1. Magnetic Matching 

The basic idea of MM is calculating the difference between the measured profile and the candidate 

profiles in the DB, and finding the best match. The “match” can be indicated by the minimum value of 

a given formula such as mean absolute difference (MAD) [19]: 

1

1 N

i i
i

MAD S M
N =

= −  (7)

where Si is the measured profile, Mi is the profile in the DB, and N is the profile length. 

To obtain the optimal match, the profile length should be long enough to show the profile feature; 

additionally, it is preferred that the length of the measured profile and the candidate profile should be 

the same. We utilize the steps detected by accelerometers to calculate the rough length of the measured 

profile. Because accurate and real-time step-length estimation is still an open issue in pedestrian 

navigation, we use the dynamic time warping (DTW) algorithm, which is originally used in the speech 

recognition area, for matching with inaccurate profile length. 

The technique in DTW [22] is to compress or stretch the time axis of one (or both) sequences to 

achieve a better alignment. The goal is to find the best match between two sequences, 

{ }1 2, , ..., As s s=S  and { }1 2, , ..., Bm m m=M , of different lengths. The best match is found by obtaining 

the optimal warping path w. The warping path is given by (1), (2), ..., ( )w w w w n= , where 

( ) [ ( ), ( )]w i i n j n=  is a set of matched samples, where i and j are the time-axes of two sequences, 

respectively. The objective of the warping function is to minimize the overall cost function given by 

1

( ( ))
N

n

D w n
=

= δ , where 2

1

( ( )) ( ( ) ( ))
N

n

w n i n j nδ
=

= −  is the squared distance between the sample points. 

To generate a warping path, a cost matrix is constructed. This matrix represents the minimum cost 

required to reach a particular point (i, j) from (1, 1). This minimization problem is usually solved using 

the dynamic programming approach, whereby a cumulative distance γ (i, j) is computed as the sum of 
the distance obtained from the current set of points ( ( ))w nδ  and the minimum of the cumulative 

distances of the adjacent elements or neighbors by: 

( , ) ( ( )) min[ ( 1, ), ( 1, 1), ( , 1)]i j w n i j i j i jγ = δ + γ − γ − − γ −  (8)
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2.2.2. WiFi Fingerprinting 

The user location is estimated by finding the closest match between the measured RSS vector with 

those stored in the DB. The most typical WiFi fingerprinting approaches are the Nearest Neighbor 

(NN) method and the probabilistic estimation approach [28]. The NN method selects the RP that has 

the minimal signal strength distance as the user’s estimated position by using [23]: 

, ,| |,
ui rec l DB i RPd SS SS i I= − ∈  (9)

where, di is the signal strength distance at RPi, lu is the position to be determined, , urec lSS  is the 

measured RSS vector at lu, SSDB,i is the RSS vector at RPi, and IRP is the location index set of RPs in 
the DB. After this, the location of RPi which satisfies the condition * min( | )i RPi

d d i I= ∈  is determined 

as the position estimate of lu. 

To mitigate the impact of blunders and obtain a more reliable position, the k-NN method is  

considered [29]. The k-NN method estimates the position according to the k RPs that have the smallest 

distances. The position estimate is obtained by a weighed sum of the position of these RPs by: 

1

ˆ
k

i
i

i

c

C=

=r r  (10)

where 1 /i ic d= , 
1

k

i
i

C c
=

= , ir  is the position of the i-th nearest RP, and r̂  is the estimated position. 

2.2.3. WiFi-Aided Magnetic Matching 

Compared with WiFi, MM results have smaller fluctuations but more mismatches. Thus, we use 

WiFi positioning result to limit the MM search space to reduce both the mismatch rate and the 

computational load. The search space is limited to a circle around the WiFi results, as shown in  

Figure 3. The radius of the circle is set according to the WiFi accuracy. 

Furthermore, a multi-level quality control mechanism is applied to make WiFi solutions robust. The first 

level is on WiFi fingerprinting. Several methods are used to detect WiFi blunders. The first is on the 

measurement level, where a threshold value ThRSS is set to filter out APs with weak RSS. The second is 

based on the minimal signal strength distance. If the minimal signal strength distance at a certain epoch is 

larger than the value Thd1, the WiFi results at this epoch will be regarded as a point outside the DB. 

 

Figure 3. Using WiFi positioning results to limit search space for magnetic matching. 
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This methodology can also be extended to Bluetooth or other techniques. Since Bluetooth can be 

used in a similar way as WiFi (either fingerprinting or trilateration), it is feasible to use Bluetooth to 

determine a region first, and then use magnetic matching to determine the position. When both WiFi 

and Bluetooth are available, both a WiFi result and a Bluetooth result can determine a region. If this is 

the case, the position uncertainty of the integrated use of WiFi and Bluetooth can be smaller than that 

of the independent use of WiFi or Bluetooth. Accordingly, the position accuracy can be further improved. 

Tests and results of WiFi, MM, and WiFi-aided MM are demonstrated in Section 3. 

3. Tests and Analysis 

Two sets of tests were conducted at the University of Calgary, one on the main floor of the Energy 

Environment Experiential Learning (EEEL) building, and the other is on the lower main floor of the 

Engineering building (ENB). These two buildings were chosen because they have different types of 

indoor environments. EEEL is a relatively new building with well-equipped infrastructure. Accordingly, 

there are more WiFi APs (the average number of RSS was over 15 in this building) and severe magnetic 

interferences (the change of magnetic intensity reached 0.4 Gauss). In contrast, the lower main floor of 

ENB is mainly used for walking; thus, there are less APs (the average number of RSS was nearly 

seven) and less magnetic interferences (the change of magnetic intensity was below 0.25 Gauss). The 

sizes of tested areas in EEEL and ENB were around 120 × 40 m2 and 140 × 60 m2, respectively. The tests 

were performed with Samsung Galaxy S3 and S4 (S3 for training and S4 for positioning) smartphones. 

We conducted the tests in this paper with the handheld mode to focus on the hybrid navigation. 

3.1. Tests at EEEL 

3.1.1. Training Phase 

We generated the magnetic and WiFi DBs inside the EEEL building using four different trajectories. 

The true trajectories are shown in Figure 4. Each trajectory lasted for 5–10 min. The coordinates of the 

landmarks (i.e., the start and end points and corners and intersections) and the orientations of corridors 

were obtained from Google Earth and utilized as constraints to generate the DBs. 

 

Figure 4. Trajectories used to generate WiFi and magnetic databases (DBs) at the Energy 

Environment Experiential Learning (EEEL). 
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When the WiFi RSS information was updated, it was combined with the coordinate of the surveyor’s 

latest step as a fingerprint only. The WiFi update rate on tested smartphones was about 0.3 Hz; thus, 

the distance between two WiFi RPs was approximate 3 m. The RPs in the magnetic DB included all 

steps and interpolation points. The interpolation distance was set at 0.1 m. The scale factor α was set at 

0.2. The RPs in the WiFi and magnetic DBs are shown in Figures 5 and 6, respectively. The x- and  

y-axes indicate the length in the west–east and south–north directions. The colors in Figures 5 and 6 

indicate the weighted AP number and the magnetic strength. Over 15 RSS were available in the middle 

indoor area, and over 10 were available in the marginal indoor areas. The magnetic intensity varied 

from 0.3 Gauss to 0.8 Gauss indoors. The weighted AP number at RPi was calculated by: 

,
1

,
in

i i j RP
j

WAP a i I
=

= ∈  (11)

where ni is the number of WiFi signals received at RPi, IRP is the location index set of RPs in the DB. 

The value of ai,j is determine according to RSSi,j (i.e., the RSS of APj at RPi) by the following rule: If 

RSSi,j > −60 dBm, ai,j = 1; else, if −70 dBm < RSSi,j < −60 dBm, ai,j = 0.75; else, if −85 dBm < RSSi,j < 

−70 dBm, ai,j = 0.25; else, if RSSi,j < −85 dBm, ai,j =0. 

Figure 5 shows that the available WiFi signals were abundant in the middle area of EEEL, less in 

the marginal indoor areas, and even less in outdoor areas. Figure 6 indicates that the magnetic intensity 

was within 0.5–0.6 G (the geomagnetic intensity at Calgary is 0.57 G) at most of the outdoor RPs; 

however, the magnetic intensity varied significantly indoors. 

  

Figure 5. WiFi signal distribution at EEEL. 

 

Figure 6. Magnetic distribution at EEEL. 
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3.1.2. Positioning Phase 

Figure 7 shows the trajectory for the positioning test, which was different from the training trajectories. 

The walking directions on the majority of the main corridors were also different from those on the 

training trajectories. 

The threshold value for available WiFi RSS was set at ThRSS = −85 dBm. The number k was set at  

4 for the k-NN approach. The profile length for MM was 10 steps: The MM process began after the 

user had walked for 10 steps; after this, the magnetic fingerprints within the latest 10 steps were used 

for matching. The radius of the MM search space determined by the WiFi results was set at R = 15 m. 

The test results are shown in the next subsection. 

  

Figure 7. Test trajectory at EEEL (with abundant WiFi and magnetic information). 

3.1.3. EEEL Test Results 

Navigation solutions with pedestrian dead-reckoning (PDR)-only, WiFi-only, MM-only, and  

WiFi-aided MM are shown in this subsection. We first trace the trajectory provided by each 

technology or combination. After this, statistical results are provided. The MM, WiFi, and WiFi-aided 

MM solutions are demonstrated in Figures 8–10, respectively. 

WiFi provided absolute positions with a low mismatch rate in this test. As there were abundant 

WiFi APs in EEEL, the ambiguity issue was not evident. However, the WiFi results had significant 

fluctuations. RSS fluctuation is an issue inherent to any technology based on RSS. 

Compared with WiFi, the matched MM results were more accurate and had smaller fluctuations. 

Nevertheless, MM had a significantly larger mismatch rate. Thus, it is preferable to use other 

technologies to aid MM and detect the mismatches. Figure 10 shows that the majority of the 

mismatches in MM were eliminated by limiting the search space using the WiFi results. 

To further evaluate the positioning errors, the error distances (i.e., the distance between the 

estimated user position and the corresponding true position) were calculated. The true positions were 

obtained by using the floor plan to correct the PDR solution, which was similar to the work in the 

training phase. Figures 11–13 demonstrate the position errors of MM, WiFi, and WiFi-aided MM, 

respectively. The left plot in each figure shows the time series of error distances. The root mean square 

(RMS) value of the error distances is also shown as a magenta line. The yellow and blue lines on the  

x-axis indicate indoors and outdoors, respectively. The right plot in each figure is the statistical error 

cumulative distribution function (CDF). The red line indicates the error within which the probability  

is 80%. 



Micromachines 2015, 6 757 

 

 

Figure 8. Magnetic matching (MM) result at EEEL. 

 

Figure 9. WiFi fingerprinting result at EEEL. 

 

Figure 10. WiFi-aided MM result at EEEL. 

 

Figure 11. MM position errors at EEEL. 
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Figure 12. WiFi position errors at EEEL. 

 

Figure 13. WiFi-aided MM position errors at EEEL. 

By using the WiFi solutions to limit the search space, the MM errors were reduced significantly. On 

several occasions, a sequence of MM results was more than 20 m away from the true positions. When 

aided by WiFi, these MM errors were controlled effectively. The max error reduced from more than  

60 m to less than 20 m. Also, the 80% reduced from approximate 7 m to below 5 m. 

Comparing with the WiFi-only results, the WiFi-aided MM results had a smaller 80% error. 

However, the max error of the WiFi-aided MM solution is larger than that in the WiFi results. The 

statistical values of navigation errors are shown in Table 1. The first column shows the used technologies, 

and Column 2–4 are the max, RMS values, and errors within which the probability is 80%. 

Table 1. Statistical values of navigation errors at the Energy Environment Experiential 

Learning (EEEL). 

Technique Max (m) RMS (m) 80% (m) 

WiFi 10.2 4.3 5.8 
MM 61.5 12.2 7.0 

WiFi-aided MM 18.3 4.5 4.2 

The RMS of WiFi positioning errors was 4.3 m. This was a medium accuracy for WiFi with 

consumer portable devices and with walk-survey. 80% of MM errors were within 7.0 m, but the RMS 

was 12.2 m. This is because there were several large mismatches. The RMS of MM errors was reduced 

to 4.5 m when using WiFi results to limit the search space. 
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Although the 80% error of WiFi-aided MM was 1.6 m less than that of WiFi, both the max error 

and the error RMS of the former were larger. This might due to the fact that WiFi results were already 

accurate (with a RMS of 4.3 m) because there were over 10 WiFi signals in most of the tested area at 

EEEL. This outcome indicates the performance improvement by combing WiFi and MM depends on 

signal distributions of both magnetic intensity and WiFi RSS. The following tests at ENB show the 

performance of the WiFi-aided MM algorithm when there were less WiFi signals. 

3.2. Tests at ENB 

The corridors in ENB are narrow and straight, which are different from those in EEEL. The RSS 

and magnetic distributions on the tested trajectory are shown in Figures 14 and 15, respectively. The 

average number of RSS was approximately seven, and the change of magnetic intensity was below 

0.25 Gauss. There were less WiFi APs and less magnetic perturbations at ENB. Therefore, it was 

expected that the WiFi and MM accuracy would probably be lower than that at EEEL. 

The MM, WiFi, and, WiFi-aided MM trajectories are demonstrated in Figures 16–18, respectively. 

Not only the MM results but also the WiFi results had several significant mismatches. This outcome 

met our expectation, as the WiFi signal distribution was poorer at ENB. 

Figures 19–21 demonstrate the position errors of MM, WiFi, and WiFi-aided MM, respectively. 

The left plot in each figure shows the time series of error distances. The root mean square (RMS) value 

of the error distances is also shown as a magenta line. The yellow and blue lines on the x-axis indicate 

indoors and outdoors. The right plot in each figure is the statistical error cumulative distribution 

function (CDF). The red line indicates the error within which the probability is 80%. 

 

Figure 14. WiFi signal distribution at the Engineering building (ENB). 

 

Figure 15. Magnetic distribution at ENB. 



Micromachines 2015, 6 760 

 

 

Figure 16. MM result at ENB. 

 

Figure 17. WiFi fingerprinting result at ENB. 

 

Figure 18. WiFi-aided MM result at ENB. 

 

Figure 19. MM position errors at ENB. 
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Figure 20. WiFi position errors at ENB. 

 

Figure 21. WiFi-aided MM position errors at ENB. 

The RMS of MM errors was 16.6 m at ENB, which was larger than that at EEEL (12.2 m). Also, the 

WiFi errors were more significant and had a max error of 35 m. Even with such large WiFi errors, the 

WiFi-aided MM results had a much smaller max error and RMS than both the WiFi and MM results. 

The statistics of navigation errors are shown in Table 2. 

Table 2. Statistical values of navigation errors at ENB. 

Technique Max (m) RMS (m) 80% (m) 
WiFi 37.8 7.2 6.3 
MM 61.0 16.6 17.3 

WiFi-aided MM 17.8 4.2 4.0 

In the ENB tests, MM provided the worst navigation solution with an RMS of 16.6 m. However, 

when aided by WiFi, the RMS reduced to 4.2 m. Therefore, although MM was not reliable, it could 

provide high accuracy when there was no mismatch. Therefore, it is feasible to combine MM with 

other technologies to provide accurate solutions. The key is to remove the MM mismatches using 

information from other technologies. When comparing the RMS value of the position errors for  

WiFi-aided MM with that for WiFi, an improvement of 41.6% was observed. 

The WiFi and MM position errors at ENB (RMS 7.2 and 16.6 m, respectively) were more 

significant than those at EEEL (RMS 4.3 and 12.2 m, respectively). However, the position errors of 

WiFi-aided MM were similar for two buildings (RMS 4.5 m at EEEL and 4.2 m at ENB). This result 

indicates the potential of integrating WiFi and MM to provide more reliable navigation results, 



Micromachines 2015, 6 762 

 

especially at the environments with poor WiFi RSS or magnetic intensity information. However, 

Figure 21 demonstrates that there were still several errors that were larger than 15 m. This may 

probably due to the accuracy limit of both WiFi and MM in a short time period. Therefore, PDR, which 

provided accurate short-term solutions but suffers from increasing drifts, may be an appropriate candidate 

to integrate with the WiFi-aided approach. This will be an important issue in our future research. 

4. Conclusions 

This paper presents a WiFi-aided magnetic matching (MM) navigation algorithm that maximizes  

the advantage and minimizes the disadvantage of WiFi and MM. By using WiFi to reduce the MM  

search space, this algorithm can significantly reduce the mismatching rate and computational load of 

MM. The algorithms were tested with smartphones in different indoor environments  

(i.e., Environment #1 with abundant WiFi APs and significant magnetic changes, and Environment #2 

with less WiFi and magnetic information). 

The WiFi and MM databases were generated simultaneously within half an hour using the  

walk-survey method. WiFi fingerprinting errors were not significant in Environment #1 (RMS 4.3 m and 

max 10.2 m) but significant in Environment #2 (RMS 7.2 m and max 37.8 m). In general, WiFi results 

had a low mismatch rate in both environments. 

MM had significant mismatch rates. The RMS values of MM errors reached 12.2 m (Environment #1) 

and 16.6 m (Environment #2). However, when we used WiFi to limit the MM search space, the RMS 

reduced to below 4.5 m. Therefore, the key to obtaining accurate MM solutions is to remove the 

mismatches using information from other technologies. 

WiFi-aided MM provided more reliable results than MM, which indicates the effectiveness of 

introducing the WiFi information. Comparing with WiFi-only results, the WiFi-aided MM solution 

was similar in Environment #1 but approximately 41.6% better in Environment #2. This outcome 

demonstrates that integrating WiFi and MM can also enhance the WiFi fingerprinting results in 

environments with poor WiFi signal distributions. 

The proposed WiFi-aided magnetic matching algorithm uses off-the-shelf sensors available in 

consumer portable devices and existing WiFi infrastructure, which need no additional hardware cost or 

extra manpower cost. Future work will focus on introducing other technologies, such as PDR, to 

integrate with the WiFi-aided approach and provide continuous and reliable solutions. 
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