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Abstract: We report on the microfluidic induced monodispersed microdroplet generation
and assembly in confined microchannels. Two and three dimensional close-packed droplet
lattices were obtained in microfluidic devices by adjusting the channel geometry, the fluidic
flow rates and the monodispersed droplet size. The droplet packing was mainly caused by the
volumetric effect and capillarity in confined microchannels. Polymerizable fluids were also
investigated to demonstrate the effect of fluidic properties on the microdroplet generation
and assembly, which could find interesting applications in the future. This approach would
be helpful to fundamentally understand the mechanism of self-assembly process of particles
in confined microstructures, and practically be applied in sensing and energy storage devices.
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1. Introduction

Self-assembly happens in nature with various forms induced by physical, chemical or biological
forces [1–3]. Self-assembly refers to a rearrangement process of the entities like molecules,
macromolecules, colloidal particles (gas-bubbles, liquid-droplets or solid-particles) because of the free
energy minimization of a system, leading to a transition from a non-equilibrium state to an equilibrium
state. Direct self-assembly implies an approach to precisely control over rearrangement process to
obtain their devised and desired self-organization structures and configurations, while retaining the key
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elements of spontaneous self-organization [4,5]. Materials with self-assembled structures have received
tremendous and increasing attention because of their potential applications in various fields, such as
sensors [6], electrical or optical switchers [7], photonic devices [8], data storage materials [9] and
bioassays [10].

Fluid-based components represent a class of components that are intrinsically well suited for dynamic
and reversible control over viscosity, surface tension and optical properties. Combination of fluidics and
microstructures has enabled wide applications in optical, chemical and biomedical research [11–15].
Microfluidics has been demonstrated to be a powerful platform with the capability of creating numerous
monodispersed soft particles (bubbles or droplets) with controllable size, shell thickness, shapes,
compartments and chemical compositions [16–19]. Moreover, in the microfluidic device, the fluidic
properties and flow profiles, the microstructure size and shapes could be tuned properly. Therefore,
the self-assembly process could be induced by capillary force or hydrodynamic force inside the
microfluidic devices [10,20,21].

The self-assembled close-packed configurations of micro- and/or nano-structures possess the
properties of high surface area and enhanced optoelectrical resonance, which are potentially required in
gratings, micro-lens, photonic devices, displays, bioassays and sensors [22–27]. Choil et al. presented
the self-assembly procedure of the silica microparticles in microfluidic channels due to the capillarity
of the microparticles dispersed suspension [28]. Binary opal lattices have been obtained owing to the
capillary force and surface tension in the microfluidic device by Malekpourkoupaei and colleagues [20].
Park and co-workers have demonstrated a microfluidic approach to self-assemble colloidal particles
at the gas-liquid interface by varying the pH value of the interface [29]. Monodispersed photonic
electro-responsive Janus microspheres have been created with the assistance of a microfluidic device,
showing structural colors of the nanoparticle crystals [24]. Furthermore, highly ordered structures of
fluidic particles (gas-bubbles or liquid-droplets) have been observed in microfluidic devices, which could
afford unique fluidic hydrodynamics and boundary restriction, and be applied for imaging, bioassaying,
data storaging and environment monitoring [10,21,22,30,31].

Microfluidic devices allow sensitive control over fluidic components and flow rates. Therefore,
the process and parameters of fluidic particles generation and assembly could be precisely controlled.
The close-packed bubble/droplet lattices have been created by controlling the volume flow ratio of the
entrance air or liquid [14,21]. In these devices, the bubbles/droplets generation and assembly took place
at the same time by controlling the volume flow ratio. The soft particle size and packing configurations
were determined by the same entrance flows, which was therefore difficult to control independently [21].
In this article, we designed a microfluidic device for microdroplets generation and assembly in different
areas of the device. Therefore, the droplet generation and assembly could be tuned separately with
better controlling over droplet size and different assembly configurations in one device. The capillary
force together with the volumetric effect and hydrodynamic force determined the droplet generation
and assembly in the confined channels. The flow rates and ratios as well as the fluidic properties were
investigated according to their effects on assembly configurations. Additionally, the photocurable liquids
of N-isopropylacrylamide (NIPAM) aqueous solutions were also employed in this system. We expect
that the close-packed fluidic structures could be on-line solidified, obtaining solid-based well-ordered
close-packed configurations which would be more promising for applications as optical components,
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catalysis templates, micro-lens and light collection devices. Taking the advantages of microfluidics,
the physical and chemical properties of the dispersions could be precisely controlled, which would also
help to deeply understand the self-assembly process.

2. Experimental Section

2.1. Materials

N-hexadecane (99%) and sorbitan monooleate (Span 80) were purchased from Acros Organics
(Geel, Belgium) and Aladdin (Shanghai, China), respectively. Hexadecane mixed with surfactant
of Span 80 was acted as the continuous phase (oil phase) in the microfluidic device. Mineral oil
and ABIL EM 90 (Bis-PEG/PPG-14/14 Dimethicone, Cyclopentasiloxane, a silicon based water-in-oil
emulsifier) were purchased from J & K (Beijing, China) and Evonik Degussa (Essen, Germany),
respectively. Mineral oil contained the surfactant of ABIL EM 90 was served as the continuous
phase (oil phase) in poly(dimethylsiloxane) (PDMS) microfluidic device. N-isopropylacrylamide
(NIPAM, 99%) was purchased from Acros Organics, which was used as the photocurable monomer.
N,N-methylenebisacrylamide (MBA, 99%) was purchased from Sigma-Aldrich (St. Louis, MO,
USA) and 2-hydroxy-4-(2-hydroxyethoxy)-2-methylpropiophenone (I 2959, >98%) was purchased
from Tokyo Chemical Industry (TCI) (Shanghai, China), which were used as the cross-linker and
water-soluble photoinitiator, respectively. Deionized (DI) water (18.2 MΩ at 25 ˝C) was prepared from
a water purification system (Water Purifier, Sichuan, China). PDMS (Sylgard 184) package consisted of
a base and curing agent was purchased from Dow Corning Corporation (Midland, MI, USA). The SU-8
3050 photoresist and developer solution were purchased from MicroChem (Westborough, MA, USA).

2.2. Design and Fabrication of Poly(dimethylsiloxane) (PDMS) Microfluidic Devices

The geometry of the microfluidic device is shown in Figure 1. The device includes two sections (I
and II): Section I is for creating water-in-oil (W/O) microdroplets and section II is to induce assembly
of the generated microdroplets in the main-channel. “a” and “b” are the inlets of the continuous phase
(oil phase) and dispersed phase (water phase), respectively. The flow-focusing position is located at
“3” and connected to the self-assembly section. “4” is the main outlet and the confinement channel
for droplets assembly. The side-channel “6” is for taking away the continuous oil phase from “4” to
“5”. “e” and “d” are the outlets for “4” and “5”, respectively. Figure 1B is an optical microscopic
image of the experimentally fabricated device. In section I, the width of the water entrance and oil
entrance are both 400 µm. The width of the flow-focusing location (wf) is either 25 or 50 µm in our
experiment. In section II, the side-channel width (wo) is 10 µm which is smaller than the generated
microdroplets diameter. The length of the side-channel and main assembly channel are 500 µm and
1.4 cm, respectively. The number of the side-channel designed is 250, which is enough to take away
the oil from the assembly channel “4” to the outside channel “5”, resulting in the monodispersed
microdroplets packing into well-ordered arrangements. The depth of the microfluidic channels is about
40 µm.

The PDMS-based microfluidic device was fabricated by using soft lithography [32]. The CAD
(Computer-Aided Design) drawing was transferred and patterned onto a chrome plate as a photomask.
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The mold (master) was fabricated on a silicon wafer using SU-8 3050 photoresist. A mixture of the
PDMS pre-polymer and curing agent at the mass ratio of 10:1 was thoroughly stirred and degassed.
The degassed mixture was then poured onto the mold and cured at 80 ˝C for 1 h in an oven. The PDMS
replica with designed structures was then peeled from the silicon master. Connection holes were drilled
through the PDMS before bonding. In the end, the PDMS replica with microfluidic channels and a piece
of clean glass slide were oxygen plasma treated for 50 s and bonded to each other. The detailed device
fabrication process was shown in Figure S1. The experimental setup for microdroplets fabrication and
assembly was presented in Figure S2.
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Figure 1. (A) Schematic drawing of the flow-focusing microfluidic device with section I
and section II for droplets generation and assembly; (B) Optical microscopic image of the
fabricated poly(dimethylsiloxane) (PDMS) device. “wf”, “Wa” and “wo” are the width of the
flow-focusing channel, main assembly channel and side-channel, respectively. The scale bar
is 200 µm.

2.3. Microfluidic Manipulation and Characterization

The oil phase and water phase were introduced into the microfluidic device correspondingly via the
inlets through microtubes by two syringe pumps (LSPO2-1B, Longer, Baoding, China), as shown in
Figure 1B. The water phase was sheared off and formed monodispersed microdroplets by the oil phase
at the flow-focusing area “3”. The water phase used in the experiment was deionized (DI) water or DI
water consisted of NIPAM, MBA and I 2959; the oil phase was hexadecane with Span 80 or mineral oil
contained ABIL EM 90.

The water-in-oil (W/O) droplets generation and their on-line assembly driven by the fluidic flow
through side-channels were visualized and recorded using an inverted optical microscope (Olympus IX2,
Tokyo, Japan) equipped with a high-speed camera (Phantom Miro M110, Vision Research Inc., Wayne
County, NC, USA). Bright-field images were recorded by the high-speed camera mounted on the inverted
optical microscope. The interfacial tension of oil-water was measured using DCAT21 tensionmeter
(DataPhysics Instruments GmbH, Filderstadt, Germany). The size of the microdroplets was analyzed by
Image-Pro Plus 6.0 software.

3. Results and Discussion

In this work, different oil-water two-phase systems were exploited for droplets generation and
assembly in the microfluidic device. The two-phase system of hexadecane with 2.7% (w/v) Span 80
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and DI water was chosen as example to investigate and obtain experimental parameters. Moreover, the
photocurable NIPAM aqueous solution was investigated to explore the effect of fluidic properties on the
droplets generation and assembly in the confined microchannels, which might be helpful to understand
the materials selection criteria for practical applications.

3.1. Preparation of Monodispersed Water-in-Oil (W/O) Microdroplets

The monodispersed W/O emulsion microdroplets were generated in the PDMS-based flow-focusing
microfluidic devices owing to the wettability of the microchannel walls [33]. The oil phase and
water phase were pumped into their corresponding microchannels using syringe pumps. The highly
monodispersed microdroplets were obtained at the flow-focusing location, as illustrated in Figure 2A.
Hexadecane with 2.7% (w/v) Span 80 and DI water were used as the oil phase and water phase,
respectively. By controlling the two phases volume flow rates and ratios, microdroplets with different
diameters in the range of 20–50 µm have been obtained in the devices. The generated microdroplets had
a narrow size distribution with the coefficient of variation (CV, %) < 2.0, as shown in Figure 2B.

The microdroplets fabrication was subjected to several effects such as fluidic flow rates, viscosity,
wettability, surface intension and the microchannel geometry [34]. Generally, in a microfluidic device,
the determinative driving forces are interfacial tension force, viscous force and the fluidic channel
properties [35,36]. The dimensionless number of Ca (Capillary number) has been used to describe
two-phase flow in microchannels, which is defined as:

Ca “
ηv

σ
(1)

where η is the viscosity of the continuous phase (Pa¨ s), ν is the average flow velocity (m¨ s´1), and σ is
the interfacial tension (N¨ m´1) between oil and water. Ca is typically used to explain the microfluidics
phenomena, especially for the generation of microdroplets. When Ca << 1, the interfacial tension is
dominant, leading to the formation of droplets [37].

In our experiment, the fluidic properties were kept constant, the effect of the volume flow rate of each
phase on the microdroplets diameter in dripping region [38–40] was explored as shown in Figure 2C,D.
The microfluidic device with wf = 25 µm was used to fabricate monodispersed emulsion droplets. Qo and
Qw were expressed as the volume flow rate of the oil phase and water phase, respectively. When Qw was
kept constant, the average diameter of the microdroplets decreased as Qo increased within a range of flow
rates, where the value of Ca increased as well, as demonstrated in Figure 2C. On the contrary, the average
diameter of the spherical microdroplets increased with Qw and Ca, when Qo was constant, as shown in
Figure 2D. The relationship of microdroplets average diameter to Ca, Qo and Qw was also explored in
the microfluidic device with wf = 50 µm in different microdroplets generation regions. The similar curve
trend was observed for two devices, revealing each phase flow effect on the microdroplet size.

Over a wide range of flow rates, Qo in the range of 40–800 µL¨ h´1 and Qw in the range of
10–200 µL¨ h´1, the two-phase (oil-water) droplet-based flow diagram revealed different flow regions in
response to the volume flow rates, as shown in Figure 3. The dripping mode of microdroplet formation
was observed at low flow rates. By increasing the flow rates, the microdroplet formation experienced a
transition from a dripping to jetting region. Monodispersed microdroplet generation in the dripping (i)
and jetting region (iii) were demonstrated in Figure 3B.
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Figure 2. (A) An optical microscopic image of the microdroplets generation in a
PDMS-based flow-focusing microfluidic device. The scale bar is 100 µm. (B) The size
distribution of the microdroplets generated in the device (A). The average diameter of the
microdroplets was 41.5 µm with the coefficient of variation (CV) 0.7%. In (A) and (B),
the highly uniform microdroplets were generated in the device with wf = 50 µm. (C) The
microdroplets diameter changed with Ca and Qo in dripping region when Qw was fixed at
20 µL¨ h´1. Qo was varied from 40 to 100 µL¨ h´1. (D) The microdroplets diameter changed
with Ca and Qw in dripping region when Qo was kept constant at 90 µL¨ h´1. Qw was varied
in the range of 20–80 µL¨ h´1. In (C) and (D), these monodispersed microdroplets were
obtained in the device with wf = 25 µm. The oil phase and water phase were hexadecane
with 2.7% (w/v) Span 80 and DI water, respectively.
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Figure 3. (A) Diagram of the microdroplets formation modes as a function of volume
flow rates of oil and water phase. The modes were divided into (i) dripping-flow,
(ii) transition-flow (from dripping to jetting), (iii) jetting-flow and (iv) stratified-flow;
(B) Optical microscopic images of microdroplets generation under dripping (i) and jetting
(iii) mode. Scale bars are 50 µm. Qo and Qw were 80 and 20 µL¨ h´1 for top image of (B),
500 and 150 µL¨ h´1 for bottom image of (B). Hexadecane with 2.7% (w/v) Span 80 and DI
water were used as the oil and water phase, respectively, to generate the emulsion droplets
through the same microfluidic device with wf = 25 µm.
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3.2. Microdroplet Assembly in the Restricted Microchannels

Monodispersed microdroplets flowed into section II of the microfluidic device after generating, and
assembled into close-packed arrangements in the confined main-channel as the continuous phase was
squeezed out from the side-channels. The continuous phase flowed through side-channels according
to the capillary force and the pressure difference between two ends of the side-channels. In the
main-channel, the volume of the channel was constant, and the volume ratio of droplets to the confined
channel gradually increased with continuous phase flowing away. The microdroplets then rearranged
themselves in an ordered way to minimize the free energy of the system.

The monodispersed microdroplets self-assembled into 2D and 3D configurations in the confined
channel of the microfluidic devices. Well-ordered close-packed single-layer hexagonal arrangements
and double-layer square or hexagonal configurations have been observed in a wide range of flow rates
at different microfluidic devices, as shown in Figure 4. It is well known that the spherical particles
self-assemble into close-packed arrangements when the volume fraction of particles in a confined volume
increases in order to minimize the free energy. In a microfluidic device, both continuous and dispersed
phase flow can be controlled; therefore, the volume fraction can be controlled by varying flow rates and
channel geometry. On the other hand, the droplet size and shearing force induced by fluidic flow plays
a significant role on the droplets packing. Several parameters normally co-determined the microdroplet
assembly configurations. In this report, we investigated the effects of the location of the droplets in the
main-channel, two phase volume flow rates, droplet size and the water phase properties on the droplets
assembly configurations in the microfluidic channel.
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Figure 4. Optical microscopic images of the microdroplets assembly configurations at
various flow rates and at different microfluidic devices with (A) and (C) in close-packed
single-layer mode, (B) and (D) in close-packed double-layer mode. In (A) and (B), the
microdroplets were generated in the same microfluidic device with wf = 25 µm; in (C)
and (D), the microdroplets were formed in the same microfluidic device with wf = 50 µm.
In (A) and (C), the microdroplets were generated in dripping region; in (B) and (D), the
microdroplets were formed under jetting mode. Qo and Qw were 90 and 20 µL¨ h´1 (A),
600 and 60 µL¨ h´1 (B), 800 and 100 µL¨ h´1 (C), 2000 and 400 µL¨ h´1 (D). The oil phase
and water phase were all hexadecane with 2.7% (w/v) Span80 and DI water. Scale bars are
50 µm.
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3.2.1. Microdroplet Assembly along the Confinement Main-Channel

When the flow rate and ratio were controlled in a specific range, we found that different
droplet configurations (single-layer and double-layer) were obtained at the same time along the same
main-channel but at different locations. As shown in Figure 5, the produced microdroplets experienced
from random arrangements to close-packed single-layer and then double-layer configurations gradually
along the main assembly channel. As the oil phase was squeezed into the side-channels, the volume
fraction of water droplets to oil phase increased. Here, the volume fraction (Φvol) was defined as the
volume ratio of the droplets to the assembly confinement microchannel, which was equal to the total
volume of oil and water phase. The microdroplets flowed directly into section II after generating, and
started to accumulate into random configurations (close pack without ordering) when Φvol was more than
0.19. As Φvol increased to 0.27, the droplets started packing into well-ordered structures in one layer.
When Φvol approached 0.53, the droplets further packed into two-layer configurations. As the volume
fraction further increased, the droplets fully filling the main-channel with oil phase only existed among
the curved interface between droplets. If the value of Φvol increased further, the droplets would be even
well-packed but deformed at the end. The on-line packing of these microdroplets was mainly attributed
to the volumetric effect. The flowing of oil phase through side-channels was according to the capillarity
and the pressure difference. Because the surface of the microchannel was wetting to the oil phase, as
soon as the oil phase came into contact with the side-channels area, the oil phase was imbibed into them
owing to the capillary force. The exact flow of the oil phase through the side-channels corresponded to
the side-channel number, size and pressure difference between the entrance and exit. Movie S1 in the
supplementary information showed a complete process of the microdroplets generation and assembly
along the main-channel. In the next sections, the named assembly configurations were all referred to the
final equilibrium states in the end of the main-channel.
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Figure 5. Series of the optical microscopic images of the monodispersed microdroplets
assembly configurations at different locations along the same main-channel: (A) random
arrangement, (B) close-packed single-layer configuration and (C) close-packed double-layer
configuration. The characteristic size of the microfluidic device: wf = 25 µm, dc = 40 µm
and Wa = 400 µm. Hexadecane with 2.7% (w/v) Span 80 and DI water were used as the oil
phase and water phase, respectively. Microdroplets were produced under jetting mode, with
Qo = 600 µL¨ h´1 and Qw = 100 µL¨ h´1. Scale bars are 50 µm.

3.2.2. Effect of Volume Flow Rates on the Microdroplets Assembly

In the microfluidic device, the hydrodynamic force changed with the fluidic flow rates, which, in the
end, affected the assembling dynamics of the droplets. By simply changing the two phase flow rates, the
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single-layer, double-layer and multiple-layer close-packed arrangements were obtained in the confined
microchannels. It was found that, in the dripping region, the microdroplets could pack into ordered
single-layer lattices along the surface even at the volume fraction (the ratio of total droplets volume to the
confined channel volume) of less than 0.5. While in the jetting region, microdroplets generally assembled
into close-packed double or multiple layers without experiencing the well-ordered single-layer pattern.
This might be due to the stable laminar fluidic flow in the confined channel. The monodispersed droplets
tended to rearrange orderly along the flow gradient.

We took the microdroplets assembly in the microfluidic device with the characteristic size of
wf = 25 µm, dc = 40 µm and Wa = 400 µm as an example to explore the effect of Qo and Qw on the
microdroplets assembly. Figure 6 illustrated the microdroplets assembly configurations corresponding to
the two phase volume flow rates. When the microdroplets formation was located in the transition region
(as shown in Figure 3: area ii), it was difficult for the microdroplets to arrange into ordered patterns
owing to the instability of the microdroplets production and fluidic flowing, as shown in Figure 6 iii(x)
area. Monodispersed microdroplets were close-packed into well-ordered single-layer patterns at low
flow rates for two reasons: the flow was stable to achieve ordered assembling instead of randomly
arranging, and the volume fraction was not big enough for further packing according to the gentle
flow. Whereas at higher flow rates, microdroplets were able to assemble into close-packed well-ordered
double-layer configurations resulted from the dramatically increased volume fraction, which led to the
rapid accumulation to high density packing. In addition, in the Figure 6 iii(y) area, there were no ordered
arrangements observed because of the low droplet generation frequency.
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Figure 6. Diagram of the microdroplets assembly configurations as a function of two
phase flow rates. The configurations were divided into: (i) close-packed well-ordered
single-layer configurations, (ii) close-packed highly-ordered double-layer configurations and
(iii) unclose-packed (loose or random) configurations. The microdroplets were generated in
either dripping or jetting region at different flow rates. The dimensions of the flow-focusing
microfluidic device were: wf = 25 µm, dc = 40 µm and Wa = 400 µm. Hexadecane with
2.7% (w/v) Span 80 and DI water were used as the oil phase and water phase, respectively.
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In Figure 6, there were more data points found in the bottom-left area than top-right area because of
the stable droplet generation and fluidic flow at low flow rates rather than high flow rates. The fluidic flow
rate not only affected the capability of creating numerous monodispersed microdroplets at a particular
period of time but also determined the microdroplet assembly configurations. The precise controllability
of fluidic flow in the device is critical for the microdroplets assembling into ordered configurations in
the confined microchannels.

3.2.3. Microdroplets Size Effect on the Assembly Configurations

The crystalline lattice of droplet packing model in theory for predicting high density monodispersed
droplets assembly patterns by controlling the confined channel depth or droplet size has been
demonstrated by Lee et al. [10]. By changing only the depth of the microchannel (dc) relative to a given
monodispersed droplet diameter (D), predictable close-packed single-, double- or multiple-layer lattices
could be obtained. Hereafter, the ratio of the microchannel depth (dc) to droplet size (D) was referred to
as dc/D. Miller index notation was employed to describe liquid crystallographic planes: namely (111),
(110) and (100) crystal orientations. Figure 7 presented predictable close-packed well-ordered colloidal
crystal configurations, expecting monodispersed droplets assembly corresponding to dc/D values.
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Figure 7. Diagram of droplets close-packing configurations corresponding to dc/D.
The top-left insertion is the schematic drawing of droplets pattern in Miller lattice
orientations. The images of (A), (B) and (C) were single-layer hexagonal (111), double-layer
square (100) and double-layer hexagonal (111) configurations, respectively. Scale bars are
50 µm. Here, the microfluidic device was: wf = 25 or 50 µm, dc = 40 µm, Wa = 400 µm.
Hexadecane with 2.7% (w/v) Span80 and DI water were used as the oil phase and water
phase, respectively.



Micromachines 2015, 6 1341

Monodispersed microdroplets were produced in the microfluidic device with wf = 25 or 50 µm,
dc = 40 µm and Wa = 400 µm. dc/D value was dynamically controlled by adjusting droplet size for
a given channel depth (40 µm). The well-ordered close-packed assembly configurations in common
Miller index configurations were obtained at different dc/D which were 1.11, 1.67 and 1.90 for (A), (B)
and (C) in Figure 7, respectively. Single-layer hexagonal configuration was observed for 36 µm droplets
assembled in the 40 µm deep channel with dc/D = 1.11 (A). A dc/D value of 1.67 (24 µm droplets)
favored double-layer square configuration (B). A dc/D value of 1.90 was beneficial for 21 µm droplets
to assemble in double-layer hexagonal pattern (C).

Various droplet assembly configurations in the confined channel were statistically analyzed. It was
found that, in the range of dc/D = 0.9–1.5, the monodispersed droplets would assemble into close-packed
single-layer hexagonal configurations, and the corresponding microdroplets generation was mostly in
the dripping region. Whereas, when dc/D was in the range of 1.8–2.1, monodispersed droplets would
self-organize into close-packed double-layer hexagonal pattern in (111) orientation at high flow rates in
the jetting region. When dc/D was ranged from 1.5 to 1.8, the droplet arrangements would experience
transition from close-packed single-layer hexagonal (111) to double-layer square (100) configurations.
Liquid droplet assembly would be better suitable for confined geometries due to their flexible mobility
and ease of deformation compared to solid colloidal particles.

3.2.4. Effect of Fluids on Droplet Generation and Assembly

Different fluidic materials have also been investigated to explore the effect of the fluidic properties
on the assembly configurations for the future selection of functional materials for different applications.
Polymerizable aqueous solutions composed of NIPAM monomer (6 wt %–25 wt %), MBA cross-linker
(1 wt %–3 wt %) and I 2959 photoinitiator (0.2 wt %–3 wt %) were used as the water phases. The oil
phases were hexadecane with Span 80 or mineral oil contained ABIL EM 90. The same microfluidic
device was used. Similar phenomenon has been observed for monodispersed droplets formation and
assembly, as shown in Figure S3. Differently, for the fluidic system of NIPAM aqueous solution and
hexadecane with Span 80 organic solution, in a range of flow rates, much smaller microdroplets were
produced and then rapidly assembled into ordered arrangement in multiple-layer pattern.

As an example, 15 wt % NIPAM photocurable aqueous solution mixed with 3.0 wt % MBA and
1.5 wt % I 2959 was used as the water phase and hexadecane contained 2.7% (w/v) Span80 was used
as the oil phase. Interestingly, as shown in Figure 8, we obtained the monodispersed droplets with
the diameter of only 7 µm at Qo = 150 µL¨ h´1 and Qw = 20 µL¨ h´1. However, at the same flow
rates in the same device, the droplets with diameter of 28 µm were obtained using hexadecane with
2.7% (w/v) Span 80 and DI water as oil and water phase. The close-packed structure was partially in
multiple-layer configuration according to the smaller droplet size. This might attribute to the effect of the
interfacial tension between the two immiscible oil-water systems. The interfacial tension of the 15 wt %
NIPAM aqueous solution (3.0 wt % MBA and 1.5 wt % I 2959)/2.7% (w/v) Span 80 hexadecane solution
was 1.62 mN¨ m´1, which was ten times smaller than 15.0 mN¨ m´1 for the DI water/2.7% (w/v) Span
80 hexadecane solution. With lower interfacial tension, the hydrodynamic force was relatively more
prominent, which could induce quicker and smaller droplets formation, and then more layers of droplets
arrangement. In the future, the microdroplets composed of photocurable NIPAM aqueous solution could
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be on-line polymerized into functional microparticles, which could be potentially applied as valves,
actuators or sensors.Micromachines 2015, 6 1342 
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4. Conclusions

In conclusion, we proposed and verified a robust strategy based on microfluidics to individually
create and assemble microdroplets into close-packed configurations on-demand. The droplet creation
was driven by the low Ca number in the microfluidic device. The monodispersed droplets assembled
were mainly driven by the volumetric effect, the capillarity, and the hydrodynamic force in the
microchannels. Single-layer, double-layer and multiple-layer close-packed arrangements have been
successfully achieved by controlling the flow rates of the two fluidic phases and the characteristic
size of the microfluidic devices. The carrying capacity of the microdroplets in the microchannel was
limited. The volume fraction could be tuned by the droplet size and channel geometry according to
capillary force and fluidic flow rates. The exquisite control over the fluidic flow and fluidic properties
was therefore the determinative factor for droplet generation and assembly in different configurations in
confined microfluidic geometries. This technique could be further extended to smart nanodroplets and
nanoparticles assembly in a controllable way using micro- and nanofluidics together with responsive
materials, which would be highly in demand to construct functional devices for data storage, light
collection and sensing applications. The precisely controlled chemical and physical properties offered
by microfluidics would help us to deeply understand the self-assembly parameters.
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