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Abstract: In this paper, we report the finite element method (FEM) simulation of double-clamped
graphene nanoelectromechanical (NEM) switches. Pull-in and pull-out characteristics are analyzed
for graphene NEM switches with different dimensions and these are consistent with the experimental
results. This numerical model is used to study the scaling nature of the graphene NEM switches.
We show the possibility of achieving a pull-in voltage as low as 2 V for a 1.5-µm-long and 3-nm-thick
nanocrystalline graphene beam NEM switch. In order to study the mechanical reliability of the
graphene NEM switches, von Mises stress analysis is carried out. This analysis shows that a thinner
graphene beam results in a lower von Mises stress. Moreover, a strong electrostatic force at the beam
edges leads to a mechanical deflection at the edges larger than that around the center of the beam,
which is consistent with the von Mises stress analysis.

Keywords: graphene; nanoelectromechanical (NEM) switches; pull-in and pull-out characteristics;
von Mises stress

1. Introduction

The standby power consumption of conventional complementary metal-oxide semiconductor
(CMOS) circuits increases to the dynamic ON state level as they are scaled down to the scale of
a few tens of nanometers [1]. On the other hand, nanoelectromechanical (NEM) switches are
being investigated because of their promise for future low-power-consumption applications [2,3].
The switching operation of such devices is mainly based on electrostatic actuation, which leads to
a very low leakage current and high ON/OFF ratios. They are also expected to achieve abrupt
switching with subthreshold swing values less than 60 mV/dec [4]. Furthermore, NEM switches are
expected to be robust against external disturbances such as radiation and temperature fluctuations,
which makes them ideal for inhospitable environments [5]. On the other hand, the inherently low ON
current in comparison with that of CMOS devices and the high pull-in voltage of conventional NEM
switches restrict their use as a viable alternative for CMOS circuits and low-power applications [6,7].

Graphene is a two-dimensional material with excellent mechanical stability and electrical
conductivity, and a high Young’s modulus of ~1 TPa [8]. These outstanding properties of graphene
make it a very promising material for high-performance NEM contact switches. Using graphene
as a material for such devices can address some of the problems of conventional NEM switches by
providing high reliability and a low pull-in voltage [9–11].

In this work, we present a three dimensional (3D) finite element method (FEM) simulation of
double-clamped nanocrystalline graphene beam NEM switches. We focus on designing the graphene
NEM switch in line with the experimental work [12]. The pull-in and pull-out characteristics from the
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simulation results are consistent with the experimental results. These models were used to study the
double-clamped beam scaling on switching characteristics. After validating the simulation results for
the pull-in voltage of the double-clamped graphene beam NEM switch with the experiment results,
we studied the von Mises stress to evaluate the reliability of the switch. These results indicated that
a longer and thinner graphene beam is more reliable. In addition, we also analyzed the effect of the
applied electric field on the double-clamped graphene beam NEM switch.

2. Description of the Device Geometry

In this section, we briefly describe the geometry and operation principles of NEM switches. In our
earlier work [12], we experimentally studied the switching operation of nanocrystalline graphene
(NCG) beam NEM switches. The NCG was synthesized by direct deposition of NCG on an Si/SiO2

substrate using plasma-enhanced chemical vapor deposition (PECVD) [13]. The NCG deposited by
PECVD contains both sp2- and sp3-hybridized carbon atoms. The deposited NCG film is polycrystalline
in nature [12]. The polycrystalline nanographene has randomly distributed grain orientation and
size [14]. The mechanical behavior of NCG depends on both the grain misorientation and the grain
boundary rotation [15]. Moreover, the mechanical strength of NCG depends on the arrangement of
the defects in the NCG film [16]. The NCG sheets have almost constant fracture stress and strain,
and the fracture strength is independent of the grain size [17]. The polycrystalline NCG sheets have
a flaw-insensitive fracture mechanism [18]. Usually, fractures in NCG film originate from the grain
boundary and propagate to the rest of the polycrystal [19]. The propagation of the fracture also depends
on the grain orientation. Moreover, microcracks in the surfaces are initiated from topological defects in
the NCG polycrystal, which coalesce to form a big crack, eventually leading to the breakdown of the
NCG film. As NCG is a polycrystalline material, we considered it as an isotropic material in the FEM
simulation of the nanocrystalline NEM switches. The device structure and dimensions are adopted
from our previous experimental work [12]. We used a Young’s modulus of 860 GPa for graphene
in all the FEM simulations as reported by this experimental work. This value is comparable to the
reported Young’s modulus of 500 GPa for layered suspended graphene sheets of between 2 and 8 nm
thickness [20]. For the FEM simulation of the experimental device, we considered a graphene beam
of length L, width W, and thickness t, and a top metal electrode. The schematic representation of the
device is shown in Figure 1. The double-clamped graphene beam NEM switch dimensions are detailed
in Table 1. For each double-clamped graphene beam NEM switch, the air gap thickness changes owing
to the natural buckling of the suspended graphene beam.
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Table 1. NEM switch dimensions.

NEM Switch
Dimension Air Gap Thickness (nm)

Length (µm) Width (µm) Thickness (nm)

A 1.5 0.5 9 75
B 1 0.5 9 50
C 0.8 0.5 9 45

The initial air gap of the device is g0. As the voltage applied between the suspended graphene
beam and the top electrode is increased, the resulting electrostatic force balances with the elastic
restoring force of the deformed graphene. When the applied voltage reaches a critical point, the
electrostatic force overwhelms the restoring force, which causes the graphene beam to be pulled
towards the top electrode/fixed element, resulting in closing the switch and thereby leading to a sharp
rise in the current flow through the device [21]. When the applied bias voltage is sufficiently reduced,
the elastic restoring forces in the deformed active element pull the switch open, and thus the device
operates as a volatile switch. A mechanical hysteresis is formed between the pull-in voltage and the
pull-out voltage.

3. Finite Element Method Simulation Results and Discussion

3.1. Graphene NEM Switch Pull-In and Pull-Out Characteristics

The static electrical and mechanical characteristics of the NEM switch were simulated using the
FEM-based CAD tool IntelliSuite (8.8.5.1, IntelliSense, Lynnfield, MA, USA) [22]. Figure 1 shows
a schematic of our graphene beam NEM switch with a graphene beam connected to electrodes at
each end. This graphene beam NEM switch features a metal top gate (actuation electrode), which
enables the graphene beam to be pulled onto the gate when a voltage is applied, and then pulled away,
disconnecting from the channel when voltage is no longer applied. In order to be consistent with
our experimental device structure, we used the device dimensions mentioned in Table 1. Figure 2a
shows the initial geometry of NEM switch A used in the FEM simulation. To analyze the pull-in
and pull-out characteristics of the NEM switch, the voltage applied between the top electrode and
the graphene beam was first increased until pull-in was confirmed and then decreased back to 0 V.
Figure 2b illustrates the geometry of the pull-in state of the double-clamped graphene beam NEM
switch. The color bar shows the displacement of the graphene beam with respect to the initial position.
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Figure 2. The geometry of NEM switch A. (a) Initial structure of double-clamped graphene beam NEM
switch with a top metal electrode; (b) Pull-in state of the graphene beam; color bar indicates the relative
displacement with respect to the initial condition.

Figure 3a shows the pull-in/pull-out characteristics obtained for the different graphene beam
NEM switches mentioned in Table 1. The pull-in voltages for the graphene beam NEM switches A,
B, and C are approximately 8.6, 13.2, and 20.8 V, respectively. The obtained pull-in voltage shown
in Figure 3a is in good agreement with the experimentally reported pull-in voltages [13]. In order to
clarify the impact of the thickness of the graphene beam, we conducted the FEM simulation for one of
our experimental device structures (NEM switch A) with different graphene thicknesses of t = 3, 5, and
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9 nm. Figure 3b shows the pull-in and pull-out characteristics for the graphene beam with different
thicknesses for the voltage applied between the top gate and the graphene beam. When the thickness
is reduced, the pull-in voltages are evaluated to be 8.6 V, 4.3 V, and 2.1 V for t = 9 nm, 5 nm, and 3 nm,
respectively. This result shows a clear dependence of the pull-in voltage on the scaling of the thickness
of the suspended graphene beam. Thus, we confirm that the introduction of thickness scaling leads to
a reduction of the pull-in voltage.
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3.2. Von Mises Stress Analysis

The von Mises yield criterion is a general way to estimate the yield of any ductile material, such
as metals [23,24]. The mechanical reliability of the graphene beam NEM switch can potentially be
improved by properly choosing the switch dimensions. To quantitatively demonstrate the mechanical
reliability of the double-clamped graphene beam NEM switch, we compared the maximum von Mises
stress exerted along the length of the graphene beam [25,26]. The von Mises stress profile analysis is
essential to comprehend the spatial variation of the stress generated on the suspended graphene owing
to the applied voltage. A Cartesian coordinate system is used to represent the numerical coordinates
on the suspended graphene beam. The stress profile was obtained after the pull-in state was achieved,
giving the three-dimensional stress profile for the deformed graphene beam. However, the stress
variation along the thickness is constant.

Figure 4 shows the von Mises stress for the different graphene beam NEM switches. The von
Mises stress reaches the maximum value towards the ends of the graphene beam. When the length of
the graphene beam is reduced, the von Mises stress is increased to the maximum value. As evident
from Figure 4a, the device with the shortest graphene beam length has the maximum probability of
failure. When the thickness of the graphene beam is scaled for the fixed length of the beam, the von
Mises stress is reduced as the thickness is reduced. The results suggest that NEM switch A is at least as
reliable as NEM switches B and C.
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NEM switch C has a maximum von Mises stress of 6.2 GPa. When the length of the graphene
beam is increased to 1 µm and 1.5 µm, it leads to a decrease in the von Mises stress of 3.8 GPa and
2.3 GPa, respectively. Furthermore, the maximum stress for NEM switch A is 2.5 GPa; when the
thickness of the graphene is reduced to 5 nm and 3 nm, the stress is decreased to 1.4 GPa and 0.9 GPa,
respectively. Figure 5 illustrates the top view of the von Mises stress contour plot of the graphene
beam. It is evident from the contour plot that the von Mises stress is highest nearer to both fixed ends
of the beam. The von Mises stress reaches the minimum value between the fixed end of the beam
and the center of the beam in the pull-in state. If we examine the von Mises stress across the beam
carefully, then we can observe higher stresses at the edges of the graphene beam compared to those at
the center of the beam. In order to clarify this point, 3D electric field distributions in the NEM switch
were carried out in the pull-in state.
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3.3. Three-Dimensional Electric Field Distribution and Its Role in Graphene Beam NEM Switch Operation

To analyze the impact of the applied electric field on the double-clamped graphene beam NEM
switch, we made the same model in COMSOL Multiphysics (5.1, COMSOL Inc., Burlington, MA,
USA) [27]. The NEM switch was built inside a vacuum environment. The model was meshed with
triangular mesh elements to reduce the computational complexity. The density of the mesh was varied
adaptively in order to study the structural displacement of the graphene beam. In this simulation,
the actuation electrode was kept at the bottom and the graphene beam was placed at the top. For the
electric field analysis at different voltages, a constant bias of 0 V was applied to the bottom electrode
(Au) and the voltage applied at the top electrode (graphene beam) was swept. The potential, V, and the
electric field, E, in the free space can be obtained by solving Poisson’s equation [28]. Figure 6a shows
the cross-sectional view of the electric field distribution across the center of the NEM switch for the
applied voltage of 1 V to the bottom electrode. The dimensions of the graphene beam are equivalent to
those of NEM switch A. Arrows in this plot show the electric field lines directions. At the center of the
beam, the electric field lines are distributed vertically. The orientation of the electric field distribution
is gradually changed to the horizontal direction towards the edges of the beam. At both edges of the
beam, the electric field is distributed more horizontally in the outward direction from the center of
the beam.
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Figure 6b illustrates the one dimensional (1D) electric field strength in the Z direction at 5 nm
above the bottom electrode for the different applied voltages. Consistent with Figure 6a, the electric
field strength is highly concentrated at the edges of the graphene beam. These results demonstrate that
the downward component of the electrostatic force acting on the edges of the graphene beam is higher
than that at the center of the beam. In order to analyze this edge field termination effect, mechanical
deflection analysis of NEM switch A with a 3 nm graphene thickness was done. Figure 7 shows the
displacement of the graphene beam nearer to the pull-in state. If we consider the edge of the graphene
beam, then the downward bend of the beam edges is apparent. This is also consistent with a higher
von Mises stress at the beam edges.
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voltages. Birds-eye cross-sectional view of the graphene beam at (c) 0.1 V; (d) 1 V; and (e) 8.3 V.

4. Conclusions

In this paper, we have studied the electro-mechanical switching and mechanical reliability of
graphene beam NEM switches by FEM simulations. To evaluate the mechanical reliability of a graphene
beam NEM switch, we scaled the length and thickness of the graphene beam and studied the von Mises
stress for each structure. This analysis showed that the graphene beam NEM switch with a longer
length of 1.5 µm and a thickness of 3 nm has a pull-in voltage of 2 V. The electrostatic force concentration
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at the edges of the graphene beam leads to more mechanical deflection at the edges than at the center
of the beam.
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