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Abstract: The interaction of dielectrophoresis (DEP) particles in an electric field has been observed in
many experiments, known as the “particle chains phenomenon”. However, the study in 3D models
(spherical particles) is rarely reported due to its complexity and significant computational cost.
In this paper, we employed the iterative dipole moment (IDM) method to study the 3D interaction
of a large number of dense DEP particles randomly distributed on a plane perpendicular to a
uniform alternating current (AC) electric field in a bounded or unbounded space. The numerical
results indicated that the particles cannot move out of the initial plane. The similar particles (either
all positive or all negative DEP particles) always repelled each other, and did not form a chain.
The dissimilar particles (a mixture of positive and negative DEP particles) always attracted each other,
and formed particle chains consisting of alternately arranged positive and negative DEP particles.
The particle chain patterns can be randomly multitudinous depending on the initial particle
distribution, the electric properties of particles/fluid, the particle sizes and the number of particles.
It is also found that the particle chain patterns can be effectively manipulated via tuning the frequency
of the AC field and an almost uniform distribution of particles in a bounded plane chip can be
achieved when all of the particles are similar, which may have potential applications in the particle
manipulation of microfluidics.

Keywords: dielectrophoresis; particle interaction; iterative dipole moment (IDM) method; alternating
current (AC) field

1. Introduction

An electric force exerted on a non-conducting particle when a locally non-uniform electric field is
applied is called dielectrophoresis (DEP) [1–3]. The particle is polarized in a non-uniform electric field,
which arises from the spatial variation or time variation of the field (direct current (DC) or alternating
current (AC)). The DEP force is dependent on the electric properties of the particle and fluid, the shape
and size of the particle, and the frequency of the AC field. The particle is forced to move toward higher
or lower electric field regions according to the difference in the electric properties of the particle and
electrolyte, which are called positive and negative DEP, respectively. DEP can be easily applied to
manipulate the particles and has become one of the most popular techniques in applications in biology
and chemistry, such as cell separation [4–6], sorting [7], trapping [8,9], and assembly [10–12].

The electric polarization of a particle can also disturb the local electric field of the surrounding
particles. When one particle is close to another, the local electric field around them becomes more
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non-uniform, even under a uniformly-applied field and, thus, this induces a DEP interaction force for
each particle. The interaction force gets larger as the particles get closer. This electrical phenomenon is
called a “particle chain”, which has been observed in other experiments [13] and is the basis of the
particle assembly technique, which has been used in many applications [14–17]. Kevin et al. developed
a new class of microwires by dielectrophoresis assembly from suspensions of metallic nanoparticles [14].
Shalini et al. co-assembled live cells and surface-functionalized synthetic microparticles on electrically
controlled chips to yield permanent chains and one-cell-layer-thick membranes [15]. Zhou et al.
used dielectrophoresis assembly to rapidly align ensembles of CdSe semiconductor nanowires near
patterned microelectrodes for polarization-sensitive photodetection and biosensing applications [16].
Julia et al. developed a new microfluidic test system for liver toxicity, devising a microfluidic
chip featuring cell culture chambers with integrated electrodes for the assembly of liver sinusoids
by dielectrophoresis [17]. In recent years, a significant amount of effort has been devoted to the
study of the DEP interactions of particles. Giner et al. [13] studied the characteristics of the particle
chaining process in a mixture of polystyrene beads and yeast cells, applying a Monte Carlo simulation.
Aubry et al. [18,19] developed a Lagrange multiplier–based numerical model to study the DEP
interactions of particles. The DEP force is calculated by a simplified dipole method, which is sufficiently
accurate when the particles are not too close. Ai et al. [20,21] and Xie et al. [22,23] performed direct
numerical simulations on the interactions of two or three particles both in two-dimensional DC and
AC fields by using the Maxwell stress tensor (MST) method and the arbitrary Lagrangian–Eulerian
(ALE) method, and the effect of the frequency was studied. The numerical computation of the ALE
method requires continuous grids moving and remeshing in the case of a larger number of particles.
The MST method is the most rigorous approach to calculate the DEP forces. However, it is not
practical in cases of 3D DEP interactions of a larger number of particles due to the numerical errors
and the significant cost of computation. Kang et al. [24–27] performed direct numerical simulations to
study the 2D interactions of five particles in both DC and AC fields by finite difference simulations.
Hossan et al. [28] studied 2D interactions of a few particles in a DC field using a hybrid immersed
interface-immersed boundary method. The above studies were all for a small number of 2D cylindrical
particles in an electric field parallel to the particle plane. These results have deviated somewhat in
comparison with the experimental results [29–32]. The DEP interactions of a large number of particles
in a 3D electric field have not been well studied due to great difficulties in numerical computation.

Recently, the iterative dipole moment (IDM) method, first developed by Liu and Wu et al. [33–36],
has been an effective method to simulate the DEP interactions of a large number of particles. IDM is an
algebraic algorithm without complicated numerical computation for solving the Laplace equation and
the Navier-Stokes equation. The accuracy, convergence, and simplicity of the IDM method have been
demonstrated by comparing them with the results of the MST method in both DC and AC fields [33,34].
The motion trajectories and final chains of the particles are in good agreement with the results of the
previous numerical studies and consistent with the experiments. This method has been successfully
applied in the interaction of a large number of particles in 2D DC and AC fields [35,36].

In this work, the IDM model is used to simulate the DEP interactions of 3D spherical particles in a
special 3D scenario where the particles are initially positioned in a plane. A uniform AC electric field is
applied perpendicular to the particle plane, which is different to the prior 2D studies. No correlational
numerical studies have been found so far. The phenomena of the interactions in this scenario are
novel and notable, and they are distinguished from the results of previous studies. The mechanism of
particle motions and the particle chains of DEP interactions of a large number of dense particles are
investigated in situations of different sizes, different initial distributions, and different frequencies.
Furthermore, the effect of a circular boundary to the DEP particle interactions is also investigated.
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2. Mathematical Model

2.1. Physical Description

In practical microfluidic chips the depth is much smaller than the horizontal scale. The particle
motion in the chip is almost confined to a plane in cases where the particle size is of the same order
as the chip depth. The 2D DEP particle interactions on a plane parallel to the electric field have been
well studied. In the present study, the 3D spherical particles are randomly distributed on a plane chip,
and a uniform AC electric field perpendicular to the plane is applied as shown in Figure 1.
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Figure 1. A number of particles randomly suspended on a flat chip filled with electrolyte and a uniform
alternating current (AC) electric field Ẽ0 is applied perpendicular to the chip plane.

2.2. The Iterative Dipole Moment Method (IDM)

The particles are located at (xi, yi, zi) (i = 1, 2, · · ·N), respectively. When an AC electric field Ẽ0 is
applied, the particles can be polarized as dipole moments p̃i, expressed as [2]

p̃i = 4πa3
i ε f Ki(ω)Ẽ0 (1)

where ai is the radius of the ith particle, Ki(ω) is the Clausius–Mossotti (C–M) factor, given by

Ki(ω) =
ε̃pi − ε̃ f

ε̃pi + 2ε̃ f
(2)

where ε̃pi = εpi − jσpi/ω and ε̃ f = ε f − jσ f /ω are the complex permittivities of the ith particle and
fluid, respectively; j =

√
−1 and the superscript “~” denote the complex variables; εpi and ε f are

the permittivity of the ith particle and fluid, respectively; σpi and σ f are the conductivities of the ith
particle and fluid, respectively;ω = 2π f is the angular frequency of the AC electric field.

The dipole moment will induce a local electric field, called the dipole-induced field in this work,
written as follows [2]

ϕ̃i =
p̃i · ri

4πε f r3
i
=

a3
i Ki(ω) · (Ẽ0x(x− xi) + Ẽ0y(y− yi) + Ẽ0z(z− zi))

r3
i

(3)

where ri(ri = |ri|) is the position vector originating from the ith particle location (xi, yi, zi) to any point
(x, y, z). When the particles are close to each other, the electric field can be strikingly influenced by
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the local electric fields. In our work, we correct the electric field with the dipole-induced fields of the
neighboring particles, written as follows:

Ẽ
(1)
j = Ẽ0j +

N

∑
i=1,i 6=j

Ẽ
(0)
ij (4)

where Ẽ0j is the original electric field, Ẽ
(0)
ij is the dipole-induced field of the neighboring particles,

and the components can be expressed as

(Ẽx)ij = −
∂ϕ̃i
∂x = −a3

i Ki(ω)

×
[

Ẽ0x
r3

ij
− 3(Ẽ0x(xj−xi)+Ẽ0y(yj−yi)+Ẽ0z(zj−zi))(xj−xi)

r5
ij

]
(Ẽy)ij = −

∂ϕ̃i
∂y = −a3

i Ki(ω)

×
[

Ẽ0y

r3
ij
− 3(Ẽ0x(xj−xi)+Ẽ0y(yj−yi)+Ẽ0z(zj−zi))(yj−yi)

r5
ij

]
(Ẽz)ij = −

∂ϕ̃i
∂z = −a3

i Ki(ω)

×
[

Ẽ0z
r3

ij
− 3(Ẽ0x(xj−xi)+Ẽ0y(yj−yi)+Ẽ0z(zj−zi))(zj−zi)

r5
ij

]
(5)

where rij =
∣∣rij
∣∣ =

√
(xj − xi)

2 + (yj − yi)
2 + (zj − zi)

2, rij is pointed from ith particle to
the jth particle.

The corrected field induces a new dipole p̃i and a new dipole-induced electric field Ẽ
(1)
ij ,

and then a second corrected electric field Ẽ
(2)
j is obtained in the same way. The local electric field,

dipole moment and the dipole-induced electric field will be iteratively corrected, until a converged

electric field Ẽ
(n)
j is obtained by∣∣∣∣∣∣

Ẽ(n+1)
xj − Ẽ(n)

xj

Ẽ(n+1)
xj

∣∣∣∣∣∣ ≤ τ,

∣∣∣∣∣∣
Ẽ(n+1)

yj − Ẽ(n)
yj

Ẽ(n+1)
yj

∣∣∣∣∣∣ ≤ τ,

∣∣∣∣∣∣
Ẽ(n+1)

zj − Ẽ(n)
zj

Ẽ(n+1)
zj

∣∣∣∣∣∣ ≤ τ (6)

where τ denotes the convergence criteria of the iteration error.
When the electric field is corrected, the time-averaged DEP interaction force FDEP can be obtained

by [34]

〈FDEP〉 = 2πa3ε f Re[K(ω)]∇
∣∣∣Ẽ∣∣∣2 (7)

2.3. The Modified Stokes Formula of a Large Number of Dense Particles

When a particle is suspended in a still fluid, and an electric field is applied to drive the particle
by dielectrophretic (DEP) force, a hydrodynamic force is passively generated on the particle due to
the particle motion. Generally, the fluid flow is induced by the particle motion under a low Reynolds
number (Re ∼ 10−3), and the traditional Stokes formula has been widely accepted to calculate the
hydrodynamic force on a particle, written as

Fd = 6πaη(u− v) (8)

where η is the viscosity of the fluid, u and v are the velocities of the fluid and the particle, respectively.
However, when a large number of particles are densely distributed in the fluid and move close to
each other, the near-field hydrodynamic hindrance must be taken into consideration. In this work,
a modified Stokes formula is proposed to consider the hydrodynamic aspects.
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When a spherical particle moves in a fluid, the stream function and the velocity distribution of
the fluid around the particle in local Cartesian coordinates (x, y, z) located in the particle center can be
expressed as [37]

ux = U(− 3
4

a
r +

3a3

4r3 )
xz
r2

uy = U(− 3
4

a
r +

3a3

4r3 )
yz
r2

uz = U(1− 3
2

a
r +

a3

2r3 +
3
4

a
r

x2+y2

r2 − 3a3

4r3
x2+y2

r2 )

(9)

where U is the magnitude of the relation velocity of the fluid and the particle, and the direction of the

relative velocity is the same as z axis and r =
√

x2 + y2 + z2.
Suppose that a large number of particles with global Cartesian coordinates (xi, yi, zi) are randomly

suspended in the fluid, and the relative velocity of the fluid and the particles is uri = ui−upi, uri = |uri|.
Two angles are introduced by sinα =

√
u2

rix + u2
riy/uri, cosα = uriz/uri, sinβ = uriy/

√
u2

rix + u2
riy,

cosβ = urix/
√

u2
rix + u2

riy. The flow velocity at particle j disturbed by particle i in local Cartesian
coordinates can be written as

uxij = uri(− 3
4

ai
rij

+
3a3

i
4rij

3 )
xijzij
rij

2

uyij = uri(− 3
4

ai
rij

+
3a3

i
4rij

3 )
yijzij

rij
2

uzij = uri(1− 3
2
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+
a3

i
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3 +
3
4
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2
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2 − 3a3

i
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3
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2
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(10)

where (xij, yij, zij) is the coordinate of particle j with respect to particle i and rij =√
(xj − xi)

2 + (yj − yi)
2 + (zj − zi)

2. The net disturbed velocity can be obtained by

∆uxij = uxij − urix = uri(− 3
4

ai
rij

+
3a3

i
4rij

3 )
xijzij
rij

2

∆uyij = uyij − uriy = uri(− 3
4
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+
3a3

i
4rij

3 )
yijzij
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2

∆uzij = uzij − uriz = uri(− 3
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+
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i
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2+yij
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3
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2+yij

2

rij
2 )

(11)

Then we can get the net disturbed velocity at particle j by particle i in global Cartesian
coordinates as

∆uxij = cosϕ(
√

∆u2
xij + ∆u2

yij cosα+ ∆uzij sinα)

∆uyij = sinϕ(
√

∆u2
xij + ∆u2

yij cosα+ ∆uzij sinα)

∆uzij = −
√

∆u2
xij + ∆u2

yij sinα+ ∆uzij cosα

(12)

By adding the net disturbed velocities of the surrounding particles to the flow field at particle j,
the flow velocity at particle j can be corrected as

u1
xj = uxj +

N
∑

i=1,i 6=j
∆u1

xij

u1
yj = uyj +

N
∑

i=1,i 6=j
∆u1

yij

u1
zj = uzj +

N
∑

i=1,i 6=j
∆u1

zij

(13)

where uxj, uyj, uzj are the initial flow field without disturbance.
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The net disturbed velocities and flow field will be iteratively corrected, until a converged flow
field un

xj, un
yj, un

zj is obtained as

∣∣∣∣∣u
n
xj − un−1

xj

un
xj

∣∣∣∣∣ ≤ τ,

∣∣∣∣∣u
n
yj − un−1

yj

un
yj

∣∣∣∣∣ ≤ τ,

∣∣∣∣∣u
n
zj − un−1

zj

un
zj

∣∣∣∣∣ ≤ τ (14)

where τ = 10−3 denotes the convergence criteria of the iteration error; then we can get the corrected
fluid drag force by substituting the initial flow field with the corrected one in the Stokes formula as

Fdxi = 6πµai(un
xi − uxpi)

Fdyi = 6πµai(un
yi − uypi)

Fdzi = 6πµai(un
zi − uzpi)

(15)

2.4. The Governing Equation of the Particles and the Dimensionless Method

The motion of the particles is governed by the kinematic equation as follows

mp
d2rp

dt2 = FDEP + Fd (16)

where mp, rp are the mass and the position vector of the particles, respectively.
All of the governing equations can be normalized by the characteristic length a0 = 5µm, potential

ϕ0 = 10 V, velocity U0 = ε fϕ
2
0/(ηa0), time t0 = a0/U0, force F0 = a0ηU0, and mass m0 = a2

0η/U0.
The normalized equations are written as:

F∗DEP = 2πa∗Re[K(ω)]∇∗
∣∣∣Ẽ∗∣∣∣2 (17)

F∗d = 6πa∗(u∗ − v∗) (18)

m∗p
d2r∗p
dt∗2

= F∗DEP + F∗d (19)

where ∗ denotes the dimensionless variables.

2.5. The Validation of the Accuracy of the Modified Stokes Formula

To verify the accuracy of the modified Stokes formula in consideration of near-field hydrodynamic
hindrance, the dimensionless hydrodynamic forces F∗h , F∗s and F∗m, respectively calculated by
integrating the hydrodynamic stress tensor, the traditional Stokes formula and the modified Stokes
formula, are compared. Three spherical particles (a = 5µm) are suspended in a channel (L×W × H =

300 µm × 200 µm × 200 µm) with a pressure-driven flow (∆p = 1 Pa) along the length direction.
The three particles are distributed on the plane parallel to the flow direction, as shown in Figure 2a,
where d is the distance between the particle center and the origin. The dependences of the
hydrodynamic forces on the ratio of the distance d and the particle radius a of the three particles
are shown in Figure 2b–d. As we can see, when the particles get closer to each other, the traditional
Stokes formula is not applicable for calculating the hydrodynamic force, while the modified Stokes
formula can describe the hydrodynamic hindrance accurately. In this paper, the modified Stokes
formula is able to calculate the hydrodynamic forces of dense particles.
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ratio of the distance and the particle radius. F∗h , F∗s and F∗m are the hydrodynamic forces, respectively
calculated by integrating the hydrodynamic stress tensor, the traditional Stokes formula and the
modified Stokes formula.

3. Numerical Examples and Discussions

The fluid and particles in the present example were water and polystyrene beads, respectively.
The densities of the particles were the same as the fluid, ρ = 103 kg/m3; thus, the gravity was
ignored. The permittivities and conductivities of the fluid were ε f = 78ε0 and σ f = 2× 10−3 S/m,
respectively, where ε0 = 8.854× 10−12 F/m was the permittivity in a vacuum. The viscosity of the
fluid was η = 10−3 Pa · s. The properties of the fluid were specified as the same in all examples of this
work. Two types of particles with same permittivities but different conductivities εp1 = εp2 = 2.5ε0,
σp1 = 2× 10−4 S/m, σp2 = 6× 10−3 S/m were adopted in this work to study the particle interactions.
The real part KR of the C–M factors of the two types of particles versus frequency are shown in
Figure 3. As we can see, in the low-frequency region, for particle 1, KR = −0.4286 < 0, suffering a
negative DEP force, called an nDEP particle. For particle 2, KR = 0.4 > 0, suffering a positive DEP
force, called a pDEP particle. In this case, they are called dissimilar particles in this work. In the
transition region, particle 2 was rapidly transformed from a pDEP particle into an nDEP particle while
particle 1 remained as an nDEP particle. In the high-frequency region, both types of particles were
nDEP particles as KR = −0.4759. Accordingly, they are called similar particles in the present example.
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In the transition region, particle 2 is transformed from a pDEP particle into an nDEP particle.
In the high-frequency region, both particles are nDEP particles.

3.1. The Interaction of Five Particles with Different Conductivities

Five particles with the same size (a∗ = 1) were positioned on a plane perpendicular to the uniform
AC field Ẽ0 = 0.02 in the electrolyte. The initial locations of the five particles are listed in Table 1.
Four particles were symmetrically distributed about the central particle 1. The permittivities and
conductivities of the particles were εpi = 2.5ε0, i = 1, 5 and σp1 = 6× 10−3 S/m, σp2 = σp3 = σp4 =

σp5 = 2× 10−4 S/m, respectively. When a uniform AC field with f = 103 Hz was applied, particle 1
behaved as a pDEP particle while the other four particles behaved as nDEP particles, according to
Figure 3. The initial particle locations and the final particle chain are shown in Figure 4, where the blue
and red colors denote pDEP and nDEP particles, respectively. As we can see, the four nDEP particles
were attracted by the central pDEP particle and moved towards the center. Finally the nDEP particles
distributed symmetrically around the pDEP particle as the neighboring nDEP particles kept almost
the same distance from each other, and a cross-shaped particle chain was formed.

The particle trajectories are shown in Figure 5. It can be seen that all particles moved only on
the initial plane in a perpendicular electric field. The central pDEP particle 1 did not move all the
time due to symmetrical forces. The nDEP particles 2 and 3 simultaneously suffered attractive forces
from particle 1 and repulsive forces from each other. As a result, they moved towards particle 1 while
moving away from each other, as did nDEP particles 4 and 5.

These in-plane motions and DEP behaviors can be connected to a special case observed in previous
studies. It is well known that similar particles form particle chains parallel to the electric field and
dissimilar particles form particle chains perpendicular to the electric field [2]. However, when the
particles are initially positioned in the special situation where the connecting line of the particles is
perpendicular to the electric field, the similar particles will repel each other while dissimilar particles
attract each other. Both the directions of the repulsive force and the attractive force are parallel to their
connecting line. In this present 3D model, any two particles are always in the special situation as the
electric field is perpendicular to the particle plane. As a result, the interactive forces of the particles are
always parallel to their initial plane and they can only move in the plane.
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Table 1. The initial locations of the five particles.

Coordinate Particle 1 Particle 2 Particle 3 Particle 4 Particle 5

x∗ 0 2 −2 −2 2
y∗ 0 3 3 −3 −3
z∗ 0 0 0 0 0
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Figure 5. The particle trajectories and the final positions of five particles in a perpendicular AC field
with Ẽ0 = 0.02 and f = 103 Hz. The blue and red colors denote pDEP and nDEP particles, respectively.

The variations of the DEP interactive forces of particle 1 and particle 2 with time are shown in
Figure 6, where the blue color denotes particle 1 and the red color denotes particle 2. It can be seen
that the force of particle 1 was zero all the time due to the symmetrical distribution of the other four
particles, which is consistent with Figure 5, while the force of particle 2 increased rapidly with time and
finally reached a constant value when particle 2 came into contact with particle 1. The DEP interactive
forces of particles 3, 4, and 5 are similar to particle 2 and will not be presented.
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Figure 6. The DEP interactive forces of particle 1 and particle 2 with time. The force of particle 1 is
almost zero, the force of particle 2 increases rapidly as particle 2 get closer to particle 1, and finally
reaches a constant value when the particle group is formed.

When the conductivities of particles 2 and 4 were changed to σp2 = σp4 = 6× 10−3 S/m and
the rest of the parameters remained the same as in the previous example, particles 1, 2, and 4 were
pDEP particles and particles 3 and 5 were nDEP particles as shown in Figure 3. The initial locations
and the final particle chain are shown in Figure 7, where the blue and red colors denote pDEP and
nDEP particles, respectively. It can be seen that the two nDEP particles were respectively attracted by
the neighboring two pDEP particles, moving towards the regions between the two pDEP particles.
The pDEP particles repelled each other and, finally, an alternately arranged particle chain was formed.
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Figure 7. The DEP interaction of five particles with same properties and initial positions as Figure 4,
except the conductivities of particle 2 and particle 4 (σp2 = σp4 = 6 × 10−3 S/m) are on a plane
perpendicular to a uniform AC electric field with Ẽ0 = 0.02 and f = 103 Hz. (a) The initial positions of
the particles; (b) the final line-styled particle chain with alternately arranged pDEP and nDEP particles.
The blue and red colors denote pDEP and nDEP particles, respectively.

The particles’ trajectories are shown in Figure 8, where the blue and red colors denote pDEP and
nDEP particles, respectively. It can be seen that the central particle 1 did not move due to symmetrical
forces, while the nDEP particle 3 was attracted by two pDEP particles 1 and 2, moving towards the
region between them. Similarly, particle 5 moved towards the region between particles 1 and 4. Finally,
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a line-styled particle chain consisting of alternating arrangements of nDEP and pDEP particles was
formed on the initial plane.
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3.2. The Interaction of a Large Number of Particles with the Same Size

One hundred particles with the same size a∗ = 1 were randomly distributed on a plane chip
filled with electrolyte perpendicular to a uniform AC electric field Ẽ0 = 0.02, as shown in Figure 9a.
The electrical properties of the fluid were the same as that of the previous examples, while 50 particles
had the properties of εp1 = 2.5ε0, σp1 = 6× 10−3 S/m, and the other 50 particles had the properties of
εp2 = 2.5ε0,σp2 = 2× 10−4 S/m. When f = 103 Hz, the particles with σp1 = 6× 10−3 S/m behaved
as pDEP particles while the others were nDEP particles, according to Figure 3. As we can see in
Figure 9c, similar particles repelled each other and dissimilar particles attracted each other and, finally,
many particle chains with different styles and lengths were formed, for example line-styled,
cross-shaped or a combination of both. Each particle chain consisted of alternately arranged nDEP
and pDEP particles. The directions and shapes of the particle chains only depended on their initial
distributions and the electric properties.

When the particle number increased to 200, half of the particles had the properties of εp1 =

2.5ε0, σp1 = 6× 10−3 S/m and the other half had the properties of εp2 = 2.5ε0,σp2 = 2× 10−4 S/m.
The initial positions and the final particle chains when f = 103 Hz are shown in Figure 9b,d. It can be
seen that the particle chain patterns have similar styles but with more complexity, and more branches
in the particles chains are observed than in the case of 100 particles.
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Figure 9. The DEP interaction of a large number of randomly distributed particles under a
perpendicular field with Ẽ0 = 0.02 and f = 103 Hz. (a) The initial positions of 100 dissimilar
particles; (b) the initial positions of 200 dissimilar particles; (c) particle chains of 100 dissimilar
particles; (d) particle chains of 200 dissimilar particles. The blue and red colors denote pDEP and nDEP
particles, respectively.

3.3. The DEP Interaction of Large Numbers of Particles on a Bounded Circular Plate Chip

The working chambers of microfluidic chips are all confined spaces, and the chip wall’s effects on
DEP particle interactions cannot be neglected in the cases of a larger number of dense particles.
DEP particle interactions on a bounded circular plane chip are studied in this section,
where 140 particles of uniform size a∗ = 1 were randomly distributed on a circular plane chip
with a diameter d∗ = 44. A uniform AC electric field Ẽ∗0 = 0.02 was applied perpendicularly
to the plane chip, as shown in Figure 10a. Half of the particles had the electrical properties of
εp1 = 2.5ε0, σp1 = 6× 10−3 S/m, and the others had the properties of εp2 = 2.5ε0, σp2 = 2× 10−4 S/m.
Three cases of frequencies, f = 103 Hz, f = 106 Hz, and f = 107 Hz, were studied in the present
work. When f = 103 Hz, the two groups of particles experienced negative and positive DEP forces,
respectively, according to Figure 3. Various particle chains were formed with a more complex structure
compared with Figure 9. The scattered short particle chains tended to aggregate with a much larger size
and more branches due to the restriction of the boundary, as shown in Figure 10b. When f = 106 Hz,
the particles with σp1 = 6× 10−3 S/m suffered much weaker positive DEP forces, while the others
still suffered strong negative DEP forces. The attractive forces between the pDEP and nDEP particles
became much weaker, while the nDEP particles still experienced strong repulsive forces between
each other. As a result, the particle chains were more scattered compared to those at low frequency,
as we can see in Figure 10c. When f = 107 Hz, all particles behaved as negative DEP particles. It can
be expected that all particles experienced strong repulsive forces and moved away from each other,
until all the repulsive forces of each particle reached a balance, resulting in an almost uniform particle
distribution, finally, as shown in Figure 10d. It was also found that the final particle distributions were
quite similar for different random distributions of particles.



Micromachines 2017, 8, 26 13 of 16
Micromachines 2017, 8, 26  13 of 16 

 

 
Figure 10. The DEP interactions of randomly distributed particles on a bounded circular plane chip 
under a perpendicular AC field 

0 0.02E∗ =  with different frequencies. (a) The initial random 

distribution of 140 particles; (b) the particle chains when 310 Hzf = ; (c) the particle chains when 
610 Hzf = ; (d) the uniform distribution when 710 Hzf = . 

Particle chain behaviors of different particle sizes and conductivities were also investigated in 
this work. One hundred particles were split into two groups (50, 50) and the particle properties 
were specified as *

1 = 1a , 1 0ε 2.5ε=p , 3
1σ 6 10 S/m−= ×p  and *

2 = 2a , 2 0ε 2.5ε=p , 
4

2σ 2 10 S/m−= ×p , respectively, as shown in Figure 11a. The frequency of the electric field was 
310 Hzf = . The rest of the parameters remained the same as in the previous examples. The small 

particles behaved as positive DEP particles and the large particles behaved as negative DEP 
particles in the present example. It can be seen that the large particles experienced large repulsive 
forces between each other and small attractive forces from the small particles. The large particles 
were repelled from the boundary, while the small particles were attracted by the large particles and, 
finally, long particle chains along the wall were formed, as shown in Figure 11c. In the case of 
particles with random radii, from = 1a∗  to = 2a∗ , 50 particles with the properties of 1 0ε 2.5ε=p , 

3
1σ 6 10 S/m−= ×p  behaved as positive DEP particles, and the other particles with the properties of 

2 0ε 2.5ε=p , 4
2σ 2 10 S/m−= ×p  behaved as negative DEP particles, as shown in Figure 11b. The 

particles were more likely to form clusters than long chains, as shown in Figure 11d. 

Figure 10. The DEP interactions of randomly distributed particles on a bounded circular plane chip
under a perpendicular AC field Ẽ∗0 = 0.02 with different frequencies. (a) The initial random distribution
of 140 particles; (b) the particle chains when f = 103 Hz; (c) the particle chains when f = 106 Hz;
(d) the uniform distribution when f = 107 Hz.

Particle chain behaviors of different particle sizes and conductivities were also investigated in
this work. One hundred particles were split into two groups (50, 50) and the particle properties were
specified as a∗1 = 1, εp1 = 2.5ε0, σp1 = 6× 10−3 S/m and a∗2 = 2, εp2 = 2.5ε0, σp2 = 2× 10−4 S/m,
respectively, as shown in Figure 11a. The frequency of the electric field was f = 103 Hz. The rest
of the parameters remained the same as in the previous examples. The small particles behaved as
positive DEP particles and the large particles behaved as negative DEP particles in the present example.
It can be seen that the large particles experienced large repulsive forces between each other and
small attractive forces from the small particles. The large particles were repelled from the boundary,
while the small particles were attracted by the large particles and, finally, long particle chains along
the wall were formed, as shown in Figure 11c. In the case of particles with random radii, from a∗ = 1
to a∗ = 2, 50 particles with the properties of εp1 = 2.5ε0, σp1 = 6× 10−3 S/m behaved as positive DEP
particles, and the other particles with the properties of εp2 = 2.5ε0, σp2 = 2× 10−4 S/m behaved as
negative DEP particles, as shown in Figure 11b. The particles were more likely to form clusters than
long chains, as shown in Figure 11d.
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4. Conclusions 

The DEP interactions of a large number of dense spherical particles on a plane perpendicular 
to a uniform AC field were studied by an iterative dipole moment (IDM) model in this work. 
Numerical examples indicated that the IDM model is an effective method to predict DEP 
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Figure 11. The particle chains with different particle sizes and conductivities when f = 103 Hz.
(a) The initial particle positions of two different sizes, half of the particles with radius a∗ = 1 and the
other half of the particles with radius a∗ = 2; (b) the initial particle positions of random particle sizes
from a∗ = 1 to a∗ = 2; (c) the particle chains of two different sizes; (d) the particle chains of random
particle sizes.

4. Conclusions

The DEP interactions of a large number of dense spherical particles on a plane perpendicular
to a uniform AC field were studied by an iterative dipole moment (IDM) model in this work.
Numerical examples indicated that the IDM model is an effective method to predict DEP interaction
behaviors of a large number of dense spherical particles in an electric field. Some novel phenomena
were found in the results and are consistent with the previous studies. When the particles are
initially positioned on a plane perpendicular to the electric field, they cannot move out of the plane.
Similar DEP spherical particles on a plane perpendicular to an electric field always repel each other,
and scatter away. A large number of dense particles in the bounded region eventually form a uniformly
distributed particle pattern (equidistant between every two particles) that is almost independent of the
initial positions. Dissimilar DEP particles in a plane perpendicular to an electric field always attract
each other, forming alternately arranged particle chains, clusters, or groups. The directions and shapes
of the final particle chains depend on the particle sizes, number, electrical properties, initial particle
distributions, and electric field frequencies. Above all, similar particles and dissimilar DEP particles
can easily be transformed into each other via frequency modulation which can be an effective method
for particle manipulation in applications of biology, chemistry, and micro-fabrications.
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