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The spurring growth and clinical adoption of nanomaterials and nanotechnology in medicine,
i.e. “nanomedicine”, to shape global health care system is a collective effort that comprises academia
research, industrial drive, and political and financial support from government. As of today, there are
more than 250 nanomedicine products, more than 50 of which are already in the market and being
used by doctors or other end-users [1].

The definition and classification of nanomaterials are continuously evolving with our
understanding of this exciting field. Adapting from technical and translational information on
nanomaterials and nanotechnology from US National Nanotechnology Initiative and European
Commission, editors feel it is imperative to mention that nanomaterials’ upper size limit is not restricted
to 100 nm [2]. In fact, some commercial nanomedicine products are greater than 100 nm, e.g., abraxane
(130 nm) and Myocet (180 nm). Broadly, nanomaterials are categorized as organic, inorganic, or hybrid
nanomaterials to highlight their inherent advantages in context to diagnostics and therapeutics.
Most, if not all, organic nanomaterials-based medicine carriers use biocompatible polymers and
liposomes that are typical carbohydrates, proteins, and lipids found in humans and other animals.
The development of new biomaterials and the methods of formulating nanomedicine “intended
primarily for therapeutics” in the context of controlled size, stability, percent drug entrapment,
and sustained drug release is an always-evolving area of research. Among inorganic nanomaterials,
transition metals, including but not limited to gold, silver, platinum, iron, cobalt, titanium, technetium,
and lanthanide, have unique optical, electrical, and magnetic properties, which makes them a great
choice for multifunctional biomedical applications in optical and electrical sensing [3,4], diagnosis [5–7],
photo-thermal therapy [8], optogenetics [9], and a few others. In addition, nanomaterials and
nanotechnology in conjunction with stem cell biotechnology have great implications in regenerative
medicine [10].

Bioactive nanomaterials of polymers and metals are an emerging class of nanomaterials with
exciting desired properties. For example, a novel PolymerDrug approach, wherein a polymer is
engineered to biodegrade into therapeutically active molecules, such as PolyAspirin, PolyMorphine,
and PolyAntibiotics, can improve the therapeutic value of the free form of conventional drugs that are
typically prescribed to control pain, inflammation, and infection [11,12]. Another clinically promising
nanotechnology approach uses a sugar-based amphiphilic scorpion and star-like nanomaterials
with a core-shell micelle design, best suitable geometry for drug encapsulation, and additional
properties conferred by their bioactive shells [13]. These bioactive shells have inherent targeting
properties that can be tuned for targeted drug delivery to treat cancer, and block scavenger receptors
to inhibit artherosclerosis, Parkinson’s, and other diseases with similar pathophysiology [14,15].
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In addition to the aforementioned biomedical applications of bioactive polymers, they have implications
to engineer biodegradable and bioactive sutures and dressings, drug eluting stents and scaffolds,
and medical devices with anti-microbial properties to prevent bio-fouling [16–18]. In the last
decade or so, we witnessed a spurring growth in biomedical applications of inorganic nanomaterials.
In particular, the multifunctional nanotechnology approaches to combine properties of two or more
inorganic nanomaterials, i.e. “nanocomposites”, have broadened the horizon of nanotechnology.
Nanocomposites are among the best choices for multi-modal imaging to improve diagnosis [19,20]
and/or photothermal therapy to compliment chemotherapy [8]. For example, bioactive magneto-electric
nanomaterials (MENs) and magneto-optic nanomaterials (MONs) are unique. The magnetic component
of these nanomaterials enables magnetically driven targeted drug delivery and magnetic resonance
image-guided therapy [21]. An electronic component in these nanocomposites offers actuation
properties to remotely control drug release [22,23], and optical components like gold, rare-earth,
and quantum dots offer plasmonic, photoluminiscent, and fluorescent properties, respectively.
In contrast to polymeric nanomaterials, which are classical drug nanocarriers and best suitable
for drug delivery outside the brain space, this special class of ultra-small, magnetically-driven
nanocomposites combining electrical (MENs) and optical properties (MONs) are best suitable for
brain space [20,21,24,25].

In spite of the significant advancements discussed above, a tunable control over size, stability
and functionality of the nanomaterials is required, in particular for their biomedical applications
in vivo such as sensing, diagnostics, and therapeutics. The formulation and functionality of novel
next-generation nanomaterials should be tuned for maximum practical, “multifunctional”, utility in
personalized health care with minimum adverse effects.

The aim of this editorial is to encourage researchers active in this field to submit their manuscript
for consideration to publish in this special issue of Micromachines. We would like to thank contributors
and reviewers for making this special issue a success. I am sure this special issue will be of great
interest and value to the scientific community exploring biomedical applications of nanotechnology
and nanomaterials.
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