
micromachines

Article

Investigation of CMOS Multiplexer Jet Matrix
Addressing and Micro-Droplets within a
Printhead Chip

Jian-Chiun Liou 1 and Cheng-Fu Yang 2,*
1 School of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; jcliou@tmu.edu.tw
2 Department of Chemical and Materials Engineering, National University of Kaohsiung,

Kaohsiung 811, Taiwan
* Correspondence: cfyang@nuk.edu.tw; Tel.: +886-7-591-9283

Received: 14 August 2017; Accepted: 22 November 2017; Published: 29 November 2017

Abstract: In this study, we demonstrate and investigate a new droplet injection design. We create
a thermal inkjet (TIJ) printhead using an application-specific integrated circuit system and bulk
micromachining technology (microelectromechanical systems). We design inkjet printhead chips
with a new structure and investigate their properties. For the new structure, the integration
of complementary metal-oxide-semiconductors (MOSs) and enhancement-mode devices, as well
as power switches and a TIJ heater transducer, enables logic functions to be executed on-chip.
This capability is used in the proposed design to address individual jets with even fewer input lines
than in matrix addressing. A high number of jets (at least 896) can be addressed with only 11 input
lines. E1 (Enable 1) and E2 (Enable 2) are set up dependently, and they have the ability to reverse their
signals in relation to each other (i.e., if E1 is disabled, E2 is enabled and vice versa). The E1 and E2
signals each service 448 jets. If one of the MOSs is turned on, then it corresponds to a power line with
a similar function. If an addressing gate terminal of the other MOS has a discharge action, then we
can control a different heater to generate heating bubbles in the jet inks. The operating frequency
for addressing these measurements is 18 kHz in normal mode, 26 kHz in draft mode, and 16 kHz in
best mode.

Keywords: complementary metal-oxide-semiconductor (CMOS) multiplexer; jets matrix; micro-
droplet; printhead chip

1. Introduction

Conventionally, inkjet printers generally use electro-thermal bubble-jet technology, in which an
electrical pulse heats a small ink tank until bubbles in the ink are squeezed out. The shortcoming
of this method is that the rapid heating, expansion, and compression of the ink expel it onto the
printing paper, forming unwanted dots on the printing objects. Inkjet technology increases the stability
of the droplet color to achieve both high-speed and high-quality printing [1–6], in which the ink
droplets have uniform size and shape, and the consistency of the ink concentration enhances the image
quality. However, at high temperatures, it is difficult to control the direction and shape of the ink
droplets [7–13], and high-precision control of the droplets is crucial to achieve high-quality printed
products. Thermal inkjet (TIJ) printing forces the ink into a tiny capillary. The system rapidly heats the
ink to boiling point with a miniature heating pad, generating a minute vapor bubble that expands a
drop of ink into the top of the capillary. The heating then stops and the ink cools, causing the vapor to
condense and contract, so that the flow of ink ceases until steam next generates an ink droplet [14–17].
The speed of inkjet printing is a key technical indicator in fabricating a high-quality printer. To date,
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increasing the inkjet ejection frequency requires an increase in the number of holes and heaters on a
single printhead.

Printing ink that is made of a variety of substances can be sprayed on different substrates. The ink
drops are printed in tiny, picoliter units, and precision at the micrometer (µm) level that is relative to the
position of the unit is required to achieve accurate printing. A specialized precision printing method
operates at the microscopic level to produce flexible printed electronics, photovoltaics, color filters
via screen printing, and sequences of genetic material. Diverse applications of inkjet technology have
been pioneered in a wide range of industrial fields [18–22].

Recently, many electronic products and processes have matured, including organic crystals,
organic memory devices, three-dimensional electronic components, embedded passive components,
system packaging, film flip chip packaging, color filter manufacturing, film alignment processes, liquid
crystal injection, and electrodes. For a variety of printable electronic components and related maskless
printing technology, international manufacturers are actively involved in developing inkjet materials,
processing technology, and planting platform. For high-end inkjet applications, the trend is to fine-tune
the base of the inkjet drive circuit in pursuit of precision. This includes developing ink droplet nozzle
technology and uniform ink droplet printing technology.

The design that is proposed in this study can drive numerous inkjet head designs on jet printing
systems. The less the variation in the ink droplets that are sprayed from the holes on each nozzle,
the better the printing quality. Hence, one of the research and development targets in this field is the
uniform printing of ink droplets. This study proposes a new design for independent nozzle drive
technology equipped with an inkjet method for a fluid control technology platform. The technique
is specific to the area of the substrate, where the material attaches to form a picture pixel by pixel.
This technology can work without a mask or high-level application process, reforming the existing
traditional process and leading to new industrial applications, thereby enhancing the value of inkjet
technology for industrial markets.

The current problem is the need for high-resolution displays for emerging manufacturing
applications. The use of inkjet-derived technology is a promising new area, but to be practical,
a stable production process with high reliability is necessary. This paper presents a thermal bubble-jet
inkjet printhead wafer system, which can be implemented using platform-coating technology. In this
system, one ink nozzle contains several holes that are arranged in a single, tightly packed line. Each of
the holes has a separate dedicated power actuator that can be controlled by signals from the jet
printing control system to determine how many holes in the nozzle should perform the printing action.
This mechanism is called drop-on-demand.

For ink to be ejected from any of the holes, a driving waveform must generate an ink droplet
using the thermal resistance of the bubble film pressure through the injection hole. This enables the
inkjet head production process to support more industrial applications. Inkjet head manufacturers
are developing small-volume ink droplets. To mitigate problems with fluid flow rate, film thermal
resistance, and compatibility, it is necessary to make the holes on each nozzle jet produce precise,
accurate, and consistent ink drops. In inkjet head manufacturing, each nozzle must meet these
stringent requirements.

2. Design of the Multiplexer Inkjet Chip System

2.1. The Logic Processing Circuit

For the multiplexer inkjet head driver circuit, the most important function is to input the five
signals for logic operation to the microelectromechanical element side, which specifies a group of
nozzle hole operations. These are not geometrically adjacent; therefore, they do not affect each other.
Figure 1 shows the upper layer of the multiplexer inkjet head within the inkjet driver wafer. The logic
signal processing unit must determine whether the DATA signal is to be either positive or negative.
The chip signal for CELL2 is the last count signal, CL1 in addition to CL2 and CLK, where CL2 is
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the positive edge of the trigger, CL1 is the negative edge of the trigger, and CLK is the general data
in place after the latch is down to the output. The signals S1, S2, S3, S4, S5, S6, S7, X4, and X5 are
sent by CLK1, CLK2, CTRL, SETB, and the DATA external logic input to detect varying signal results.
When SETB is “0” and DATA is “1”, CTRL sends two pulses to scan the combination of CLK1 and
CLK2 at that moment where (CLK1, CLK2) is (0, 0), (0, 1), (1, 0), or (1, 1). Figure 2 shows the input
signal of the inkjet driver chip, which includes a first-level logic processing unit. CELL1 is the unit for
the enable signal, and CELL2 is an addressing unit combining the CELL1 and CELL2 logic operation
units, as well as the voltage adjustment output unit. The logic processing circuit for controlling the
array element of large microelectromechanical systems (MEMS) is as follows. The inkjet drive wafer is
determined by the inkjet speed and the resolution of the inkjet system. To achieve high speed and high
resolution, the inkjet drive circuit is designed so that an enable signal can cover multiple addressing
nozzles. It does not perform the logic operation before the current is switched, although a cycle can
specify the maximum number of holes. Another approach is to increase the number of enable cycles to
control the huge nozzle array.

Figure 3 shows the entire 16 × 28 thermal resistance thin film control driver circuit signal and
the field programmable gate array (FPGA) verification result. The first type ((CLK1, LAT2) is (0, 0))
drives each micro-heater addressing from high to low latches (E28, E26, . . . , E27, E25, . . . , E1, E3, . . . ,
E27, E2, E4, . . . , E28), and the second type ((CLK1, LAT2) is (1, 0)) drives each micro-heater addressing
from a low count to a high latch. The two designs in the micro-heater components will cause thermal
resistance to produce thermal interference. The geometry of the thermal resistance array has been fixed.
The use of an inkjet timer to achieve driving operation can ensure multiple circuit control, so thermal
interference can be avoided.
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Figure 1. Multiplexer ink jet head of the uppermost layer within the inkjet driver wafer.
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The third type ((CLK1, LAT2) is (1, 1)) drives each thermal resistance addressing from low to
high latches (E0, E1, . . . , E28). The fourth type ((CLK1, LAT2) is (0, 1)) drives each thermal resistance
addressing from a high count to a low latch (E28, E27, . . . , E0). The other two designs allow for a wide
range of thermal resistance between the components, but they must also be operated one after the
other. A serial CLK1 scanning signal latches 20 bits at a time. The last four bits (A18, A17, A20, A19)
are used in modulating the amplitude of the output power. Voltages V0, V1, V2, V3, V4, V5, V6, and V7

are selected to be related to the thermal resistance switch module by three to eight decoders, based on
the displacement harmonics wavelength signal. Figure 4 shows the driver array cell. The cell is the
final stage of the inkjet chip with a dummy terminal, which can be extended to drive more jets in the
future. This novel control technology can be extended to drive more nozzles, which can be increased
from 16 × 28 thermal resistance to 16 × 56 thermal resistance. In other words, we can increase the
number of latches to achieve this novelty function—for example, E56, E54, ..., E28, E26, ..., E4, E2, ....Micromachines 2017, 8, 346  5 of 16 
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Figure 4. Driver array cell.

The power grayscale output signals are supplied as the thermal resistance elements of the inkjet
wafer system (Figure 5). This crucial unit comprises a switch circuit and a voltage selection circuit,
wherein the switch is composed of multiple analog switches. This crucial unit consists of a P-channel
metal-oxide-semiconductor (PMOS) and an N-channel MOS (NMOS), and is connected in parallel
to the voltage selection circuit. The voltage selection circuit outputs eight select signals (S00 to S70)
of from one to eight decoder circuits, which connect to the source side of the PMOS. The inverted
signals (S00 to S70) are sent to the source side of the NMOS. The gate terminals of the two halogens are
commonly connected to one of voltage outputs within the range V0–V7. The drain terminals of both
MOSs are connected to VOutput to supply microthermal resistance.
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A multiprocessing signal circuit can change the frequency and output amplitude based on the
size of the functional circuit system. Multiprocessing signal functionality lies in the selection of a large
array of thermal resistance switches (addressing). Because of this, these signals can quickly point out
which thermal resistance to activate, and then perform ink-jetting after selection.

2.2. The MEMS Processes

For the design of the MEMS system, the micromachining printhead nozzle is contained in a liquid
chamber and the nozzle is constructed and integrated as a monolithic chip. The flow of MEMS part
processes are fabricated directly on top of complementary metal-oxide-semiconductor (CMOS) wafer.
The detailed process is described in Figure 6 below.

In the integration of the circuit and the MEMS, the investigated issues can be integrated as a
monolithic chip. After ICP vertical etching on the Si substrate by MEMS processes to form nozzles,
the driving singles stil need l presenting correct driving waveform and high driver performance by
CMOS circuits, as Figure 6a shows. The next step is to partially make the substrate orifice area thin as
as a nozzle plate, as shown in Figure 6b. The solve method of these problems is to achieve the best
protected CMOS circuit by covering the photo-resistance on the three-dimensional (3D) sacrificial
layer for perforation, as Figure 6c shows. The protected connection terminals of input and output
signals (PAD) and created the chamber layer is shown in Figure 6d. Figure 6e shows the deposition
the electroforming plate layer and Figure 6f shows the removed the protected the PAD and created
the chamber layer and finished a liquid MEMS ink-jet head. Figure 6g shows the thermal bubble
generation droplet. The droplet arrangement profile is shown in Figure 6h.
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Figure 6. (a) Complementary metal-oxide-semiconductor (CMOS) circuits substract; (b) Partially 
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Figure 6. (a) Complementary metal-oxide-semiconductor (CMOS) circuits substract; (b) Partially thin
substrate orifice area as a nozzle plate; (c) CMOS circuit by covering the photoresistance on the 3D
sacrificial layer for perforation; (d) The protected the PAD and created the chamber layer; (e) Deposition
electroforming plate; (f) Removed the protected the PAD and created the chamber layer and finished a
liquid MEMS ink-jet head; (g) Thermal bubble generation droplet; and, (h) droplet arrangement profile.
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Using ICP vertical etching on the Si substrate by MEMS processes to form nozzles can create
smaller nozzle sizes than other methods [23,24]. The assembled in nozzles and CMOS circuits of Timo
Lindemann’s research, the printheads are made by a combination of a standard printhead CMOS
substrate with a three-dimensional (3-D) structured polyimide nozzle plate, and that can avoid the
results of three-layer assembly. The nozzle plate is assembled with the substrate using a adhesive layer
with an alignment accuracy of 5 µm. The integrated nozzle plate leads to a control of the printhead
geometry and saves one processing step in production [23]. The assembled in nozzles and CMOS
circuits of Regan Nayve’s research, the printhead has been fabricated by dicing the bonded wafer,
which consists of a bubble generating heater plate (CMOS circuits) and a Si channel plate. The Si
channel plate consists of ink inlet and ink chamber formed by KOH etching and nozzles that are
formed by RIE process. The ink inlet is a through-hole structure to supply ink from the ink tank to the
ink chamber. The ink chamber is connected to each nozzle [24].

In this study, the ICP vertical etching of a bulk nozzle structure can achieve a spray cycle time of
40 µs. The nozzle spacing is getting smaller and smaller, that will enhance the printing resolution and
printing speed. Other printheads cannot achieve this spray cycle time without ICP vertical etching of
the bulk nozzle structure.

3. Experiment and Signal Measurement

The total inkjet chip system for the smart printhead is shown in Figure 7. It is based on a 2.5 µm
NMOS process and follows the physical design rules of a 0.25 µm two-layer material of poly and
four-layer material of metal, a 5 V supply for the gate terminal, and a 24 V supply for the drain terminal
(2P4M 5 V/24 V). High voltage forms a symmetric high-voltage device with lower turned on resistor
(Ron) and higher current driving. It has a symmetric HV device structure between the source and
drain terminals.
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A photo of the chip and a schematic diagram of the drive circuit are presented in Figure 7. Figure 8
illustrates the measured width of each pulse signal and their mutual correspondence, demonstrating
that the width of pulse A was 4 µs and that the width of pulse P was 1.18 µs, where E1 and E2 were
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determined to be 1.34 µs and 1.35 µs, respectively. E1 and E2 can be set up so that they have the reverse
signal to each other. If E1’s signal is disabled, E2 is enabled, and vice versa. If one of the MOSs is
turned on, corresponding to the same P and A of the other MOS’s discharge action, then a different
heater will be controlled. In addition, P, A, and E1 are simultaneously at a high level. That is, the heater
actually only heats the bubble for 0.473 µs. Figure 9 shows the operating voltage of each signal: the
signal of pulse A was 15.5 V, the signal of pulse P was 14.6 V, and the signals of pulses E1 and E2
were 16 and 15.7 V, respectively. Figure 10 shows frequency testing in normal mode, Figure 11 shows
frequency testing in draft mode, and Figure 12 shows frequency testing in best mode. The respective
operating frequencies for each mode were 18, 26, and 16 kHz. The two important novelties in the
architecture of the control circuit are described below.
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(1) This mode (E1 (Enable 1) and E2 (Enable 2)):

The important novelty in the investigated architecture is that the drive control circuit has the
major advantage of reducing the mutual interference of the beads after the liquid droplets are ejected
from the cavity. When the E1 signal (Enable 1) is set at “1”, it enables the E2 signal (Enable 2) to
be changed to “0”. This control technology can be extended to other similar signals—for example:
(E1 (Enable 1), E2 (Enable 2), (E3 (Enable 3), E4 (Enable 4), E5 (Enable 5), E6 (Enable 6)) ... En (Enable n).

(2) The three signals “A”, “Ps”, and “E” pulse:

For the architecture of the investigated control circuit, the three signals must be at a high voltage
level at the same time, then the corresponding switch of the heater will be turned on. The most
innovative technology in this drive mode is that we can adjust the final output of the heater and control
the size of the output liquid droplets. As shown in Figures 8 and 9, the controlled heater has three
signals that drive the “A”, “Ps”, and “E” pulses in the high voltage level. At the same time, these three
signals dominate the power output of the heater. As shown in Figure 8, when the “A” signal selects the
nozzle heater, the “Ps” and “E1” signals are also at high levels, with an overlapping time of 0.473 µs.
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4. Results

Chip design is a key component of the driver. The MOS driver must take a three-terminal electrical
input. One terminal is the supply voltage VG, the second terminal is the PS side, and the third is the
ground (GND) terminal, which measures the current ID. It also requires a 16 V DC bias on the E1
(or E2) input. The other En inputs are connected to ground with the G pad. The PS side of the inkjet
chip is connected in series with the MOSFET driver. Therefore, if the ID-VD diagram is measured for
different VG values, the MOSFET ID-VD diagram of a long linear region is derived. The operating
points of the MOS driver of the inkjet head were VP = 14.6 V and VGS = 15.5 V. Thus, the electrical
signal of the MOS driver could be measured on the ink printhead. The signal line of the HP4155A
semiconductor parameter analyzer was connected; the HP4155A input signal could then measure the
MOS driver’s electrical signal. The results are shown in Figure 13. In addition, HP4155A was used to
measure a direct current, which was different from the impulse signal that was driven by the printer,
and under this condition, the current was in the range of 75–80 mA. If the thermal resistance on the
inkjet wafer were continuously subjected to this large load current, then the thermal resistance of the
film would suffer damage. Therefore, the current limit was set at 70 mA to protect the film’s thermal
resistance during measurement.

The linear equation for this regression can be thought of as the ID-VP curve operating in the linear
region, as shown in Figure 14. Accordingly, one can infer that this line extends to an operating voltage
for VP = 14.6 V, and the current value is the actual drive current. This can be calculated by substituting
VP = 14.6 V into the curve. From the result in Figure 14, ID = 113.6 mA can be derived and the operating
point of Rtotal = (VP/ID) = (14.6 V/113.6 mA) ≈ 128.5 Ω can be obtained.
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In the measurement of the electrical signal of the HP4155A MOS driver, the starting voltage value
of this MOS driver could be determined concurrently. The measurement results are presented in
Figure 15. These show that the starting voltage of this MOS driver was VGS = 1.5 V.

The objective of this research project is to increase the flow rate of injection, which requires a
method for increasing the frequency of injection. When the inkjet frequency was increased from 18 to
26 kHz, and the ejection frequency was raised to 26 kHz, the traditional single-channel injection cavity
design was improved. Figure 16 illustrates the operating frequency that was evaluated at 26 kHz,
displaying a 3D side view of 10, 20, 30, and 40 µs injection scenarios. For the 26 kHz ejection frequency,
this corresponds to an injection cycle of 40 µs. Drops could be observed in the inkjet wafer, validating
each of the actual droplet trajectories. Therefore, 110, 120, 130, and 140 µs were used for the second
injection stage. The second injection droplet shape and tail length varied from the first injection results,
because the fluid entirely filled the injection cavity and had not yet stabilized the flow field. This result
implies that the beginning of a second injection event affects the next injection. Each subsequent
injection is more severely affected. Similar results were also derived for representative spray cycles of
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100 and 200 µs. No satellite droplets with dragging tails were formed in the calculation of the intrinsic
region at 100 µs, and there were satellite droplets at the top of the calculation region at 200 µs that
were about to leave the area.
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The travel time for the whole liquid droplets to be molded into ink ones to spray on paper is 40 µs
for one heater. Using this new drive mode, the inkjet can jet the liquid droplets at a speed higher than
26 kHz. The ability to select different power outputs is the latest method in inkjet machines. In other
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words, we can use the CMOS multiplexer jets matrix addressing method to give an inkjet machine the
features of rapid heating, large expansion, and high compression to expel liquid droplets onto printing
paper to form dots.

5. Conclusions

A smart bubble-jet printhead with a long lifespan was proposed and demonstrated. The multiplexer
printhead integrated inkjet nozzle arrays through both standard complementary MOS (CMOS)
processes and micromachining technology. The integration of CMOS and enhancement-mode devices,
power switches, and a TIJ heater transducer allowed for logic functions to be performed on-chip. This
capability was used in the design to address individual jets with even fewer input lines than in matrix
addressing. Only 11 input lines were required to address a large number of jets (896 or more).
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