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Abstract: In the fabrication of micro-electro-mechanical systems (MEMS) devices, manufacturing
process variations are usually involved. For these devices sensitive to process variations such as
doubly-clamped beams, mismatches between designs and final products will exist. As a result,
it underlies yield problems and will be determined by design parameter ranges and distribution
functions. Topographical changes constitute process variations, such as inclination, over-etching, and
undulating sidewalls in the Bosch process. In this paper, analytical models are first developed
for MEMS doubly-clamped beams, concerning the mentioned geometrical variations. Then,
finite-element (FE) analysis is performed to provide a guidance for model verifications. It is found
that results predicted by the models agree with those of FE analysis. Assigning process variations,
predictions for performance as well as yield can be made directly from the analytical models, by
means of probabilistic analysis. In this paper, the footing effect is found to have a more profound
effect on the resonant frequency of doubly-clamped beams during the Bosch process. As the confining
process has a variation of 10.0%, the yield will have a reduction of 77.3% consequently. Under these
circumstances, the prediction approaches can be utilized to guide the further MEMS device designs.
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1. Introduction

Precise processing control has turned into an issue, owing to the mass production of
micro-electro-mechanical systems (MEMS) devices and their increasingly complicated manufacturing
processes. Discrepancies between initial designs and products deteriorate quickly with the feature size
reductions. Even with the state-of-art fabrication techniques, process variations occur inevitably [1–3].
The process variations mainly include misalignment, footing as well as critical dimension (CD)
loss [4], manifested as inclination, over-etching and undulating sidewalls in the Bosch process [5].
Typically, the effects of relative tolerances in MEMS devices are more severe than macro-scale
products [1,6,7]. Relative manufacturing tolerances are alternatives to performance uncertainties.
In addition, microstructures are commonly performed with nonlinear parallel plate electrostatic forces,
which contributes to the complexity of problems. For such a reason, adequate methods are required
due to the limitations in design rules and linear theories of MEMS [8].

Studies on process variations have achieved abundant results [9] in the scope of integrated
circuits (ICs). However, these IC achievements cannot meet the whole needs of MEMS technologies.
The conventionally used trial-and-error approach severely relies on the design-test cycle, which not
only postpones the development cycle, but is also costly and time-consuming. Therefore, efforts have
been made in the domain of MEMS devices analysis, for a better understanding of the impacts of
process variations and also for reductions of performance variabilities at the design stage [10–15].
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Islam et al. [10] conducted simulations and stress analysis on a fixed-fixed beam in electrostatic
situations. Their results have reflected that changes in length and thickness tend to be more strictly
controlled. Microbeam resonators are commonly utilized to detect or filter signals in MEMS. Due
to manufacturing uncertainties, microbeam resonators undergo significant variability from initial
designs. For example, Liu et al. [11] achieved tradeoff designs regarding multiple and conflicting
design criteria, while Rong et al. [12] focused on multilayer structures while considering the first
and second-order sensitivities of frequency. Mawardi et al. [13] utilized enumeration search and
input–output relationships to get the governing parameters as well as a wide range for operating
resonant frequency. In addition, magnetometers adopted multiphysics-based optimization and
nonlinear situations [14], and gyroscopes focused on the packaging with double yield [15]. Except
for unique device analysis, methods that are generally applicable have advanced the processing
improvement further [3,16–26]. Mirzazaden et al. [16–18] investigated morphology uncertainties with
reduced-order models through on-chip tests. Moreover, Shavezipur et al. [3,19], and Allen et al. [20]
proposed the first-order second-moment (FOSM) and advanced FOSM reliability method, respectively,
in a probabilistic way to obtain a linearized feasible region and maximize the yield. For those non-linear
actuated MEMS devices, high fidelity optimization schemes have also been realized. To avoid the
brute-force Monte Carlo (MC) scheme, Pfingsten et al. [21] considered a Bayesian Monte Carlo approach
for yield estimation, with 90.0% computational savings but the same accuracy, compared with MC
schemes. Vudathu et al. [22,26] applied a sensitivity analyzer for MEMS (SAM) by worst-case analysis,
revealing the effects of parametric variations on performance and yield. Achievements have been
reached to get a balance between precision and calculation—for example, the Sigma-Point approach
applied to MEMS resonators with four orders of magnitude faster than MC [23], the generalized
polynomial chaos (GPC) framework to handle stochastic coupled electromechanical analysis with the
same precision and one order of magnitude faster compared with MC [24], and the Taguchi parameter
design and statistical process-control method to minimize variability in performance response to
fluctuations [25].

However, little work has been carried out for detailed analysis of specific processing steps.
This paper intends to explore the effect of process variations on the resonance frequency of
doubly-clamped beams, under the Bosch target processing environment. The commercial code ANSYS
(11.0) [27] guides the verifications of the presented methods. The results suggest that with assigned
process variations, structure performance and yield can be predicted. On the other hand, given design
specifications, reasonable suggestions can be made for parameter error ranges under process variations.

2. Process Variations

Marked as a highly anisotropic etching process with high aspect ratios, deep reactive-ion etching
(DRIE) is employed to create deep penetration, steep-sided holes and trenches in wafers or substrates.
The Bosch process is one of the high-rate DRIE technologies, capable of fabricating 90◦ vertical walls
theoretically [28–30]. The Bosch process alternates between isotropic plasma etching and deposition of
a passivation layer, also called pulsed or time-multiplexed etching. The etching–deposition procedures
will be repeated until all of the demands are satisfied. However, it is hard to obtain a sidewall
precisely vertical to the substrate. Morphology features like inclinations, undulating ripples as well
as over-etching are inevitable and critical, which are called the trapezium effect, the ripple effect and
footing effect in the following, respectively. The variations induced by these effects manifest roughly as
planar sizes (dominated by photolithography and etching processes), planar position offset (dominated
by alignment) and vertical sizes (dominated by thickness variations of thin films or the substrate).
An ideal beam is a cuboid structure with a length dominated as l, a width as w, and the thickness as h.
The cross section was supposed to be a standard rectangle, while, in fact, it appeared as the side-view
given in Figure 1a–c. The beams illustrated in Figure 1 are fabricated by DRIE technology, with the
sidewall inclination around 84.3◦, the undulating ripples about 120◦, and the over-etching circled in
red of Figure 1c.
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Figure 1. Scanning electron microscope (SEM) cross section for deep reactive ion etching (DRIE) 
beams: (a) top view of beam array; (b) side-view of the beams labeled in (a); (c) side-view of the 
single beam labeled in (b), where the footing effect reflects as an arc angle approximating 120°, the 
inclination angle of 84.3° and 55.6° in the worst-case. 

To reveal the significance of manufacturing process variations, a simplified doubly-clamped 
beam is illustrated in Figure 2. The thickness and length of the beam are assumed to undergo the 
same manufacturing process variation as 0.05 μm. Thus, for a 200 μm long and 2 μm thick beam, 
the relative error for the length equals 0.05%, while it is 5.0% for the thickness case. The parameter 
thickness is obviously more sensitive to process variations. Combined with the usually quadruple 
relationship of length in a beam’s frequency, the relative error diminishes to 0.0006%. This finding 
reveals that the length variation can be ignored in certain cases to simplify the analysis models. 

 
Figure 2. Side-view of a doubly-clamped beam section, assumed with length 200 ± 0.05 µm and 
thickness 2 ± 0.05 µm. The red part stands for manufacturing process variations, marked as 0.05% 
and 5.0% on beam length and thickness, respectively. 

3. Problem Solution 

Studies on MEMS devices have pointed out that manufacturing process variations have a close 
relationship with performance drift and device failure [22,25,31]. As the basic element in MEMS, the 
resonant frequency of the doubly-clamped beam underlies the majority of engineering designs. 
Assuming the section as a plane, the doubly-clamped beam can be treated as an Euler–Bernoulli 
beam. Without initial buckling, the differential equation for lateral oscillation can be expressed as 
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where 𝐸𝐸𝐸𝐸��� is the bending stiffness, 𝜌𝜌𝜎𝜎���� is the linear density, 𝜎𝜎𝜎𝜎���� is the axial load, and 𝑧𝑧(𝑥𝑥, 𝑡𝑡) is the 
displacement along the z-axis. Ignoring the residual stress, the resonant frequency of the 
doubly-clamped beam approximates as [32,33] 

Figure 1. Scanning electron microscope (SEM) cross section for deep reactive ion etching (DRIE) beams:
(a) top view of beam array; (b) side-view of the beams labeled in (a); (c) side-view of the single beam
labeled in (b), where the footing effect reflects as an arc angle approximating 120◦, the inclination angle
of 84.3◦ and 55.6◦ in the worst-case.

To reveal the significance of manufacturing process variations, a simplified doubly-clamped beam
is illustrated in Figure 2. The thickness and length of the beam are assumed to undergo the same
manufacturing process variation as 0.05 µm. Thus, for a 200 µm long and 2 µm thick beam, the relative
error for the length equals 0.05%, while it is 5.0% for the thickness case. The parameter thickness is
obviously more sensitive to process variations. Combined with the usually quadruple relationship of
length in a beam’s frequency, the relative error diminishes to 0.0006%. This finding reveals that the
length variation can be ignored in certain cases to simplify the analysis models.
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3. Problem Solution

Studies on MEMS devices have pointed out that manufacturing process variations have a close
relationship with performance drift and device failure [22,25,31]. As the basic element in MEMS,
the resonant frequency of the doubly-clamped beam underlies the majority of engineering designs.
Assuming the section as a plane, the doubly-clamped beam can be treated as an Euler–Bernoulli beam.
Without initial buckling, the differential equation for lateral oscillation can be expressed as

EI
∂4z(x, t)

∂x4 − σA
∂2z(x, t)

∂x2 = −ρA
∂2z(x, t)

∂t2 , (1)
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where EI is the bending stiffness, ρA is the linear density, σA is the axial load, and z(x, t) is
the displacement along the z-axis. Ignoring the residual stress, the resonant frequency of the
doubly-clamped beam approximates as [32,33]

fi =
1

2π
(kil)

2

√
EI

ρAl4
, (2)

in which kil stands for the coefficient of the ith mode of vibration, and the first three values as
k1l = 4.730, k2l = 7.853, k3l = 10.996.

3.1. Effect of a Single Factor

Apart from geometrical size errors that can be presented in the behavior equations (refer to
Appendixs A and B), morphology changes play an important role in the variability of devices’
performance and yield. Appropriate models are needed to reflect the main causes that result from
manufacturing uncertainties. As stated in Section 2, process variations are mainly rooted in the
trapezium, footing and ripple effect. These effects primarily occur in the Bosch process, Reactive
ion etching (RIE) for silicon-on-insulator (SOI) structures, as well as time-multiple-deep deposition
(TMDE), respectively. More details on the model building are shown in Appendix A.

The cross section of the beam has been transformed from an ideal rectangle to a trapezoid profile
due to process variations. This phenomenon is defined as the trapezium effect, which can be divided
into the positive trapezium effect (the trapezoid angle θ > 0) and the negative trapezium effect
(the trapezoid angle θ < 0). Figure 3 represents the latter, where Figure 3a denotes the section of a
doubly-clamped beam. Figure 3b extracts its cross section models and parameters in the coordinate
system. In such a case, the resonant frequency changes into:

ft =
(kil)

2

6π

√
Eh2

(
b2

1 + b2
2 + 4b1b2

)
2ρl4(b1 + b2)

2 . (3)
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Figure 3. The trapezium effect of a doubly-clamped beam: (a) SEM side-view, fabricated by the Bosch
process and un-released; (b) the coordinate sketch-map for the negative.

The footing effect usually shows up in the RIE/DRIE process of SOI structures. It causes
inhomogeneous distributions of the mass and stiffness, even making the structure part collapse.
The over-etching height h f and horizontal over-etching width w f are viewed as the key elements, as
demonstrated in Figure 4. Without careful processing control or wide enough width, the structure is
prone to crash down, inferred from Figure 4a. The footing effect changes the resonant frequency into:
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f f =
(kil)

2

2π

√√√√√√√E

(
1
3 b1h3 − 1

6 w f h3
f −

(
1
2 b1h2− 1

3 w f h2
f

)2

b1h−w f h f

)
ρl4
(

b1h− w f h f

) . (4)
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Ripples are presented on the rough side walls of structures with high aspect ratios, owing to the
TMDE technology. It is defined as the ripple effect, referring to the simplified model in Figure 5a,b.
Given the ripple arc ranging from 30◦ to 180◦ and single ripple height from 0.1 µm to 1 µm, simulations
in ANSYS have suggested that the deciding element in the ripple effect is single ripple height, rather
than ripple arc with an error within 2.0%. Therefore, single ripple height, t, can be treated as a key
when dealing with the ripple effect.
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In such a case, the resonant frequency changes into:

fr =
(kil)

2

2π

√√√√√E
(
− 3
√

3+8π
144 ht3 − 2π−3

√
3

72 h3t + 1
12 b1h3

)
ρl4
(

b1h− 2π−3
√

3
6 ht

) , (5)

where the meaning of the symbols is marked in Figure 5.
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3.2. Effect of Multiple Factors

Sensitivity analyses on the effects mentioned above are conducted, shown in Figure 6. With
accurate processing control and mature techniques, single arc height can be restricted to be less than
0.01 µm so that the ripple effect can be diminished, as shown in Figure 6a. Under these circumstances,
models can be simplified into two critical effects: the trapezium effect and footing effect. Thus,
when side walls are thought to be smooth, the resonant frequency of doubly-clamped beams can be
expressed as:

ft f =
(kil)

2

2π

√√√√√√E
(

h3

36 ·
b2

1+b2
2+4b1b2

b1+b2
− 2
(

w f h3
f

36 +
w f h f

2

( h f
3 −

h(2b1+b2)
3(b1+b2)

)2
))

ρl4( b1+b2
2 h− w f h f )

. (6)
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Figure 6. Sensitivity analysis on the effects influencing the resonant frequency of doubly-clamped
beams. (a) is the result with considering the ripple effect. The narrow band circled by green equals
the working part. (b,c) are cases for the trapezium effect and footing effect, where the cross section is
treated as isosceles trapezoid in (b) and the over-etching sizes longitudinally and laterally are equal
in (c).

However, side walls cannot be treated as smooth all the time. Models containing the three
effects simultaneously are essential. The corresponding coordinate is illustrated as Figure 7, where
b1 = b + 2h tan θ, b2 = b1 − 2w f . When the gap between beams is wide enough, like 6 µm or wider,
the cross section can be assumed to be continuous, repeated and symmetrical. Assumptions can be
raised that the central axis of the cross section equals the central axis of the trapezoid ABCD, which
means y = yc, and that the ripple is a semicircle. The moment of inertia, relative to central axis y = y1,
equals the condition of axis z1, approximately. Axis z1 is in the direction of the semicircle radius and
perpendicular to the side waist of trapezoid ABCD, when the semicircle vibrates longitudinally.
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4. Analysis and Results

Geometric features of MEMS devices usually do not comply with the design value, with the
typical error around 5.0% [34,35] during the manufacturing processes. Design parameters for the
doubly-clamped beam are listed in Table 1.

Table 1. Design parameters for a doubly-clamped beam.

Structure Parameters Values

Beam length l/µm 200
Beam width b/µm 4

Beam thickness h/µm 2
Young’s modulus E/GPa 158

Material density ρ/kg/µm3 2.23× 10−15

Multi-field models are always complicated for the complex mechanism of MEMS devices.
The situation deteriorates with stochastic manufacturing uncertainties. Leaving the cost alone, with
repeated adjustment or tape-out of test structures, only a small percent of the data is acceptable. Due to
the lack of manufacturing data, the trial-and-error method is not optimal. Adequate models underlying
process variations should be developed.

Simulations are conducted in ANSYS WORKBENCH 14.5 (ANSYS, Pittsburgh, PA, USA), with the
solver SOLID45 (ANSYS, Pittsburgh, PA, USA) [27]. The mesh method uses tetrahedrons with patch
conforming. Lateral vibrations are considered to perform model verifications, as shown in Figure 8.
The number of ripples is supposed to be 5 and 10, in order to simplify the validations. Assuming small
variation ranges in key elements of the trapezium and footing effect, analyses of curves in Figure 8 are
carried out. The resonant frequency is found to be in direct proportion to the number of ripples N,
with improvement in stable behavior along with larger N. Morever, the frequency manifests a reverse
proportion to the angle, undergoing serious shifts in the wake of deteriorative footing effect.
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In light of the above development, comparisons between modified models and ANSYS are
conducted, with consideration of single effects, respectively. Figure 9a describes errors under the
trapezium effect, with the bias less than 2.5%. It turns out that the model and simulations share a
similar trend. Figure 9b states the situation for the ripple effect. As the situation for a high value of
the arc height rarely occurs during processing, the result with an error of 10.1% is not accurate or
applicable for further study. The first two results are receivable in general, limiting the errors within
2.0%. Confining errors within 3%, over-etching longitudinally introduces more variabilities in resonant
frequency, referred to in Figure 9c. Complicated structures will result in larger differences. Analyses
are conducted in Figure 9d to explain the footing and trapezium effects. In pursuit of less variabilities
in frequency, the negative trapezium effect is proved to be effective. In addition, the footing effect
occupies the dominant position, compared with the trapezium effect, according to Figure 6b,c.

Furthermore, comparisons have been established between modified models and FE analysis.
The number of ripples N is assigned to 10, while w f = h f = 0.2 µm in the footing effect. The curves
share an error within 2.6%, according to Figure 10. The outliers in the upper right corner of Figure 10
suggest biases of ANSYS simulations. This occurrence is attributed to the unpractical assumptions that
angles in the positive trapezium effect can be 20◦, in which case the principles of Timoshenke beams
cannot be applied directly. However, the assumptions give credit to the negative case for the existence
of the footing effect. The two curves trend similarly in general, which confirms the acceptability of the
modified models.

Direct Monte Carlo (MC) simulations are performed based on the modified models. Yield is
defined as a factor of the proportion falling into the same distribution range. Doubly-clamped beams
with 400 µm length, 10 µm width and 4 µm thickness are raised as an example in these simulations.
Hypotheses are proposed that all the parameters concerned comply with the Gaussian’s distribution,
along with the same process variation ±0.5 µm. The sampling numbers for MC simulations range
from 100,000 to 1,000,000. The relative error for frequency turns out to be around 7.9% and an angle of
around ±7◦ when considering the trapezium effect. The resonant frequency reduces from 22.7% to
33.0% while the yield decreases to nearly 67.0% under the footing effect. When doubling the numbers
of ripples, relative errors for the resonant frequency can be improved about 1.0%.
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5. Conclusions

This paper has considered the problems existing in the Bosch process and their negative influences
on MEMS doubly-clamped beam performance. Modified models of doubly-clamped beams were
built, with consideration for the trapezium, footing, and ripple effects respectively and simultaneously.
The relative performance error was restricted to 10.0%, with a yield of about 77.3% if process variations
were assumed to be in the same range. FE verifications have been performed to validate the models
built in this study, indicating that the heavy simulation work can be substituted in some cases by
applying the models.

The model results can be viewed as the guidance for design cycle optimizations. Designers can
directly figure out the key elements in the etching process by reconsidering the design sizes and shapes,
and eventually compensate the errors brought by process variations to improve the yield.

Other critical elements such as residual stress, gaps between beams, or variations in Young’s
modulus were not considered in this paper and will be discussed in future work. Moreover, diversified
distribution forms such as quasi-Gaussian can be applied in MC methods and will be the focus of
future research.
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Appendix A. Single Factor Effect

Appendix A.1. The Trapezium Effect

During the DRIE processes, the ideal rectangle profile of a beam can be transferred to a trapezoid
profile due to process variations. Usually, the cases are divided into the positive trapezium effect
(the trapezoid angle θ > 0) and the negative trapezium effect (the trapezoid angle θ < 0), shown in
Figure 3. For the ideal doubly-clamped beam, the resonance frequency can be expressed as:

f =
(kil)

2

4π

√
Ew2

3ρl4 . (A1)

Inducing x-y coordinates (the same way for the positive), the upper width b1 is:

b1 = b2 − 2h· tan θ. (A2)

The neutral axis could be denoted by yna, along with the linear equations of x1 and x2, that is:

yna =
Sz

At
=

2b1 + b2

3(b1 + b2)
h. (A3)

Here, Sz is the static moment, and At is the current cross-sectional area.
Then, the moment of inertia is expressed as:

It =
∫

A
y2dA ==

h3(b2
1 + b2

2 + 4b1b2
)

36(b1 + b2)
. (A4)

Thus, the resonant frequency of the doubly-clamped beam for the modified model considering
the trapezoid effect changes into:
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ft =
(kil)

2

6π

√
Eh2

(
b2

1 + b2
2 + 4b1b2

)
2ρl4(b1 + b2)

2 . (A5)

Appendix A.2. The Footing Effect

The critical element in the footing effect is the over-etching height h f and horizontal over-etching
width w f , as shown in Figure 4. According to the properties for the moment of inertia, the moment of
inertia relative to the neutral axis for the cross section ABCFED can be expressed as:

I′ABCFED = I′ABCD + I′CDEF, (A6)

where
I′ABCD =

1
12

b1

(
h− h f

)3
, (A7)

I′CDEF =
h3

f

36
(

b1 − w f

) (3b2
1 − 6b1w f + 2w2

f ). (A8)

Then, regards to the parallel-axis theorem, the moment of inertia relative to the neutral axis yc for
the cross section ABCFED becomes

I f = IABCFED = IABCD + ICDEF = I′ABCD + b1

(
h− h f

)
(yc − y1)

2 + I′CDEF + h f

(
b1 − w f

)
(yc − y2)

2. (A9)

Here, y1 and y2 denote the neutral axis of ABCD and CDEF, relative to each own centroid,
respectively, and

y1 =
h + h f

2
, y2 =

3b1 − 2w f

26b1 − 6w f
h f , yc =

1
2 b1h2 − 1

3 w f h2
f

b1h− w f h f
. (A10)

Thus, the frequency of the doubly-clamped beam for the modified model considering the footing
effect changes into:

f f =
(kil)

2

2π

√√√√√√√E

(
1
3 b1h3 − 1

6 w f h3
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(
1
2 b1h2− 1

3 w f h2
f
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b1h−w f h f

)
ρl4
(

b1h− w f h f

) . (A11)

Appendix A.3. The Ripple Effect

The key element of the ripple effect is the height of the ripple, almost nothing to do with the arc
of the ripple. Therefore, the height of the ripple, t, is taken as an impact factor of the ripple effect
shown as Figure 5. The impacts on frequency mainly arise from t, and the central angle is chosen as
θ = 60

◦
, according to the statistical results of tapeout (for the further model optimization, θ could be

treated as an independent variable). Similar to the knowledge of moment of inetia, the cross section
regarding x = 0 under the ripple effect is the sum of each unit, depicted in Figure 5. Symetrically,
the moment of inertia of each unit stays the same, regarding the axis of x = 0, denoted as I0. Here,
we have AB = AD = BD = r = t, AE =

√
3

2 r, CE = r−
√

3
2 r.

With a series of calculations, the moment of inertia relative to the neutral axis itself for one unit is:

I0 =
b1t3

12
+

√
3− 4π

48
t4. (A12)

Similarly, the sum of the moment of inertia under the ripple effect is expressed as:

Ir = ∑ Ii = ∑i=N
i=1

(
I0 +

(
h
2 −

2i−1
2 t
)2(

b1t− 2π−3
√

3
6 t2

))
= − 3

√
3+8π
144 ht3 − 2π−3

√
3

72 h3t + 1
12 b1h3. (A13)
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Finally, the frequency of the doubly-clamped beam for the modified model considering the ripple
effect changes into:

fr =
(kil)

2

2π

√√√√√E
(
− 3
√

3+8π
144 ht3 − 2π−3

√
3

72 h3t + 1
12 b1h3

)
ρl4
(

b1h− 2π−3
√

3
6 ht

) . (A14)

Appendix B. Multiple Factors Effect

Appendix B.1. The Ripple Effect and Footing Effect

As the moment of inertia is essential for model building (the same sequence as it in Appendix A1),
the moment of inertia can de deduced from the trapezium effect. If the over-etching part arising from
the footing effect is neglected compared with the part in the trapezium effect, the transversal change of
the neutral axis due to the footing effect could also be ignored. Applying the corresponding coordinate
in Figures 6 and A1, the moment of inertia for the cross section is written as:

It f = IABCD − IDEG − ICFH =
h3

36
·
b2

1 + b2
2 + 4b1b2

b1 + b2
− 2

(
w f h3

f

36
+

w f h f

2

(h f

3
− h(2b1 + b2)

3(b1 + b2)

)2
)

, (B1)

where st f = b1+b2
2 h − w f h f . The frequency of the doubly-clamped beam for the modified model

considering the footing effect and the trapezium effect changes into:

ft f =
(kil)

2

2π

√√√√√√E
(

h3

36 ·
b2

1+b2
2+4b1b2

b1+b2
− 2
(

w f h3
f

36 +
w f h f

2

( h f
3 −

h(2b1+b2)
3(b1+b2)

)2
))

ρl4( b1+b2
2 h− w f h f )

. (B2)
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Figure A1. The coordinate sketch-map for the cross section of a doubly-clamped beam while
considering the footing effect and the trapezium effect.

Appendix B.2. The Ripple Effect, the Footing Effect, and the Ripple Effect

The corresponding coordinate for the three effects is shown in Figure 6, where b1 = b + 2h tan θ,
and b2 = b1− 2w f . With the assumptions proposed above, the area and moment of inertia for the cross
section are written as:

A =
(b1 + b)h

2
− w f h f − Nπr2, (B3)

I = IABCD − IDEF − ICGH −∑ Iarc. (B4)
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In addition, it is easy to get:

IABCD =
h3

36
·
b2 + b2

1 + 4bb1

b + b1
, (B5)

I f = IDEF + ICGH = 2

(
w f h3

f

36
+

A f

2

(h f

3
− 2b + b1

3(b1 + b)
h
)2
)

. (B6)

Models should be developed to analyze arc coordinates for the solution of Iarc when the trapezoid
angle θ > 0 or θ < 0. The key to the arc coordinates is the position of the first arc (see Figure A2).Micromachines 2017, 8, 81  13 of 15 
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cos θ − d tan θ. For the condition
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Therefore,

I = IABCD − I f − 2
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Then, the frequency of the doubly-clamped beam for the modified model considering three main
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