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Abstract: Piezoelectric actuator (PEA) is an ideal microscale and nanoscale actuator because of its
ultra-precision positioning resolution. However, the inherent hysteretic nonlinearity significantly
degrades the PEA’s accuracy. The measured hysteresis of PEA exhibits strong rate-dependence
and saturation phenomena, increasing the difficulty in the hysteresis modeling and identification.
In this paper, a modified Prandtl-Ishlinskii (PI) hysteresis model is proposed. The weights of the
backlash operators are updated according to the input rates so as to account for the rate-dependence
property. Subsequently, the saturation property is realized by cascading a polynomial operator
with only odd powers. In order to improve the efficiency of the parameter identification, a special
control input consisting of a superimposition of multiple sinusoidal signals is utilized. Because the
input rate of such a control input covers a wide range, all the parameters of the hysteresis model
can be identified through only one set of experimental data, and no additional curve-fitting is
required. The effectiveness of the hysteresis modeling and identification methodology is verified on
a PEA-driven flexure mechanism. Experimental results show that the modeling accuracy is on the
same order of the noise level of the overall system.
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1. Introduction

Piezoelectric actuator (PEA) has been widely utilized in ultra-precision positioning and
manipulation applications due to its sub-nano motion resolution, high output force and fast response
capabilities [1]. However, the disadvantages of the PEA are also distinct: (1) the PEA can be easily
damaged by large bending torques or external impacts as the material is brittle; (2) the stroke of the
PEA is very limited. The ratio between the stroke and the length of the PEA is typically on the level of
10 µm/cm; and (3) the inherent rate-dependent hysteretic and creeping nonlinearities significantly
degrade the PEA’s motion accuracy. In practice, flexure-based displacement amplification mechanisms
are generally adopted to magnify the stroke of the PEA, such as the flexural lever mechanism and
the flexural Scott-Russell mechanism [2,3]. Capacity-based, laser-based sensors and strain gauges are
generally utilized to measure such small displacements. For the motion control of PEAs, the hysteresis
can be compensated using either the modeling-inversion based approaches [4–6] or the model-free
feedback control [7]. Unlike the hysteresis, the creep is the slow drift of the PEA’s output over time
that can be easily compensated through the feedback control.

Hysteresis modeling and compensation have been extensively investigated in recent decades.
One widely employed hysteresis model is the Preisach model [8–10] which describes the hysteresis
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phenomenon through a double integral. The Preisach model can be used for hysteresis compensation
and very high motion accuracy can be achieved if it is combined with other feedback controllers [11].
As the modeling accuracy of the Preisach model is highly related to the segmentation of the α-β plane,
one needs to increase the model’s order to obtain higher modeling accuracy. Another widely employed
hysteresis model is the Prandtl-Ishlinskii (PI) model [12,13]. The PI model is becoming more and more
popular due to its simplicity in formulation, high modeling accuracy, and theoretical reversibility in
the rate-independent form, making it attractive in real-time implementations. It must be noted that the
classical PI model is static and symmetrical about the loop center. However, the measured hysteresis
of the PEA exhibits strong rate-dependence and asymmetry (saturation) properties. Rate-dependence
is the phenomenon in which the measured hysteresis curve of a PEA will become wider with the
increment of the input rate. And the measured hysteresis curve of a PEA is not strictly symmetrical
about its loop center, which is defined as the saturation property. These factors significantly increase
the difficulty in hysteresis modeling and compensation. In literature, different modifications have
been made to the classical PI model to better fit the saturation and rate-dependence properties of the
measured hysteresis of PEAs [12,14–16].

The strong couplings between the hysteretic and creeping nonlinearities and the linear dynamics
of a PEA make it impossible to isolate the hysteretic nonlinearity from its linear dynamics. Further,
the output of a PEA is also susceptible to many factors, such as the preload force, the external load,
and the dynamics of the transmission chains. This makes it difficult to precisely predict the behavior of
a PEA if only a hysteresis model or a dynamics model is constructed. Therefore, an integrated model of
both the linear dynamics and the nonlinear hysteresis will significantly improve the modeling accuracy
of a PEA. In the research work of Hassani and Tjahjowidodo [17], both the dynamics of the mechanism
and the hysteresis of the PEA are modeled and integrated together as a full hysteresis-dynamics
model, where the hysteretic response of the PEA is adopted as the input to the linear dynamics of the
mechanism. The combination of both the linear dynamics and nonlinear hysteresis obviously increases
the modeling accuracy of the overall system.

The PEA’s dynamics is very important in the scanning- or vibration-based applications where the
PEA moves very fast, such as the atomic force microscope and ultrasonic motor. However, in many
micro and nano scale manipulations, such as in the manipulation and characterization of living
cells [18,19], the endeffector follows the motion of the master operator’s hand, or moves very slowly,
typically on the order of several Hertz. For these very slow motions, the PEA’s dynamics is not obvious
and the PEA’s hysteresis becomes the dominant factor affecting the behavior of the overall system.
Therefore, the hysteresis modeling and compensation is important to improve the performance of such
systems. This paper focuses on the hysteresis modeling and identification of such systems. In our
previous work [20], the saturation property was accounted for by the use of a polynomial operator,
and the rate-dependence property was accounted for by varying the weight vector of the PI model
according to the input rate. Although very high modeling accuracy was achieved, the threshold vector
was still manually assigned. As a result, a trial and error process was inevitable, and a high level of
knowledge on the characteristics of the PEA’s hysteresis was required. From the practitioner’s point of
view, it is desirable to eliminate such a complex modeling and identification process to achieve ease
of use in real implementations. In order to improve the applicability of the hysteresis modeling and
compensation method proposed in our previous work [20], this paper aims to eliminate all the manual
interventions during the parameter identification process. As a result, one only has to check the bounds
of the input range from the manual of the PEA and select the order of the hysteresis model, and no
other post processing or manual intervention is required during the parameter identification process.

2. Materials and Methods

2.1. Materials

A three degrees-of-freedom (DOF) flexure mechanism presented in [21] is utilized for the
hysteresis modeling and verification in this paper. This mechanism is actuated by three PEAs (Model
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PZS001 from Thorlabs (Newton, NJ, USA)). The input range of the PEA is 0–10 V and the maximum
displacement of the PEA is 11.6 ± 2.0 µm. The displacement of the PEA is measured by the strain
gauges attached on the PEA in a full Wheatstone bridge configuration. The control voltages are exerted
on the PEA through a piezo driver (Model MDT693B from Thorlabs). The data acquisition task is
implemented on a PXI platform (Model 1082 equipped with a PXI-8135 controller, a PXIe-6363 data
acquisition card and a TB-4330 bridge amplifier, all from National Instruments (Austin, TE, USA)) and
runs in the real-time environment of Labview (Version 2014 SP1, National Instruments). As shown
in Figure 1, the overall system is mounted on an optical table to isolate the ground disturbances.
The noise level of the system is measured to be 100 nm. For the parameter identification and validation
in this paper, different control signals are exerted on the PEA in one axis of the mechanism and the
resultant extension of the PEA is measured by the strain gauges.
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Figure 1. The experimental setup of the overall system.

2.2. Modified Prandtl-Ishlinskii Hysteresis Model

2.2.1. Classical Prandtl-Ishlinskii Model

The basic component of all PI-based hysteresis models is the backlash operator in the
following formulation:

Hr(u, t) = max{x(t)− r, min{u(t) + r, Hr(t− T)}}
Hr(u, 0) = max{u(0)− r, min{u(0) + r, 0}}

(1)

where Hr(u,t) denotes the backlash operator, u(t) and y(t) represent the input and output of the backlash
operator, respectively, r is the threshold of the backlash operator, t is the current time, and the system
runs with a sampling period of T. The initial condition can be set to zero as a PEA is typically activated
from its de-energized state.

The classical PI model is defined as the weighted superposition of n backlash operators, i.e.,

z(t) =
n

∑
i=1

wi Hri(u, t) = [w1, w2, ..., wn] · [Hr1(u, t), Hr2(u, t), ..., Hrn(u, t)]T = wT ·Hr(u, t) (2)

where z(t) is the output of the classical PI model, n is defined as the order of the PI model,
w = [w1, w2, . . . , wn]T and Hr(u,t) = [Hr1(u,t), Hr2(u,t), . . . , Hrn(u,t)]T are the weight vector and the
backlash operator vector, respectively.

2.2.2. Modeling of the Saturation Property

It is noted that the classical PI model shown in Equation (2) is rate-independent and symmetrical
about its loop center. However, the measured hysteresis loops of PEAs are rate-dependent and
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asymmetric (saturation property). In order to improve the modeling accuracy, a modified PI model
is proposed and schematically illustrated in Figure 2a, where an additional saturation operator is
cascaded to the classical PI model. Following the notations in Equation (2), Hrn(•) stands for the
backlash operator in the classical PI model and wn is the weight vector in the backlash operator.
A special polynomial operator with only odd powers in the following formulation is utilized as the
saturation operator:

ŷ(t) = S[z](t) = c1z(t) + c3z3(t) + · · ·+ cmzm(t), m = 1, 3, 5, · · · (3)

where S[z](t) denotes the saturation operator, ŷ(t) is the output, ci (i = 1, 3, 5, ..., m) is the coefficients of
the polynomial, and m is the order of the polynomial.
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ŷ

Hr1(•) 

Hr2(•) 

Hrn(•) 

× 

× 

× 

(•)1 

(•)3 

(•)m 

c1 

c3 

cm 

Σ Σ u z ŷ
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Figure 2. Schematic diagram of the modified Prandtl-Ishlinskii (PI) model: (a) rate-independent
hysteresis model and (b) rate-dependent hysteresis model.

Unlike the common polynomials, all the even powers and the constant are totally eliminated to
guarantee the axial symmetry of the saturation operator about the origin. Through literature review,
one-sided dead-zone operator is another popular saturation operator [14,22]. However, this operator
is piecewise in nature, even if the operator’s order increases. On the contrary, the coefficients of the
polynomial are fewer but the curve of the polynomial is smooth, as verified in our previous work [20].
This helps to increase the modeling accuracy while decreasing the model complexity. In addition,
more complex saturation property is possible by tuning the degree of the polynomial.

Substituting Equation (2) into Equation (3), the rate-independent hysteresis model is written as:

ŷ(t) = S
[
wT ·Hr(u)

]
(t) (4)

2.2.3. Modeling of the Rate-Dependence Property

The shape of the PEA’s hysteresis loop varies with different control inputs, e.g., the hysteresis
loop become thicker if the rate or the frequency of the input increases. For the modeling of the
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rate-dependence, it has been verified that linearly tuning the weight vector of the modified PI model
according to the input rate can significantly improve the modeling accuracy. The schematic diagram of
the rate-dependent hysteresis model is given in Figure 2b. The linear relationship can be expressed in
the following equation:

w = k · .
u(t) + b (5)

where k = [k1, k2, ..., kn]T, b = [b1, b2, ..., bn]T, ki and bi (i = 1, 2, ..., n) are the slop and offset vectors,
respectively, and

.
u(t) is the input rate.

Substituting Equations (2) and (5) into Equation (3), the rate-dependent hysteresis model
is obtained:

Y(t) = S
{[

k · .
u + b

]T ·Hr(u)
}
(t) (6)

A similar modeling approach using a third order polynomial as the saturation operator was
also proposed in [23], where the classical PI model and the saturation operator are connected in
parallel. It is also noted that the hysteresis model developed in [23] is rate-independent. In our
approach, the saturation operator is cascaded to the classical PI model in series, and the order of the
polynomial can be tuned for more complex hysteresis. More importantly, the hysteresis model defined
in Equation (6) is rate-dependent, and thus the modeling accuracy can be guaranteed.

2.3. Full Parameter Identification

The parameters that need to be identified include the threshold and weight vectors, and the
coefficients of the saturation operator. The threshold vector is very important in the identification.
Higher modeling accuracy can be achieved if a higher order of backlash operators and fine spacing
are selected. However, higher order will increase the model complexity, and the computation time
will also increase significantly, causing severe problems in real-time applications. A trade-off has
to be made between the modeling accuracy and the system complexity. One practical solution is
assigning fine spacing at low threshold values while assigning coarse spacing at larger threshold
values. As a result, a threshold vector with 10th order or above is adequate to achieve satisfactory
results. However, through literature review, this non-uniform spacing is typically assigned manually
through a laborious trial and error process, and thus the prior experience on hysteresis modeling is
highly demanded. This significantly affects the applicability of the PI-based approaches.

In our previous work [20], the threshold vector is manually assigned, and the saturation and
backlash operators are identified separately for a shorter computation time. Thus, two sets of
experimental data are required in the identification. In this paper, a highly efficient full parameter
identification approach is proposed to identify all the parameters through only one set of experimental
data. The practitioner only has to find out the input range of the system from the manual. No other prior
experience on the PEA’s hysteresis or post processing, such as curve-fitting, is required. This guarantees
ease of use and high efficiency, and thus signifies progress from our previous approach [20].

2.3.1. Error Functions for Parameter Identification

When the PEA moves very slowly, e.g., tracking a trajectory below 1 Hz or following the trajectory
of a master operator, the rate-dependence is negligible, resulting in a rate-independence (static)
hysteresis. In this case, the rate-independent model defined in Equation (4) is sufficient to predict the
output of the PEA. All the parameters in Equation (4) can be identified by comparing the model output
with the measured hysteresis and minimizing the following error function:

E[ŷ, y](r, w, c, t) = ŷ(t)− y(t) = S
[
wT ·Hr

]
(t)− y(t) (7)

where r = [r1, r2, ..., rn]T is the threshold vector.
If the PEA moves fast, the rate-dependence will become very obvious. In this case,

the rate-dependent model defined in Equation (6) should be used to predict the output of the PEA.
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Similarly, all the parameters in Equation (6) can be identified by comparing the model output with the
measured hysteresis and minimizing the other error function:

E[ŷ, y](r, k, b, c, t) = ŷ(t)− y(t) = S
{[

k · .
u + b

]T ·Hr

}
(t)− y(t) (8)

In the parameter identification process, the method of least squares is adopted to minimize the
error functions defined in Equations (7) and (8). The parameter identification is implemented in the
environment of MATLAB (Version R2014a, MathWorks, Natick, MA, USA) and the function lsqcurvefit
is selected.

2.3.2. Input Signals for Parameter Identification

For the rate-dependent hysteresis identification, it is straightforward to excite the system using
control signals at different constant input rates (e.g., saw tooth signals with different slopes) and to
identify the parameters in each case separately, as proposed in the research work of Ang et al. [14].
Subsequently, an additional curve fitting is conducted in order to obtain a general model that covers
a certain range of input rates. This process is laborious as one has to make many measurements so as to
obtain adequate data for the identification. Further, as saw tooth signals are not consistent, the modal
vibrations of the PEA-driven system are likely to be excited by the high frequency components of the
saw tooth signal.

Alternately, it is possible to identify all the parameters through only one set of experimental data
if the input rate of the control signal is not constant but spans a certain range. Based on our previous
work, the superimposition of multiple sinusoidal signals at different frequencies in the following form
is a better alternative:

u(t) = ∑
N

Ai sin
(

2π fit−
π

2

)
, N ≥ 2 (9)

where N is the number of the sinusoidal signals, Ai and fi are the magnitude and frequency of the
sinusoidal signal, respectively.

The superimposition of multiple sinusoidal signals is superior to the saw tooth signal in that:
(1) the input rate can span a wide range through a careful selection of the sinusoidal signals, and (2) the
signal is consistent and the modal vibration can be avoided.

2.3.3. Non-Uniform Initialization of the Threshold Vector

As previously stated in this paper, non-uniform spacing of the threshold vector can achieve better
modeling accuracy. As a result, during the parameter identification process, the threshold vector is
initialized using a cubic relationship to guarantee fine spacing at small threshold values and coarse
spacing at larger threshold values:

ri =

(
i
n

)3
· U

2
, i = 1, 2, ..., n (10)

where U is the upper bound of the input signal.

3. Results

3.1. Rate-Independent Hysteresis Identification

For the identification of the rate-independent hysteresis, a 10 Vp-p, 1 Hz sinusoidal signal is
adopted as the control input to the system. The measured displacement of the PEA and the model
output of the rate-independent hysteresis model in Equation (4) are plotted in Figure 3. It can
be observed that the identified hysteresis model agrees with the measured hysteresis of the PEA.
The modeling error is 5.287 ± 62.41 nm. The identified parameters are given below:
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r = [0, 4.933e−3, 0.02294, 0.1830, 0.4944, 1.109, 1.839, 2.617, 3.779, 4.922]T

w = [−2.31, 2.137, 0.35, 9.3e−3, 0.02532, 0.02235, 0.01895, 0.01826, 0.02765, −0.01929]T

c =
[
−8.794e−4, 0, −0.05066, 0, 4.818

]T
(11)
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3.2. Rate-Dependent Hysteresis Identification

In the identification of the rate-dependent hysteresis, the superimposition of two sinusoidal
signals is chosen where A1 = 2, f 1 = 10, and A2 = 3, f 2 = 5, respectively. This control signal is then
exerted on the PEA. The parameters of the rate-dependent hysteresis model are identified according to
the error function in Equation (8). The measured displacement of the PEA and the model output are
plotted in Figure 4. Similar to the results in the rate-independence case, the identified model follows
the measured hysteresis of the PEA well with a modeling error of 3.526 ± 45.55 nm. The identified
parameters are given below:

r = [0, 1.772e−3, 0.03242, 0.08513, 0.1940, 0.8016, 1.356, 2.104, 3.055, 3.438]T

k = [−0.1041, 0.1075, −3.254e−3, −7.082e−6, −1.974e−4, −9.755e−6, 1.232e−6, −2.045e−5, 4.844e−5, −5.606e−5]
T

b = [−0.5510, 0.6097, −0.01653, 0.01098, 1.262e−3, 4.928e−3, 4.950e−3, 6.183e−3, 6.393e−3, −3.426e−4]
T

c = [0.5682, 0, −3.391, 0, 17.54]T

(12)
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3.3. Verifications of the Rate-Independent and Rate-Dependent Models

The identified rate-independent hysteresis model is verified using a 10 Vp-p, 1 Hz triangle signal.
The experimental results are given in Figure 5. It is observed that the model output follows the
measured displacement well and the estimation error is measured to be 79.56 ± 77.6 nm, on the same
order of the noise level of the system. Therefore, the rate-independent is applicable for slow trajectories,
e.g., below 1 Hz. Taking the relatively simple structure into consideration, the rate-independent
hysteresis model is a better choice if the system moves slowly.
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For higher frequencies, both the identified rate-independent and rate-dependent hysteresis models
are verified using an input signal consisting of four sinusoidal signals with A1 = 1, f 1 = 10, A2 = 1,
f 2 = 7.5, A3 = 1, f 3 = 5, A4 = 2, and f 4 = 4. The measured displacement and the model outputs are given
in Figure 6a. It can be observed that both the rate-independent and rate-dependent models can follow
the measured displacements well. The estimation errors are measured to be 88.10 ± 86.29 nm and
−48.77 ± 57.22 nm for the rate-independent and rate-dependent models, respectively. The estimation
error of the rate-independent model is slightly higher than its modeling error. This is reasonable
as the rate-independent model is identified using a 1 Hz sinusoidal signal and focuses mainly on
low-frequency signals. The high-frequency components of the superimposed signal will definitely
affect the accuracy of the rate-independent model. On the contrary, the estimation error of the
rate-dependent model is on the same order of the modeling error. The error plot in Figure 6b clearly
shows that the rate-dependent model achieves better performance than the rate-independent model
for fast trajectories.

Because the superimposed sinusoidal signal in Figure 6 only consists of four frequencies,
experiments are further conducted to test the performance of the identified rate-dependent model using
a 0.1–20 Hz swept sinusoidal signal. Compared with the superimposed sinusoidal signal, the swept
sinusoidal signal is also smooth but it contains all the frequency components between 0.1 Hz and
20 Hz, and thus the overall performance of the rate-dependent model over a wider frequency range
can be examined. The experimental results are given in Figure 7. It is observed that the rate-dependent
model can still follow the measured displacement well, as observed in the zoomed-in insets in Figure 7.
However, since the maximum frequency component in the identification is only 10 Hz, the modeling
accuracy for higher frequencies is not guaranteed. Experimental results in Figure 7 show that the
estimation error will become larger for higher frequencies. The maximum estimation error in the last
one second is 94.11 nm, corresponding to 8.25% of the measured displacement. Therefore, the identified
rate-dependent model is applicable for fast trajectories with a frequency range of 20 Hz.
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4. Discussion

The hysteresis modeling and compensation has become an important issue in the motion control
of PEAs. The rate-dependence and saturation (asymmetry) phenomena are observed in the measured
hysteresis curves of PEAs. In this paper, the PI model is selected to build the hysteresis model.
Two important modifications are made to the classical PI model: (1) the weights of the backlash
operators are dynamically updated according to the change in the input rate so as to account for the
rate-dependence, and (2) a polynomial operator with only odd powers is cascaded to the backlash
operators to adjust the shape of the hysteresis loop to model the saturation property.

The parameters that need to be identified include the threshold and weight vectors of the
backlash operators and the coefficients of the polynomial operator. The efficiency of the conventional
parameter identification approach is low because of the huge amount of experimental data and the
time-consuming post processes, such as the curve fitting. Further, the sudden change in the input signal
might excite higher order modal vibrations of the system during the experiment. Another problem in
the parameter identification is the manual intervention. For instance, the threshold vector is generally
manually assigned to guarantee fine spacing at small values and coarse spacing at larger values.
This task requires rich experience on the hysteresis modeling of PEAs, and thus is not practical for
beginners or common practitioners with limited experience. Therefore, it is necessary to simplify the
parameter identification to achieve minimal manual intervention.

A full parameter identification approach is proposed in this paper. The basic idea is to choose
a special input signal covering a wide range of input rates so that the response of the PEA to different
input rates can be obtained in one single measurement. The superimposition of multiple sinusoidal
signals with different frequencies is an ideal input signal as it covers a wide range of input rates.
More importantly, the input signal is smooth and will not excite the higher modal vibration of the
system. Subsequently, the method of least squares is utilized to identify all the parameters automatically
without any manual intervention. This methodology is superior in that prior experience on hysteresis
modeling is not required any more, thus guaranteeing ease of use even for the beginner.

The effectiveness of the proposed methodology is verified on a PEA-driven flexure mechanism.
Both rate-independent and rate-dependent hysteresis identifications are conducted. Experimental
results show that the rate-independent model is adequate to describe the motion of the PEA if the
PEA works in slowly moving scenarios, such as following the trajectory of a master operator. For the
rate-dependent hysteresis model, experimental results show that the modeling accuracy is high in the
frequency range of 20 Hz.
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