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Abstract: Cardiac failure is a quite severe condition that can result in life-threatening consequences.
Cardiac tissue engineering is thought to be one of the most promising technologies to reconstruct
damaged cardiac muscles and facilitate myocardial tissue regeneration. We report a new nanofiber
bundle substrate for three-dimensional (3D) cardiac cell culture as a platform to investigate cell
morphology and contraction. Polymeric nanofiber bundles with various patterns act as physical cues
to align the cardiac cell sheets. Comparing the uniaxial alignment with the randomly distributed
pattern, we found that the bundles with the former pattern have more “grooves” for the settlement of
cardiomyocytes in a 3D structure than the latter. The cardiomyocytes loaded on the aligned nanofiber
bundles tend to grow along the fiber axis. The interfacial structure between a single cardiomyocyte
in the cardiac cell sheet and the attached nanofibers was observed using environmental scanning
electron microscope. Immunofluorescence imaging showed that the uniaxially aligned nanofibers
greatly promoted cell attachment and alignment of the cardiomyocytes because of the matching
morphology between the nanofiber pattern and the biological components. Moreover, we concluded
that the aligned polymeric nanofibers could be a promising substrate suitable for the anisotropic
contraction of cardiac cell sheets.

Keywords: three-dimensional cell culture; cardiomyocyte; nanofiber bundles; nanofiber pattern; cell
morphology; cell contraction

1. Introduction

Cardiac failure is a quite severe condition that can result in life-threatening consequences. Due
to the limited number of organ donors, cardiac tissue engineering is thought to be one of the most
promising technologies to reconstruct damaged cardiac muscles and facilitate myocardial tissue
regeneration. There is a significant need for three-dimensional (3D) matrices to efficiently deliver
cardiac cells [1,2]. For many cell lines, the two-dimensional (2D) to 3D matrix transition can induce
changes in the expression of some biomarkers [3,4]. 3D cell culture models aim to restore the 3D
architecture that characterizes normal tissues [5] and behaves as a surrounding extracellular matrix
(ECM) for biomedical sensing and observation [6]. Studies have shown that 3D cell culture platforms
can be established by culturing primary cells or cell lines within ECM gels, rotary cell culture systems,
and biomaterial scaffolds on low-adherent culture plastics [7–12]. For example, the design of porous
materials enables new material properties and applications. In particular, because functionalized 3D
biomaterials facilitate the studies of engineered tissues under the effect of biochemical stimulants,
the development of synthetic 3D ECM biomaterials has become a wide research area. Advanced
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biomaterials are capable of monitoring cell functionalities throughout the 3D ECM [13,14]. Bioprinting
is a widely-used method to build engineered cardiac constructs that resemble native tissue across
the macro- to nanoscale [15–18]. Bioprinting can potentially print alternating heterogeneous cells
and tissues, and resemble a vasculature network. Besides, cardiomyocyte adhesion, alignment,
organization, and maturation contribute most to cardiac tissue engineering. Specifically, the alignment
of elongated cardiomyocytes and their surrounding ECM as well as the distribution of cell-cell junctions
have profound implications on the electromechanical interaction of cardiac muscle [19]. The cell culture
substrates are crucial cues, as they affect cell morphology and contraction. But less is known about the
alignment and morphology of cardiac cell sheets cultured on 3D substrates with customized patterns.

Electrospinning is a simple and versatile technology for the fabrication of various biocompatible
micro-/nanofibers for applications in tissue engineering. Compared to other methods, such as
electrohydrodynamics and bioprinting, the electrospinning technique has outstanding advantages
in nanoscale manipulation and patterning, especially for the study of cell patterning and
morphology [20,21]. Electrospun fibers have several advantages which are very critical for their
application, including high specific surface area for better nutrition perfusion and cell interconnection,
controlled fiber diameters to adapt to fibrous architectures, and the ability to incorporate bioactive
ingredients into their polymers for tunable properties [22]. Electrospinning conditions, such as polymer
concentration, humidity, solvent mixture, direct current (DC) voltage and airflow, have an effect on the
fiber characteristics in terms of morphology and crystallinity [23,24]. In addition, the fiber pattern is
dependent on the pattern of the collector. Electrospinning can yield various patterned fibers, such as
random or aligned patterns, which greatly influence cell morphology and function, especially in
muscle and nerve tissue engineering [25–28]. For example, uniaxially aligned nanofibers provide better
orientation of cardiac cells, and can act as potential scaffolds for cardiac tissue reconstruction [29].

Here, we provide a detailed insight into 3D cardiac cell culture on nanofiber bundle substrates for
the investigation of cell morphology and contraction. To determine the underlying mechanisms of
the interactions of the nanofiber bundle substrate with the cardiomyocyte functionality, we examine
the interfacial structure of the cardiomyocytes and nanofibers, as well as the internal structure and
the contraction force of the cardiomyocytes. The fundamental investigation at the protein level of the
cardiomyocytes on the nanofibers establishes their potential as a 3D cell culture scaffold.

2. Methodology

Here, the specific nanofiber bundles with customized patterns are investigated. The nanofiber
collectors are designed and grounded for assembling electrospun polymeric nanofibers with specific
patterns. As the cell culture substrate, the nanofiber bundles adhere tightly to the polydimethylsiloxane
(PDMS) film. We conceived a semi-cured method in which the spin-coated PDMS film is not completely
solidified before collecting the nanofibers. Nanofiber bundles are directly collected on a viscous PDMS
film using the semi-cured method. As schematically shown in Figure 1, there are two types of “groove”
arrays in the nanofiber bundle structure: one is between adjacent bundles and the other is among a
single bundle. We designed and fabricated biocompatible polyvinylidene difluoride (PVDF) nanofiber
bundles using the electrospinning technique to guide contractions of cardiac cell sheets.Micromachines 2017, 8, 147  3 of 11 

 

 
Figure 1. The surface morphology of uniaxially aligned nanofibers on a polydimethylsiloxane 
(PDMS) film: (a) bundles of nanofibers show the “groove” array, (b) each bundle shows “mini 
groove” array. 

3. Experimental Section 

3.1. Nanofiber Preparation 

PDMS (Sylgard 184) elastomer was mixed at the ratio of 10:1 (base to curing agent) and 
spin-coated on the glass cover slip at 3000 RPM for 30 s. The PDMS film was partially solidified at  
60 °C for 3 h. The PVDF solution was prepared for electrospinning. PVDF pellets (molecular weight 
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Sigma-Aldrich and were used as received. Solutions of 1.6 g PVDF were added to 10 mL 
DMAC/acetone solvent mixture (4/6 v/v), and then the mixture was stirred with a magnetic stirring 
bar at 60 °C for 4 h. The polymer solution was placed in a 1-mL plastic syringe tipped with a 
25-gauge flat mouth stainless steel dispensing needle. A syringe pump was used to inject the 
polymer solution into the needle at a constant rate of 0.5 mL·h−1. Electrospinning was switched on 
when a 30 kV high voltage power supply was applied into the needle, as shown in Figure 2a. Specific 
electrodes were designed to pattern nanofibers on the semi-cured PDMS film; for example, a pair of 
parallel electrodes was used for uniaxial alignment and concentric ring electrode was used for a 
random straight pattern, as shown in Figure 2b,c. The distance was 12 cm from the needle to the 
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the electrodes. Finally, the nanofibers were heated at 45 °C overnight to cause the retained solvents 
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Figure 2. Design and fabrication of bundles of PVDF nanofibers with customized patterns: (a) 
schematic of the electrospinning process, (b) a parallel electrode pair is used for collecting 
uniaxially-aligned bundles of nanofibers on the PDMS film, and (c) a concentric ring electrode is 
used for collecting randomly-aligned bundles of nanofibers on the PDMS film. 

3.2. Nanofiber Surface Functionalization 

Before the cardiomyocytes were cultured on the nanofibers, the surface of the nanofibers and 
the PDMS film needed to be modified. The adhesive protein fibronectin (No. F0895, Sigma-Aldrich, 
St. Louis, MI, USA) was used to form chemical bonds with the PVDF chains and elicit cell adhesion 
and growth on the PVDF nanofibers. Immediately prior to fibronectin treatment, the 
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Figure 1. The surface morphology of uniaxially aligned nanofibers on a polydimethylsiloxane (PDMS)
film: (a) bundles of nanofibers show the “groove” array, (b) each bundle shows “mini groove” array.
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3. Experimental Section

3.1. Nanofiber Preparation

PDMS (Sylgard 184) elastomer was mixed at the ratio of 10:1 (base to curing agent) and
spin-coated on the glass cover slip at 3000 RPM for 30 s. The PDMS film was partially
solidified at 60 ◦C for 3 h. The PVDF solution was prepared for electrospinning. PVDF pellets
(molecular weight (Mw) = 534,000 g·mol−1), N,N-dimethylacetamide (DMAC) and acetone were
purchased from Sigma-Aldrich and were used as received. Solutions of 1.6 g PVDF were added
to 10 mL DMAC/acetone solvent mixture (4/6 v/v), and then the mixture was stirred with a magnetic
stirring bar at 60 ◦C for 4 h. The polymer solution was placed in a 1-mL plastic syringe tipped with a
25-gauge flat mouth stainless steel dispensing needle. A syringe pump was used to inject the polymer
solution into the needle at a constant rate of 0.5 mL·h−1. Electrospinning was switched on when
a 30 kV high voltage power supply was applied into the needle, as shown in Figure 2a. Specific
electrodes were designed to pattern nanofibers on the semi-cured PDMS film; for example, a pair
of parallel electrodes was used for uniaxial alignment and concentric ring electrode was used for a
random straight pattern, as shown in Figure 2b,c. The distance was 12 cm from the needle to the
PDMS film. The as-electrospun PVDF nanofibers settled on the semi-cured PDMS film and across
the electrodes. Finally, the nanofibers were heated at 45 ◦C overnight to cause the retained solvents
to evaporate.
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Figure 2. Design and fabrication of bundles of PVDF nanofibers with customized patterns: (a) schematic
of the electrospinning process; (b) a parallel electrode pair is used for collecting uniaxially-aligned
bundles of nanofibers on the PDMS film; and (c) a concentric ring electrode is used for collecting
randomly-aligned bundles of nanofibers on the PDMS film.

3.2. Nanofiber Surface Functionalization

Before the cardiomyocytes were cultured on the nanofibers, the surface of the nanofibers and the
PDMS film needed to be modified. The adhesive protein fibronectin (No. F0895, Sigma-Aldrich, St.
Louis, MO, USA) was used to form chemical bonds with the PVDF chains and elicit cell adhesion and
growth on the PVDF nanofibers. Immediately prior to fibronectin treatment, the nanofibers/PDMS
film substrates were oxidized using ultraviolet (UV) ozone for at least 8 h to sterilize and increase the
hydrophilicity of the surface. Then, fibronectin was deposited by placing a 2-mL droplet of 50 µg/mL
fibronectin in sterile Hank’s balanced salt solution (HBSS) on the nanofibers/PDMS film for 30 min.
Next, the extra fibronectin was removed by washing three times with HBSS and the film was then
air dried.

3.3. Cell Isolation and Cell Culture

Cardiomyocytes were isolated from the ventricles of two-day-old Sprague-Dawley rats.
All procedures were conducted according to the guidelines of the Institutional Animal Care and Use
Committee (IACUC) at Tsinghua University. Firstly, ventricles were surgically isolated and digested in
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0.1% trypsin solution overnight at 4 ◦C. After the supernatant was discarded, the second digestion was
conducted by adding another digest enzyme (0.1% (v/v) collagenase II in HBSS) in a 37 ◦C water bath
and stirring with a stir bar for 10 min at 100 RPM. This step was repeated around ten times, until the
ventricle tissues disappeared. Subsequently, the isolated cardiomyocytes and fibroblasts were collected
and re-suspended in the culture medium of 89% DMEM, 10% (v/v) heat-inactivated fetal bovine serum
(FBS), and 1% (v/v) Penicillin/Streptomycin. The cells were allowed to adhere to the culture dish for
a period of 1 h twice, and thus after the supernatant was discarded, the cardiomyocytes were left as
the remains. Next, the cardiomyocytes were evenly seeded on the nanofibers/PDMS film at a density
of 2.0 million cells, and incubated under standard conditions (37 ◦C and 5% CO2). Every 24 h in the
incubation period, the cell culture substrates were washed three times with the culture medium to
remove non-adherent cells, and they were then refreshed with new culture medium.

3.4. Cellular Characterization

3.4.1. Environmental Scanning Electron Microscopy

The morphology of cardiomyocytes and nanofibers was visualized by a scanning electron
microscope (SEM) in a water environment (Quanta 450, FEI Company, Eindhoven, The Netherlands).
The samples were prepared as follows. The cardiomyocytes were fixed with 2.5% glutaraldehyde in
deionized water for 2 h and dehydrated with a series of graded ethanol (30%, 50%, 70%, 80%, 90% and
100%). Subsequently, the samples were immersed in tert-butyl alcohol twice for three minutes and
then frozen at −20 ◦C until use.

3.4.2. Immunofluorescence Staining and Imaging

Samples were stained for the immunofluorescence imaging. The cardiomyocytes on nanofibers
were washed three times with HBSS and fixed in 4% paraformaldehyde for 20 min and 0.5%
TritonX-100 in HBBS for another 20 min at room temperature. The samples were blocked with
5% (w/v) bovine serum albumin (BSA, Wissent, Saint-Jean-Baptiste, QC, Canada) for another
20 min. Subsequently, the blocked samples were first stained using 1:200 dilutions of mouse
anti-sarcomeric α-actinin monoclonal primary antibody, and then using goat anti-rabbit conjugated to
tetramethylrhodamine secondary antibodies and 1:200 dilutions of DAPI, phalloidin conjugated to
Alexa-Fluor 488 (Invitrogen, Carlsbad, CA, USA). After staining, the extra protein was removed with
phosphate buffer saline (PBS) and the stained cardiomyocytes were mounted to glass slides and ready
for imaging using a confocal microscope (AXIOobserze.Z1, Zeiss, Oberkochen, Germany).

3.4.3. Atomic Force Microscopy Characterization

The contraction activity of the cardiomyocytes was studied using atomic force microscopy
(AFM, NanoWizard®, JPK Instrument, Germany). The AFM tip used here was a silicon nitride
microcantilever (nominal spring coefficient of 0.2 N/m; MLCT, Veeco, Plainview, NY, USA).
The microcantilever tip was brought into gentle contact with one of the cardiomyocytes.
The cardiomyocytes typically were maintained at a temperature of 37 ◦C. The force exerted on the
cardiomyocyte by the tip was kept constant. The height of the tip varied with the cardiomyocyte
contracting. Therefore, the real-time movement of the cell membrane was recorded precisely with
the vertical displacement of the tip. Accordingly, the amplitude determined under the measurement
represents the contractility or the contractile strength of the cardiomyocytes.

4. Results and Discussion

4.1. Pattern of Nanofiber Bundles

The morphology of the electrospun PVDF nanofibers was characterized using a field emission
scanning electron microscope (SEM) (QUANTA FEG 450, FEI Company). As shown in Figure 3a,
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the PVDF nanofibers are aligned vertically and have very smooth surfaces. Around 10 nanofibers
assemble into a bundle, which shows a groove structure between the bundles. So, the PVDF nanofiber
bundles, considered as the cell culture substrate, can provide a 3D morphology. As a control, Figure 3b
shows the randomly attributed nanofibers. There is a lot of void space between these nanofibers. Both
the samples present a reliable interaction of all the nanofibers. Thus, the nanofibers can act as a robust
substrate in the culture medium.
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PVDF nanofibers.

4.2. Microstructures of 2D Cardiac Cell Sheets

Figure 4 shows the microstructures of the 2D cardiac cell sheets on the planer PDMS film and
the PVDF nanofibers. As shown in Figure 4a–c, the cardiomyocytes on the PDMS film substrate
with the alternating high- and low-density fibronectin lines grow and align along the same direction.
Moreover, all the cardiomyocytes contract at the same frequency and pace. However, this pattern
does not result in the 3D cell culture. Figure 4d,e show the other cell patterns on the planer PDMS
film, as a control. Therefore, we engineered anisotropic cardiac cell sheets on fibronectin-coated
nanofibers by passively seeding cardiomyocytes, as shown in Figure 4f–h. Figure 4g,h show that
the cell sheets have the uniaxial alignment of the cell bodies. It is suggested that the anisotropic
pattern of the cardiomyocytes is realized through mechanical and chemical interfaces between the
cardiomyocytes and PVDF nanofibers. Figure 4i,j show the cardiomyocytes cultured on the random
nanofibers, as a control.

Here, the nanofibers serve as physical cues for the inter- and intracellular organization of
cardiomyocytes into a tissue, and the uniaxial coupling of sarcomere ensembles over length scales
from microns to centimeters. Compared with Figure 5b, the cell image in Figure 5a shows uniaxially
aligned living cardiomyocytes on parallel nanofibers. The muscle strips therefore display functional
behavior characteristics of physiological skeletal muscle. Staining for sarcomeric α-actinin (green),
F-actin (red) and nuclei (blue) reveals uniaxial sarcomere alignment for the aligned pattern (Figure 5c),
and no preferential alignment of sarcomeres along any axis for the random pattern (Figure 5d). The
obvious shade in the two staining images implies the 3D structures of the cell sheets. For both kinds of
nanofiber pattern, the nanofibers serve as physical cues for the accordingly patterned cardiomyocytes
in a tissue. Therefore, synchronized actuation of the uniaxially aligned contractile cardiomyocytes is
critical for unified functionality.



Micromachines 2017, 8, 147 6 of 10Micromachines 2017, 8, 147  6 of 11 

 

 

Figure 4. (a) Stripe pattern with alternating high- and low-density fibronectin lines (the inset shows 
the cross-section of the protein pattern on the PDMS thin film). (b,c) Anisotropic 2D myocardium 
was produced by culturing on the alternating high- and low-density fibronectin lines. (d) Isotropic 
2D myocardium with uniform fibronectin coating, and (e) discrete cell lines cultured based on 
alternating fibronectin and non-fibronectin lines. (f) Electrospun PVDF nanofibers are aligned on/in 
PDMS thin film (the cross-section inserted shows that the nanofibers are partially embedded into the 
flexible PDMS film). (g,h) Cardiomyocytes grew on the nanofibers and were oriented along the 
alignment of the nanofibers. (i) Isotropic 2D myocardium with uniform fibronectin coating only on 
the PDMS film, and (j) Isotropic 3D myocardium growing on the nanofiber mat at random. 

Here, the nanofibers serve as physical cues for the inter- and intracellular organization of 
cardiomyocytes into a tissue, and the uniaxial coupling of sarcomere ensembles over length scales 
from microns to centimeters. Compared with Figure 5b, the cell image in Figure 5a shows uniaxially 
aligned living cardiomyocytes on parallel nanofibers. The muscle strips therefore display functional 
behavior characteristics of physiological skeletal muscle. Staining for sarcomeric α-actinin (green), 
F-actin (red) and nuclei (blue) reveals uniaxial sarcomere alignment for the aligned pattern (Figure 
5c), and no preferential alignment of sarcomeres along any axis for the random pattern (Figure 5d). 
The obvious shade in the two staining images implies the 3D structures of the cell sheets. For both 
kinds of nanofiber pattern, the nanofibers serve as physical cues for the accordingly patterned 
cardiomyocytes in a tissue. Therefore, synchronized actuation of the uniaxially aligned contractile 
cardiomyocytes is critical for unified functionality.  

Figure 1:

500 μm
100 μm

200 μm
100 μm

500 μm
100 μm

200 μm
100 μm

(a)                                                 (b)                                                          (c)

(d)                     (e)

(f)                                                 (g)                                                           (h)

(i)                      (j)

Figure 4. (a) Stripe pattern with alternating high- and low-density fibronectin lines (the inset shows
the cross-section of the protein pattern on the PDMS thin film). (b,c) Anisotropic 2D myocardium was
produced by culturing on the alternating high- and low-density fibronectin lines. (d) Isotropic 2D
myocardium with uniform fibronectin coating, and (e) discrete cell lines cultured based on alternating
fibronectin and non-fibronectin lines. (f) Electrospun PVDF nanofibers are aligned on/in PDMS thin
film (the cross-section inserted shows that the nanofibers are partially embedded into the flexible PDMS
film). (g,h) Cardiomyocytes grew on the nanofibers and were oriented along the alignment of the
nanofibers. (i) Isotropic 2D myocardium with uniform fibronectin coating only on the PDMS film, and
(j) Isotropic 3D myocardium growing on the nanofiber mat at random.Micromachines 2017, 8, 147  7 of 11 
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Figure 5. Microstructures of 2D cardiomyocyte sheets on bundles of PVDF nanofibers with uniaxial
alignment (a,c) and random pattern (b,d), respectively. (a) Image of a cardiac cell sheet on uniaxially
aligned nanofibers, (b) image of a cardiac cell sheet on random nanofibers, (c) immunofluorescence of
nuclei (blue), F-actin (red) and sarcomeric a-actinin (green) of a cardiac cell sheet on uniaxially aligned
nanofibers, and (d) immunofluorescence on random nanofibers. The insets of images (c,d) merge the
α-actinin and nuclei images.
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4.3. Shape of Single Cell

Figure 6 demonstrates the environmental SEM images of the interface of cardiomyocytes and
nanofibers. Uniaxially aligned cardiomyocytes grew and adhered to the aligned nanofiber bundles
(Figure 6a), which shows the interface of a single cardiomyocyte and parallel nanofibers, as shown
in Figure 6b. Randomly distributed cardiomyocytes on random nanofiber bundles (Figure 6c) show
the shape of the cardiomyocyte and the cell/nanofiber interface. The cardiomyocyte on the random
nanofiber bundles has a pentagonal shape, as shown in Figure 6d.Micromachines 2017, 8, 147  8 of 11 
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(a), (c) randomly distributed cardiomyocytes on random nanofiber bundles, and (d) the zoomed-in
image of (c).

4.4. Contraction of Cell Sheet

The mechanodynamic characteristics of the contraction of the cardiac cell sheet, like pulse vertical
deflection and frequency, have been investigated using AFM [30]. When all the cardiomyocytes
self-assembled into the confluent cell sheet on the uniaxial aligned nanofibers (as seen in the inset
image of Figure 7a), a microcantilever tip was brought into gentle contact with the center of one of the
cardiomyocytes to allow for patch-clamp recording [31]. Figure 7a shows that the real-time vertical
deflection of the selected cardiomyocyte was tracked precisely with the vertical displacement of the
microcantilever tip. The longtime vertical deflection of the cardiomyocyte on the uniaxially aligned
nanofiber bundles shows a stable maximal value. The cardiomyocyte contracted periodically at a stable
frequency of a 2.5 Hz, as shown in Figure 7b. As a control, the randomly distributed cardiomyocyte
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contracted in an unstable period, as shown in Figure 7a. The vertical deflection of the cell varied, as
seen in the short-term recording of Figure 7b. The characterization and exploitation of such contraction
functionality may facilitate the development of more biological machines.Micromachines 2017, 8, 147  9 of 11 
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5. Conclusions

To summarize, we demonstrated a new 3D cell culture substrate that is built by electrospun
polymeric nanofiber bundles. This substrate can guide the cardiac cell orientating along the nanofiber
bundles. By designing different patterns of the nanofibers, the interfacial structure shows that the
cardiomyocytes interact with the nanofiber at the protein level and the cellular level, as shown by
immunofluorescence imaging and ESEM imaging. The pattern of the nanofibers can influence the
specific contraction of the cardiomyocytes as well. These results show a new method of cell alignment
and an alternative approach to observe the cell/material interface.
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