
micromachines

Article

Map-Based Indoor Pedestrian Navigation Using an
Auxiliary Particle Filter

Chunyang Yu 1,2,*, Naser El-Sheimy 2, Haiyu Lan 2 and Zhenbo Liu 2

1 College of Automation, Haibin Engineering University, Harbin 150001, China
2 Department of Geomatics Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada;

elsheimy@ucalgary.ca (N.E.-S); hlan@ucalgary.ca (H.L.); zhenbo.liu2@ucalgary.ca (Z.L.)
* Correspondence: chunyang.yu@ucalgary.ca; Tel.: +1-587-703-1810

Received: 19 May 2017; Accepted: 15 July 2017; Published: 19 July 2017

Abstract: In this research, a non-infrastructure-based and low-cost indoor navigation method is
proposed through the integration of smartphone built-in microelectromechanical systems (MEMS)
sensors and indoor map information using an auxiliary particle filter (APF). A cascade structure
Kalman particle filter algorithm is designed to reduce the computational burden and improve the
estimation speed of the APF by decreasing its update frequency and the number of particles used in
this research. In the lower filter (Kalman filter), zero velocity update and non-holonomic constraints
are used to correct the error of the inertial navigation-derived solutions. The innovation of the
design lies in the combination of upper filter (particle filter) map-matching and map-aiding methods
to further constrain the navigation solutions. This proposed navigation method simplifies indoor
positioning and makes it accessible to individual and group users, while guaranteeing the system’s
accuracy. The availability and accuracy of the proposed algorithm are tested and validated through
experiments in various practical scenarios.

Keywords: map information; MEMS sensors; map aiding; map matching; auxiliary particle filter;
cascade structure algorithm; indoor pedestrian navigation

1. Introduction

Reliable indoor pedestrian navigation systems require devices and algorithms that can provide
accurate, continuous, autonomous and stable position solutions in indoor environments. The indoor
navigation system can effectively decrease the time and energy consumed to maneuver through
large indoor environments, such as airports, hospitals, malls, and museums [1,2]. Moreover, precise
indoor location results can help emergency workers perform urgent tasks by reducing the amount of
time it takes to navigate these environments. Police, firefighters, and first responders could benefit
from applications that provide navigation solutions for indoor search and rescue. In addition to how
accurate positioning can satisfy a user’s basic needs, indoor navigation can also be connected with
customer relationship management (CRM) systems to explore the deep and added value of big data [3].
Therefore, the market demand for indoor navigation systems is large and still growing, and more
industrial companies, institutions, and universities are now focusing their research efforts on indoor
pedestrian navigation [4–8].

Currently, the normal techniques for indoor navigation are radio frequency (RF)-based techniques
and inertial navigation techniques. RF-based systems include Wi-Fi, Bluetooth, and radio-frequency
identification (RFID)-based methods [9,10]. The Wi-Fi-based technique appears to be the most popular
of all RF-based methods because of its ubiquitous presence in smartphones and extensive coverage in
modern cities [11,12]. RF-based systems are not self-contained systems; they need aided infrastructures,
which will cost a considerable amount of time and money to install, maintain, pre-survey and
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update [10]. Moreover, most of the infrastructure that RF-techniques rely on need electricity power
to run.

Navigation using inertial sensors is a totally self-contained navigation technique, as it is not
susceptible to external environments and does not need any infrastructure [13,14]. Moreover,
microelectromechanical systems (MEMS)-based inertial measurement unit (IMU) data has already
been built into many smartphones [15]. These sensors have the benefits of low cost, miniaturization,
and low power consumption [16,17]. Due to the relatively low accuracy of MEMS sensors and the
principle of inertial navigation, the navigation errors of MEMS-based IMUs grow significantly with
time. If the unique human kinematic walking model is considered, zero velocity update (ZUPT) and
non-holonomic constraints (NHC) can be used to calibrate the sensor drift error [18]. However, the
heading drift error of a standalone inertial navigation system, which may cause a serious problem in
the final navigation solution, still cannot be well estimated. Therefore, inertial navigation systems
should be integrated with other sensors or aiding information [19,20].

To overcome the drawbacks of standalone inertial navigation systems, a series of aiding
information, such as cellular networks (2G/3G/4G), a IEEE 802.11-based Wi-Fi network, Bluetooth,
and iBeacon, are widely integrated with MEMS-based inertial sensors [21]. A number of such systems
can now be seen in various industrial products such as Indoo.rsTM, InfsoftTM, EyedogTM, MeridianTM,
and Pole StarTM. However, the main drawback of these methods is the obvious requirement of building
dependent infrastructures and power. For example, iBeacon, and Bluetooth-based methods are mostly
restricted by infrastructure installation and maintenance [22], and they cannot work in places without
signal coverage. Moreover, Wi-Fi- and magnetic-based methods may require a considerable amount of
time to survey a structure, and build and update the database [23]; therefore, these methods are not
considered in this paper.

One of the most widely available and commercial means of navigation is using maps that need no
additional infrastructure or equipment. Currently, most of public buildings, such as airports, hospitals
and universities, offer digital maps. The customers can utilize the corresponding quick response
code (QR code) to download the building map information. Meanwhile, nowadays, Google MapTM,
Openstreet MapTM, and many other location service companies can provide open-source indoor
maps [24]. Map information is the crucial prerequisite for indoor map-aided navigation. Even when
the map information source is inaccessible, the user can take a picture of the floor plan map, and easily
get the digital map information through image processing technique (e.g., edge detection and Hough
transform) [25].

To date, for most of indoor navigation products, map information is not involved in position
calculation, but rather is used to plot the position solution or the destination in the “presentation
layer” of the basic algorithm. However, maps can also be further used in navigation algorithms
through data fusion techniques [26,27]. Furthermore, indoor maps can act as constraints that correct
navigation errors. In outdoor environments, map information usually works as binary/geometric
constraints to a preliminary navigation solution [28,29]. Generally, there are two commonly used
methods to combine map information with the INS solutions: map-matching (MM) and map-aiding
(MA) methods. MM is widely used for fixed trajectory applications such as vehicle navigation in
outdoor environments [30–32], which assumes that the object moves within a known and restrictive
path. Compared with MM, MA is more flexible for indoor navigation and does not require any
assumptions about the trajectory, but it is not as powerful as MM [33]. Therefore, in this research, both
methods are used to complement each other.

Map-aided navigation has attracted a great deal of interest for indoor navigation. Amrit Bandyopadhyay
et al. use a comprehensive database of building features and landmarks, which might contain floor plans
and the features in the building such as hallways, stairwells, elevators, etc., to discontinuously increase
the position accuracy [34]. Li Tao et al. use map information from a suitable source, and the internal
map data structure may include the map projection parameters, geometric shapes, identifications
(IDs) and information type of all the entities in the map [35]. The indoor map information we use is
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different from these methods, and simply represented by a set of line segments, which makes the map
easy to access and convenient to use. A simple map can also avoid adding computational burden or
complexity to the system.

The common solution for integrating INS with aiding information is to use the Kalman filter
(KF), specifically the Extended Kalman filter (EKF) [36,37]. Compared with the other filters, such as
the unscented Kalman filter, or the particle filter (PF), KF is relatively less complex mathematically
and easier to implement. However, KF has limited capabilities in providing accurate positioning
on nonlinear integrated navigation systems. To enhance the performance of INS/map-integration
systems, nonlinear estimation techniques that do not require linearized dynamic models should be
considered. PF is a completely nonlinear state estimator, which can deal with nonlinear non-Gaussian
models [34]. PF utilizes the Monte Carlo approach to approximately model the probability density
distribution through a large number of samples. Therefore, it can accommodate arbitrary sensor
characteristics, motion dynamics, and noise distributions, and avoid the linearization done in EKF.
Moreover, PF can accommodate large orientation uncertainty [35], which is typical when dealing with
low-cost gyros. More importantly, PF is flexible in exploiting aided indoor map information to the INS.
These advantages motivate the use of PF for the INS/map-integration system. On the other hand, PF
suffers from computational burden issues and sample impoverishment problems [38]. Thus, while
both KF and PF have their weaknesses and strengths, incorporating them together can overcome their
shortages and build on their advantages [39].

Given this background, this research proposes a low-cost and continuous indoor navigation using
both MM and MA as aiding information for MEMS-based inertial navigation systems. To the best of
our knowledge, there have been few reports about using MM and MA methods cooperatively [40].
Moreover, there is no real product in the market that uses only MEMS inertial sensors and map
information to realize indoor navigation. Furthermore, in this research, taking the merits of KF and PF
into consideration, both KF and PF will be used in different stages of the pedestrian navigation system
through using a cascade structure algorithm.

In this paper, a totally self-contained and low cost indoor navigation system is proposed. Through
integrating indoor map information and built-in smart-phone IMU, we present a self-dependent
and easy to implement indoor-positioning method. This technology has direct application for the
everyday user, ranging from indoor shopping to the navigation of large buildings like airports and
museums, and could assist emergency rescuers. Currently, for building owners who want to provide
indoor navigation for customers, the cost of these systems is high because they require technicians to
install and maintain infrastructure. In addition, these systems are affected by electronic interference
and require pre-survey data that degrades over time and needs to be constantly updated. However,
smartphones equipped with MEMS sensors and map information require no infrastructure and are
self-contained. This resolves current issues with indoor navigation systems, and creates an easier and
more economical way for business owners to implement them.

To be more specific, the contributions of the paper are:

• Firstly, only smartphone built-in IMU and indoor map information are used in the proposed
algorithm, and no pre-surveying or structure installation are needed for this system, which can
dramatically reduce the time and economic cost of indoor navigation systems;

• Secondly, the KF and PF are combined to effectively utilize MEMS sensor data. A cascade structure
algorithm is proposed to decrease the number of the particles in the PF, which can indirectly
decrease the system computational burden;

• Lastly, the map-matching and map-aiding methods are innovatively combined, and the
combination method can make full use of indoor map information which, to a certain extent, will
improve the navigation calculating precision;

• At the end of the work, experimental results in different scenarios are used to show the benefits of
the proposed algorithm.
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The organization of this paper is as follows: a brief description of the cascade structure algorithm
is provided in Section 2. The lower layer KF and upper layer PF are then respectively discussed in
this section, too. Followed by the MM and MA methods on the upper layer. In Section 3, the real
experiments are performed to test the proposed methods. In Sections 4 and 5, the performance of the
original approach is analyzed through field experiments, and the conclusions are given.

2. Algorithm

2.1. Cascade Structure Algorithm

This research uses indoor maps integrated with built-in MEMS sensors in smartphones by
using an auxiliary particle filter (APF). To take advantage of the merits of the KF and overcome
the implementation issues of the PF, such as computational burden and particle impoverishment, a
cascade-connected KF and APF integration algorithm comprised of a two-layer architecture is proposed
in this research, as shown in Figure 1 [41,42].
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By changing the rate operation of the upper PF, the computational burden of the PF will be greatly
reduced; therefore, the time it costs to estimate the navigation solution will be reduced. However, to
take advantage of high-frequency sensor data, the lower KF will perform an update cycle according to
the high rate inertial sensors measurements. Moreover, the underlying KF uses ZUPT and NHC as
inputs to correct the preliminary INS navigation solution [2,43]; therefore, a better INS solution can
be provided to the upper particle filter. The upper PF applies the pedestrian dead-reckoning method
to calculate the pedestrian’s position [44]. The step-length change and heading change, which are
calculated using navigation results in the underlying filter, are used to update the nonlinear state
model of the upper layer’s filter. A priori known map information is considered as an independent
measurement to correct the lower filter solutions, and the relationship between two layer filters is
shown in Figure 1. In the lower KF, we select the pedestrian’s three-dimensional position, velocity
and attitude information as the state vector; for the upper APF, taking the computational burden into
consideration, there is only two-dimensional position information in the state vector.

2.2. Lower Kalman Filter

In the lower filter, the strapdown inertial navigation method is used to solve the preliminary
indoor position. Then, ZUPT and NHC can be used to correct these initial results through the KF
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according to the user’s motion state. The NHC technique is used to constrain the lateral and vertical
velocities of the moving pedestrian. It is assumed that lateral and vertical speeds are zero, based on the
fact that a moving platform cannot skid or jump. Therefore, the forward, lateral, and vertical speeds
work as the velocity update for the INS to limit the velocity errors. Moreover, if the pedestrian is
in static mode and is detected correctly, the ZUPT technique will be triggered and applied for INS
error correction. For a more detailed analysis of the use of ZUPT and NHC, refer to [2,7]. The discrete
measurement model of the lower KF is:

δzins/zupt
k = Hins/zupt

k δxins
k + vins/zupt

k (1)

where δzins/zupt
k is the measurement vector, which is the true velocity of the system minus the velocity

vector derived from INS during the system’s static mode, δxins
k is the state of the system, which contains

the position, velocity and attitude, and vins/zupt
k is the measurement noise matrix. The measurement

matrix Hins/zupt
k is:

Hins/zupt
k =

[
03×3 I3×3 03×3

]
(2)

every time the state error δxins
k is updated, it is applied to the INS navigation solution, and δxins

k is
reset. The upper filter’s step detection is performed during the INS mechanization process, using the
method in [45]. The stride length is computed using the navigation solution provided by the lower KF.
Specifically, the distance between every two coordinates when the pedestrian is static is defined as the
stride length:

Sk =
√(

xstep_m − xstep_m−1
)2

+
(
ystep_m − ystep_m−1

)2 (3)

in which (xstep_m, ystep_m) is the position estimated from the lower KF. The heading change of each
stride is the difference between every two heading solutions provided by the KF when the pedestrian
is static. It employs the equation:

δψk = ψk − ψk−1 (4)

therefore, the measurement model of the PF can be expressed as:{
Ŝk = Sk + vSk

δψ̂k = δψk + vψk
(5)

in which vSk and vψk are the noise of the stride length and heading change independently. That is, the
stride length and the heading error both have a corresponding error model describing the uncertainty
of the PF observation. The model is specified by distribution vS of the error vSk and vψ of the error vψk.
To simplify the question, we assume that vSk and vψk are both normally distributed. According to [46],
the standard deviations are closely related to the heading change.

2.3. Upper Particle Filter

The PF was invented to numerically implement the Bayesian estimator. As shown in Figure 2, there
are three phases in the PF: system propagation, measurement update and resampling (if needed) [47,48].
Rather than applying prior probabilities in Bayes estimation, it employs a set of particles with values
and weights to approximately represent p(xk|Yk) through the Monte Carlo sampling approach.
This allows for the PF maps’ intractable integral Bayesian solution to tractable discrete sums of
weighted samples drawn from the posterior distribution. The posterior density function (PDF)
p(x0:k|Yk) of the estimated state can be represented by:

p(x0:k|Yk) ≈
N

∑
i=1

wi
kδ
(

x0:k − xi
0:k

)
(6)
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where parameter N is the number of particles, and it is chosen by the user as a trade-off between
computational effort and estimation accuracy. Yk is the set of the system measurement yk at time k. wi

k
is the weight of the relative particle, and ∑N

i=1 wi
k = 1. The approximate representation of wi

k is:

wi
k ∝ wi

k−1

p(yk

∣∣∣xi
k)p(xi

k

∣∣∣xi
k−1)

q(xi
k

∣∣∣xi
k−1,yk)

(7)

where q
(

xi
k

∣∣∣xi
k−1, yk

)
is the importance density function (IDF), a standard particle filter selecting priori

density function as the importance density function, simplifying wi
k as:

wi
k ∝ wi

k−1 p(yk

∣∣∣xi
k) (8)
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However, as the new measurement is not taken into consideration in the IDF, the samples from
the IDF and the samples from the real PDF have a significant difference, which will cause a sample
impoverishment problem. Although resampling can alleviate this problem, it can also increase the
system’s computational burden.

In this research, the APF is used in the upper filter. Different from the traditional PF algorithm,
the APF takes the importance distribution of the current measurements into consideration. The APF
can provide an efficient way to solve the particle impoverishment problem through introducing an
IDF q(xk, i |Y k), which can be represented as [48]:

q(xk, i |Y k) ∝ p(Yk

∣∣∣µi
k)p
(

xk

∣∣∣xi
k−1, yk

)
wi

k−1 (9)

The weight of the particle can be calculated from Equation (10):

wi
k ∝

(Yi
k

∣∣xi
k)

p(Yk

∣∣∣µij
k )

(10)

where µi
k is the statistical characterization of xk based on xi

k−1 [47]. This IDF promotes diversity in the
population of particles. Compared with standard PF, APF performs weighting manipulation twice,
and the weights of the APF particles are more stable than that of the standard PF. Therefore, APF
estimated solutions are more accurate than PF in this application.
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In this research, the state model we use for APF is the dead reckoning (DR) positioning update
model. The pedestrian dead reckoning (PDR) is implemented through exploiting the kinematic features
of a pedestrian’s gait with the traveled distance and heading information. Essentially, the PDR is the
determination of a new position using the knowledge of a previously known position together with
the current traveled distance and heading information. The PDR propagation equation is:{

Ei
k+1 = Ei

k + Si
k sin

(
ψi

k
)

Ni
k+1 = Ni

k + Ni
k cos

(
ψi

k
) (11)

In Equation (11), the stride length Si
k and heading ψi

k calculated from the lower filter are used to
transfer and update particles from time k to time k + 1. After the system propagation, the weights of
particles are updated during measurement update process through using the MA method, which will
be explained in the next section.

2.4. Map-Matching and Map-Aiding Methods

In this paper, MA and MM methods are innovatively combined to enhance the accuracy of the
final position solution by making full use of the indoor map information. MA utilizes indoor map
information as a measurement resource during the measurement update process to amend the weight
of particles in the APF. MM uses map information to decrease the predicted position errors by matching
the estimated solution to the existing map [26,49,50].

2.4.1. Map-Aiding Implementation

For indoor pedestrian navigation implementation, indoor architectural plane information could
be used to constrain a pedestrian’s trajectories, thus decreasing the uncertainty and improving the
accuracy of the final navigation solutions by updating the weight of the particles. In the APF, the
relative weight of each particle, w(i)

k , is updated by comparing the predicted measurements with the
probability distribution function obtained from the actual measurement process. Similarly, in this
research, the weight w(i)

k of a propagated particle is enforced by indoor map information constraints.
A cross-wall method based on indoor map matching is used [51]. The “cross-wall” problem is solved
based on the development of a floor map-aided APF algorithm by weighing the particles. After system
propagation, if the line segment between the new generated particle and the previous one intersects
with the wall boundary, then this particle is invalid, and its weight will be assigned as zero:

w(i)
k = 0 (12)

If a wall does not intersect with the particle during the propagation step, this means the pedestrian
navigation system user is still in the previous room/office/corridor. In this case, the particle’s weight
remains the same with the weight of the previous step. It is important to mention that the cross-wall
detection method is of crucial importance for the whole MA method, as incorrect detection will
introduce wrong particles into the next step. This step is repeated for all particles.

To test if the new particle passes the wall of the building or not, an effective particle detection
algorithm is designed. In this research, the map data was provided by the University of Calgary
(U of C). The data provided is in shape files format and consists of latitude and longitude coordinates.
This data shape can display geographic information (including point, line, face, polygons, polyhedron
and model) and consists of 3D geographic coordinates: longitude, latitude and altitude. By using
the Mapping Toolbox of MATLAB 2013, the map data in the shape file could be easily loaded and
converted into x and y coordinates in meters, and these coordinates can be saved as vectors in matrices.
In this way, the effective particle detection problem can be changed into a relation analysis problem
between particles and map information vectors. Firstly, let A =

(
x(i)k−1, y(i)k−1

)
and B =

(
x(i)k , y(i)k

)
separately represent coordinates derived from particle i at step k− 1 and step k. Point A and B are
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assumed to be the start and end points of the step vector AB in the horizontal plane. Meanwhile, point
A is assumed to be estimated from an effective particle, that is to say, point A is a reasonable position.

As shown in Figure 3a,b, vector CD is one line segment of the map data. If the vector AB and
CD intersect and meet one of the following conditions, then we can say that this new particle is
not effective.

1. Point A and B should be on different sides of the line segment vector CD; Point C and D should
be on different sides of the line segment vector AB. To judge whether one point is in the right or
left side of a line segment, the following equations are used:

• For vector (x1, y1)→ (x2, y2) , M is defined as M = x1(y3 − y2) + x2(y1 − y3) + x3(y2 − y1).
• If M = 0, point (x3, y3) is on the line segment (x1, y1)→ (x2, y2) ;
• If M > 0, point (x3, y3) is on the right side of the line segment;
• Otherwise, point (x3, y3) is on the left side of the line segment.

2. Line AB and line CD should have one point of intersection. As shown in Figure 4a,b, O is the
intersection of vector AB and CD, and OA, OB, and AB separately represent the length of the
corresponding line segment vector. If AB > max{OA,OB} and CD > max{OC,OD}, O denotes an
intersection point of line segments AB and CD.
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2.4.2. Map-Matching Implementation

MM is the process of utilizing a digital road network map database to improve the predicted
position errors during the integration process by projecting the estimated positon to the priori digital
map. In this research, a probability pedestrian trajectory map consisting of line segments is built from
the indoor map. When the distance between the user’s current estimated position and the map line
segment is within a certain threshold, then the MM method will be used to project the estimated
position to the relative segment link. The threshold is determined by empirical value. If there is more
than one map line segment satisfying that the distance between them and the estimated position are
within the threshold, then in this epoch, the system will not perform the MM method.
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There are three main techniques for MM. These are point-to-point matching, point-to-curve
matching, and curve-to-curve matching. Which one to use is heavily dependent on how the data or
network is structured. Taking the format available in this research (line segment) into consideration,
the point-to-point matching algorithm is used in this research. The algorithm projects the estimated
location, P, to the closest link in the network by using the following distance equation [41]:

Distance =
|xe(ys − yd)− ye(xs − xd) + (xsyd − xdys)|√

(xs − xd)
2 + (ys − yd)

2
(13)

xP =
xe(xd − xs)− ye(ys − yd)− (ys − yd)(xsyd − xdys)[

(xs − xd)
2 + (ys − yd)

2
]
((xd − xs))

−1
(14)

yP =
xe(xd − xs)− ye(ys − yd)− (xs − xd)(xsyd − xdys)[

(xs − xd)
2 + (ys − yd)

2
]
((yd − ys))

−1
(15)

in which (xe, ye) is the position estimated from the MA-based APF algorithm, and (xs, ys) and (xd, yd)

are the start point and end point of a line segment in the digital map. Equation (13) is used to calculate
the distance between the estimation position and the previously known line segment, and for detecting
the line segment on which the estimated positon should be projected; Equations (14) and (15) are used
to project coordinates to obtain the foot of a perpendicular, namely, a projection point.

3. Experiment and Results

The validity and feasibility of the proposed algorithm are tested by conducting ground
experiments using different smartphones. Multiple scenarios were used to investigate the algorithm’s
reliability and accuracy. The first test took place on the third floor of the Calgary Centre for Innovative
Technology (CCIT) building at the University of Calgary, and the second and third tests took place on
the first floor of the Energy Environment Experiential Learning (EEEL) building at the University of
Calgary. The proposed algorithm has been implemented on the Samsung Galaxy Note 4 and Xiaomi
smartphones. The used sampling rate of the IMU in the tests is 40 Hz. The devices’ parameters are
shown in Table 1. In addition, to evaluate the accuracy of the final solution and quantitatively show
the performance of the proposed algorithm, a reference trajectory generated method proposed in [2] is
used in this research, which is based on the accelerometers and gyroscopes.

Table 1. Sensors of Samsung S4 and Xiaomi 3.

Sensor
Samsung S4 Xiaomi 3

Model Model

Accelerometer STM K3DH MPU6050
Gyroscope STM K3G MPU6050

In test 1, the Xiaomi 3 smartphone is used to collect the pedestrian’s motion data. We carried
the smartphone by hand. We used the hand-held motion, in which the smartphone was kept almost
level in front of the user’s chest. A manual mode is used to provide the initial position information,
which means that the user can manually enter the initial position and head according to the given
map information. The experiment’s total walking distance is 120 m. Figure 5a shows the designed test
trajectory on the third floor of the CCIT building, and Figure 5b is the corresponding reference trajectory
derived using the method described in [2]. Figure 6a,b, respectively, are the lower filter-derived position
and the proposed MA-only method derived position for test 1 in the CCIT building, and the number
of particles used in this test is 1000. In addition, Figure 7 depicts the MA–MM-derived navigation
solution for test 1, and the same position solution plotted on the digital map.
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Figure 5. (a) Designed test trajectory on the third floor of the Calgary Centre for Innovative Technology
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Figure 6. (a) Lower filter INS-derived navigation solution in the CCIT building; (b) The upper filter
map-aiding (MA) method-derived position for design trajectory in the CCIT building.

Figure 7. (a) MA–map-matching (MM)-derived navigation solution for test 1 in the CCIT building;
(b) The final estimated position of test 1 in the CCIT building plotted on the digital map.
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In test 2, the Xiaomi 3 smartphone is used to collect the pedestrian’s motion data. The experiment’s
total walking distance was 290 m. Figure 8a shows the designed test trajectory on the first floor of
EEEL building, and Figure 8b is the corresponding reference trajectory.
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Figure 8. (a) Designed test trajectory on the third floor of the CCIT building; (b) Reference trajectory
for the test trajectory on the third floor of the CCIT building.

Figure 9a is the lower filter INS-derived navigation solution for test 2 in the EEEL building, and
Figure 9b is the proposed MA-only method derived position for test 2, and the number of particles
used in this test is 1000. Figure 10 depicts the MA–MM derived navigation solution for test 2, and the
same position solution plotted on the digital map.
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Figure 9. (a) Lower filter INS-derived navigation solution for test 2 in the Energy Environment
Experiential Learning (EEEL) building; (b) The upper filter MA method-derived position for test 2 in
the EEEL building.

Figure 10. (a) MA–MM derived navigation solution for test 2 in the EEEL building; (b) The final
estimated position of test 2 in the EEEL building plotted on the digital map.
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In test 3, the Samsung smartphone is used to collect the pedestrian’s motion data. The experiment’s
total walking distance is 210 m. Figure 11a shows the designed test trajectory on the first floor of the
EEEL building, which is different from test 2, and Figure 11b is the corresponding reference trajectory.
Figure 12a is the lower filter INS-derived navigation solution for test 2 in the EEEL building, and
Figure 12b is the proposed MA-only method derived position for test 2, and 1000 particles are used to
obtain this solution. Figure 13 are the MA–MM derived navigation solution for test 3 and the same
position solution plotted on the digital map.
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Figure 11. (a) Designed test trajectory for test 3 in the first floor of the EEEL building; (b) Reference
trajectory for the test trajectory on the third floor of the CCIT building.Micromachines 2017, 8, 225  12 of 16 
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Figure 12. (a) Lower filter INS-derived navigation solution for test 3 in the EEEL building; (b) The upper
filter MA method derived position for test 3 in the EEEL building.

Figure 13. (a) MA-MM derived navigation solution for test 3 in the EEEL building; (b) The final
estimated position of test 3 in the EEEL building plotted on the digital map.



Micromachines 2017, 8, 225 13 of 16

To quantitatively analyze the influence of the MM method on the final solution, different number
of particles (N = 1500, 800, 600, 500) are used in the program for test 3 to verify its impact on the
positioning errors. Table 2 gives the performance of the MM-only and MM–MA estimation solution.

Table 2. Indoor positioning performance using different particles in test 3.

Particles Algorithm
Error (m)

Max. Min. Mean RMS

1500
ASIR(MA) 2.97 0.001 1.23 1.47
MM-ARIR 3.15 0.0001 1.34 1.57

1200
ASIR(MA) 5.15 0.003 1.67 1.97
MM-ARIR 5.35 0.003 1.69 1.98

600
ASIR(MA) 4.18 0.004 1.70 2.37
MM-ASIR 4.18 0.004 1.78 2.32

500
ASIR(MA) 3.72 0.008 1.79 2.43
MM-ARIR 3.74 0.008 1.66 2.22

4. Discussion

In the experiment section, different smartphones were used to collect the IMU data, and the
presented algorithm has no special requirements for the MEMS sensors. If we compare the INS-derived
solution with the designed test trajectory, (i.e., comparing Figure 5a with Figure 6a, Figure 8a with
Figure 9a, Figure 11a with Figure 12a), it is obvious that the lower filter cannot provide a satisfying
estimated position. Because of the standalone low-cost MEMS inertial navigation system, when ZUPT
or NHC is used to correct the system error, the heading of the system is unobservable, which is also
confirmed in the observability analysis conducted in [52]. Therefore, aiding sensors or measurements
are needed to further correct the error of the system.

However, when integrating the indoor map information with the INS system using the APF,
whose solutions are shown in Figures 6b, 9b and 12b, the estimated position accuracy is dramatically
increased, as the map information can strongly constrain the heading of the system by deleting the
ineffective particles. We can see from Figures 6b, 9b and 12b that, by performing the MA method, the
end point and starting point of each test almost overlap, which can indirectly demonstrate that the
proposed MA method is available. Moreover, compared to the MA-derived solution with the reference
trajectory in different scenarios, the RMS (root mean error) of the estimation error and the mean of
the estimation error could be controlled within 2 m. Furthermore, when compared with the other
traditional particle filters, the APF with a cascade structure has a low computational burden because
the update rate of the PF has been changed from an IMU data output rate (40 Hz) to a step-detection
update rate.

Additionally, from the MM–MA derived positions in Figures 7a, 10a and 13a, we can see that,
around the corner, the system does not perform the MM method. This outcome is because at the corner,
there are at least two map line segments that satisfy the MM distance threshold. This is one drawback
of MM method; therefore, to avoid wrong matching for this situation, no MM will be used.

From Table 2, it can be seen that with the decrease in the number of particles, the RMS of the
MM-only estimation error increases. This is because the accuracy of the PF associates with the number
of particles, according to the law of large number. When the number of particles, N, is an infinite
number, the value of the right part in Equation (6) becomes infinitely close to its left part, which means
that the particles in PF can fully represent the PDF (probability density function) of the system. Usually,
thousands of particles are needed to implement PF for real applications, and the more particles the
system has, the more accurate the navigation solution will be. However, increasing the number of
particles reduces the computational speed. Traditional particle filter-based indoor navigation methods
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need thousands of particles to implement indoor navigation. However, in this research, using the
proposed method and algorithm structure, a lesser number of particles was needed.

By comparing the error of the MA-only method and MM–MA method, we can see that, for
1500 particles, the RMS error of the MA-only method is 1.45 m, which is smaller than the MM–MA
method 1.56 m. By decreasing the particles to 1200, the difference between two methods is 0.002. The
error rate of the MA-only method increases faster than the MM–MA method. When only 600 particles
are used in the program, the RMS error of the MM–MA method is smaller than the MA-only method,
as the number of the particles cannot be well represented in the system’s PDF. By continuing to reduce
the number of particles to 500, the MM–MA method performs better than the MA-only method.

5. Conclusions

In this research, a totally non-infrastructure based and low-cost indoor navigation method is
proposed, which is inexpensive and time-saving compared with existing methods. Only indoor
map information and smartphone built-in sensors are used in this algorithm. No pre-surveying,
pre-installation, or additional aiding sensors are needed for the system. Therefore, the method makes
the indoor navigation system more accessible, applicable and practical for users.

Indoor map information and the MEMS sensors are integrated through a two-layer APF/KF
structure algorithm. Mathematically, from the update frequency of the two filters, it could be shown
that the two-layer filter structure decreases the computational burden of the system. By performing
real-world experiments, we can obtain the following conclusions: the proposed method can achieve
an ideal navigation calculating precision; and the MA-based APF method can dramatically improve
the accuracy of the INS-derived navigation solution. Moreover, when the number of the particles is
limited to decrease the computational burden of the system, the MM method can be applied to further
optimize the MA-based APF results.
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