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Abstract:



Micro functionally graded material (FGM) structures are able to have proper functions in vast environments. In this paper, nonlinear governing equations of the size-dependent micro-switch are derived using modified couple stress theory. Effective external forces including fringing field of electrostatic force and Casimir force are considered. Two electrodes cooperate to track the in-plane motions of the micro continuous system by tuning the supply voltages of the electrostatic force. An adaptive projection law is proposed to compensate for the effect of error in the initial estimates of system parameters. To achieve more reliability, a robust active vibration strategy is presented to withstand external disturbances. At any time, just one electrode is operational, and optimization is performed to decrease the controller gains. The highly nonlinear inputs have a singularity in the dynamics of the system, which are known as pull-in instability, so for safety, the controller gains are chosen such that the pull-in voltage is avoided. The dynamic response of the system is simulated using a single mode or multiple modes to validate the effectiveness of the presented vibration control approaches. The effects of error of the initial estimate of system parameters, the effect of impulse and the influences of various volume fractions are studied.






Keywords:


multimodal design; active vibration control; unmodeled forces and impulse; robust adaptive








1. Introduction


Micro-Electro-Mechanical Systems (MEMS) have received extensive interest in the past two decades [1,2]. Due to their great advantages such as small size or mass, low cost of production, low power consumption, and easy integration into other systems, they are commonly used in numerous engineering devices, e.g., micro-actuators [3], micro-switches [4], atomic force microscopes [5], and micro-resonators [6]. Numerous analytical, numerical and experimental studies have been performed by researchers on the static and dynamic behaviors of such systems. Modeling of electrical and mechanical parts and their coupling is required in this field.



One of the important issues in the design of MEMS devices is the material selection with appropriate properties. Pure metals are of little use in such engineering applications because of the inconsistent properties. For instance, an application may require a material that is ductile as well as hard; there is no such material in nature. As a solution, the combination of one metal with other metals or non-metals (usually a ceramic) is used. Functionally Graded Material (FGM) can indeed be described as a class of advanced materials characterized by continuous variation of properties over volume. This type of material provides the specific benefits of both materials (metal and non-metal). The FGM concept originated in 1984 during the space plane project [7]. FGM structures play a significant role in various industrial fields, for instance energy engineering, optics, aerospace, nuclear energy, etc. [8]. Many kinds of research have already been reported on the static behavior [9], buckling analysis [10,11], contact problems [12], and free vibration behavior of FGM beams [13]. Most recently, Witvrouw and Mehta [14], Fu et al. [15], and Rahaeifard et al. [16] proposed the idea of using functionally graded materials in micro-electro-mechanical structures. Witvrouw and Mehta [14] designed and studied the process of producing MEMS structure layers made of polycrystalline silicon–germanium (poly-SiGe) on top of a standard 0.35 μm complementary metal-oxide-semiconductor (CMOS) process. Rahaeifard et al. [16] studied the resonant frequencies and sensitivities of first two modes atomic force microscope FGM cantilever.



Structures used in MEMS have a length on the order of microns. After many experimental studies, it seems that a new theory is needed to analyze such systems. The size-dependent static and vibration behaviors in micro-scales have experimentally been confirmed [17,18,19,20]. Torsion and tension experiments [21] and micro-bend test [22] have been designed to prove the size-dependent behaviors. The classical continuum mechanics theories cannot predict the size-dependent behaviors that occur in micro-scale structures. On the other hand, non-classical continuum theories such as the modified couple stress theory can interpret the size-dependent behaviors. Governing equations of motion for linear Euler–Bernoulli [23,24], nonlinear Euler–Bernoulli [25,26], linear Timoshenko [27], and nonlinear Timoshenko functionally graded micro-beams [25], using modified couple stress theory, have been derived. Farokhi et al. [28] presented a new size-dependent nonlinear model for the analysis of the behavior of carbon nanotube-based resonators. Ghayesh et al. [29] investigated the size-dependent dynamical performance of a microgyroscope via the use of the modified couple stress theory. Giunta et al. [30] proposed a unified formulation of one-dimensional beam models for the free vibration analysis of functionally graded (FG) beams. Via their approach, higher-order models that account for non-classical effects such as shear deformations and in- and out-of-plane warping can be formulated straightforwardly.



Many studies have been performed by different researchers on the vibration behavior of non-classical micro functionally graded beams. Mohammadi et al. [31] studied the mechanical behavior of an FG cantilever micro-beam subjected to nonlinear electrostatic pressure and temperature changes. Uncontrolled variation of electrostatic voltage may lead to instability in the dynamical behavior. Jia et al. [32,33] studied free vibration and the pull-in instability of functionally graded poly-SiGe micro-beams. Also, the free vibration characteristics of micro-switches under combined electrostatic, intermolecular forces and axial residual stress have been studied [34].



Proper performance of many MEMS devices depends on appropriate use of MEMS actuators. Magnetic, piezoelectric, thermal, optical and electrostatic devices are examples of on-chip actuators in MEMS devices. These actuators are used to achieve better dynamical behavior. There are many types of research concerning the control of MEMS [35,36,37,38,39,40]. The aims of the control algorithms are to establish a regulation [36,37,40] or a tracking [41] control law based on the linear [38,40] or the nonlinear [39,41,42] dynamic model of the micro-beam, where the supply voltage is considered a control input. MEMS are driven in both open-loop and closed-loop procedures. In addition, techniques for vibration absorbing can be divided into passive, semi-active and active control. The final step for improving accuracy and speed of response in the active vibration control is the introduction of feedback, e.g., closed-loop control. Sun et al. [43] designed a closed-loop controller for a 2-DOF capacitive force sensor. Sun et al. [44] studied the design, fabrication and control problem of a two-axis electrostatic micro-actuator. Nguyen and Krylov [41] developed a feedback controller to suppress the vibrations of a micro-electro-mechanical clamped-free beam operated at parametric resonances.



Active vibration control usually involves stability and robustness issues. In this paper, robust active vibration control of a functionally graded micro-switch is investigated. The boundary conditions of the micro-switch are assumed to be clamped-clamped (C-C) or clamped-free (C-F) and the system is under a combined action of Casimir force and electrostatic force in the framework of the modified couple stress theory. The supply voltage is considered the control input, and the vibration amplitude and the velocity are considered the outputs of the system. A robust adaptive feedback controller, which guarantees the proper transient dynamic response as well as steady state response while the system is under the influence of unknown bounded forces and the dimensionless parameters are unknown, is presented. This control algorithm ensures zero output tracking error when parameters are constant, and disturbances are zero. It also guarantees zero regulation error when the parameters are time-varying, and the dynamical disturbances are bounded. Several numerical simulation results are presented to verify the analytical results. Uncertainty in the system parameters is considered in these simulations. The performance of the designed control is shown for single-mode and multi-mode vibrational system.




2. Dynamic Modeling and Equations of Motion


2.1. Continuous Modeling


As presented in Figure 1, the micro-switch is modeled as a functionally graded Euler–Bernoulli micro-beam with cross section area [image: there is no content], length [image: there is no content], width [image: there is no content] and thickness [image: there is no content] is considered. The variable [image: there is no content] indicates the distance of a point from the neutral axis. It should be noted that the physical neutral plane is not the same as the geometric middle plane for the functionally graded micro-beams, due to the inhomogeneous material properties in the lateral direction [23]. It is assumed that the functionally graded beam properties [image: there is no content] vary along the lateral coordinate based on a power law, i.e.,


[image: there is no content]



(1)




where [image: there is no content] and [image: there is no content], represent the density, the shear modulus, the elastic modulus and the Poisson’s ratio, respectively; subscripts 1 and 2 refer to the two basic constituent materials, usually a ceramic and a metal. The power index [image: there is no content] determines the type of the variation of the properties along the lateral direction.


Figure 1. Functionally graded material (FGM) micro-switch model and the electrodes configuration: (a) clamped-free boundary condition and (b) diagram of the micro-switch.
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Using the modified couple stress theory and the Hamilton principle, the following non-dimensional governing equation of motion is obtained [33]:


[image: there is no content]



(2)




where [image: there is no content] for the clamped-clamped (C-C) boundary conditions and [image: there is no content] for the clamped-free (C-F) boundary conditions. Some authors [45,46,47] studied the effects of curvature-related and inertial-related nonlinearities on the vibrational response for cantilever beams. These effects are not considered in this paper. The normalized external lateral force per unit length, [image: there is no content], is expressed as


[image: there is no content]



(3)







In Equations (2) and (3) [image: there is no content] and [image: there is no content] are the non-dimensional form of longitudinal position, time, transverse deflection, the applied voltage for the top electrode and the bottom electrodes, respectively.[image: there is no content] and [image: there is no content] denote normalized distances between the FGM micro-switch from the top electrode and the bottom electrode, respectively. The electrostatic forces considering the first fringing field correction are [image: there is no content] and the Casimir force is denoted by [image: there is no content] [33].[image: there is no content] are constants that depend on material properties and the geometry of the micro-switch. These variables are defined as follows:


x¯=xL, w¯=wh, t¯=ttcα1=mhtc2, α2=HhL4, α3=−H1h32L4, α4=cdhtc, α5=−NahL2m=∫Aρ(z˜)dA, H1=(EA)eq=∫AE^(z)dA, H2=(EQ)eq=∫AE^(z)zdAH3=(EI)eq=∫AE^(z)z2dA, H4=(μA)eq=∫Aμ^(z)dAH=H1z˜c2−2H2z˜c+H3+H4l2−(H1z˜c−H2)2H1 A=ε0b2h2, B=0.65ε02h, C=π2h¯cb240h4



(4)




in which the effective modulus is obtained as [image: there is no content] for a narrow beam [image: there is no content] and [image: there is no content] for a wide beam [image: there is no content]. The variable [image: there is no content] is the reduced Planck’s constant, [image: there is no content] is the speed of light in a vacuum, and [image: there is no content] is the time constant. The variables [image: there is no content] and [image: there is no content] are the time constant, the damping coefficient, the axial residual force and the material length scale parameter, respectively.



The boundary conditions for the C-C micro-beam become


[image: there is no content]



(5)




and the boundary conditions for C-F are


[image: there is no content]



(6)







The initial conditions are


w¯(x¯,0)=disp(x)h=disp¯(x¯)∂w¯∂t¯|t=0=vel(x)Ltc=vel¯(x¯)



(7)







In the following, the overbar notation will be omitted for brevity.




2.2. Discretized Modeling


The discretized form of the partial differential equation of motion (2) and boundary conditions (5) and (6) can be obtained using modal analysis technique. The transversal deflection of the switch can be acquired by a convergent series of infinite terms and can be approximated by a series of finite terms. The number of terms of the series specifies the approximation’s accuracy. The finite term series could be easily used in a simulation program. The deflection is approximated by sum of finite smooth functions as


[image: there is no content]



(8)




where [image: there is no content] is the time-varying generalized displacement of the [image: there is no content]th mode. [image: there is no content] is the continuous mode shape function of the [image: there is no content]th mode and these functions are orthogonal over the domain [image: there is no content]. The [image: there is no content]th vibrational mode shape function of C-C boundary conditions (Equation (5)) takes the form


ϕi(x)=Ei[(cos(si)+cosh(si))sin(six)−(sin(si)+sinh(si))cos(six)         −(cosh(si)+cos(si))sinh(six)+(sinh(si)+sin(si))cosh(six)]



(9)




in which [image: there is no content] is a solution of equation [image: there is no content]. The [image: there is no content]th mode vibrational shape function for the boundary conditions (6) can be obtained as


ϕi(x)=Ei[(cos(si)+cosh(si))sin(six)−(sin(si)+sinh(si))cos(six)         −(cosh(si)+cos(si))sinh(six)+(sinh(si)+sin(si))cosh(six)]



(10)




where [image: there is no content] is a solution of equation [image: there is no content].



For both sets of boundary conditions, the coefficient [image: there is no content]. in mode shapes are chosen such that


[image: there is no content]



(11)




and the natural frequencies are related to [image: there is no content] as


[image: there is no content]



(12)







The first five modes [image: there is no content] ([image: there is no content] ), for C-C and C-F boundary conditions are presented in Table 1.



Table 1. The first five modes for clamped-clamped and clamped-free boundary conditions.







	
Boundary Conditions

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]






	
C-C

	
4.7300

	
7.8532

	
10.9956

	
14.1371

	
17.2787




	
C-F

	
1.8751

	
4.6941

	
7.8548

	
10.9955

	
14.1372










To obtain the discretized form, first, both sides of Equation (2) are multiplied by the function [image: there is no content] and then an integrating is performed over the set [image: there is no content]. The new governing equations of motion are derived in the matrix form of


[image: there is no content]



(13)




where [image: there is no content] is the time-varying generalized displacement vector. In this case, [image: there is no content] and [image: there is no content] are [image: there is no content] matrixes. These matrices are obtained as follows


[image: there is no content]



(14)






[image: there is no content]



(15)






[image: there is no content]



(16)






[image: there is no content]



(17)






[image: there is no content]



(18)






[image: there is no content]



(19)




where


[image: there is no content]



(20)







The function in Equation (20) introduces nonlinearity in the governing equations of motion and the initial conditions for the Equation (13) are evaluated as


ξi(0)=∫01disp(x)ϕ^i(x)dxξ˙i(0)=∫01vel(x)ϕ^i(x)dx



(21)




where [image: there is no content] and [image: there is no content]



By the use of the binomial series and the multi-nominal expansion, the nonlinear terms in Equation (3) due to Casimir and the electrostatic forces can be expanded as


[image: there is no content]



(22)






[image: there is no content]



(23)






[image: there is no content]



(24)







To simplify the forcing function vector [image: there is no content], three sets of functions are defined as


F1,±(k1,…,km;i)=12∫01(k+1)!g−2−kk1!k2!…km!(∓1)kϕi∏j=1mϕjkjdx=(∓1)k12(k+1)!g0−2−kk1!k2!…km!∫01ϕi(x)∏j=1mϕjkj(x)dx



(25)






F2,±(k1,…,km;i)=∫01k!g−1−kk1!k2!…km!(∓1)kϕi∏j=1mϕjkjdx=(∓1)kk!g0−1−kk1!k2!…km!∫01ϕi∏j=1mϕjkjdx



(26)






F3,±(k1,…,km;i)=16∫01(k+3)!g−4−kk1!k2!…km!(∓1)kϕi∏j=1mϕjkjdx=(∓1)k16(k+3)!g0−4−kk1!k2!…km!∫01ϕi∏j=1mϕjkjdx



(27)







The external forcing vector is


U(i)=∑k=0∞∑k1+k2+…+kn=kξ1k1…ξmkm[A Vb2F1,−(k1,…,km;i)+BVb2F2,−(k1,…,km;i)+CF3,−(k1,…,km;i)−AVt2F1,+(k1,…,km;i)−BVt2F2,+(k1,…,km;i)−CF3,+(k1,…,km;i)]



(28)







The series in Equation (28) may only be expanded for four terms in this paper. As will be stated in the control algorithm, there is no need for state space presentation of Equation (13). For the numerical simulation procedure, Equation (13) is presented in state space form as


x˙1=x2x˙2=−M−1Kx1−M−1Gx2+M−1U(x1,Vb,Vt)+M−1D



(29)




where [image: there is no content] is the state vector of size [image: there is no content].





3. Active Vibration Control of a Nonlinear System


Let us consider the nonlinear governing equation of motion (Equation (13)) with the desired smooth tracking signal [image: there is no content], which is designed so that the deflection of the micro-switch follows a desired signal. The tracking signal is continuous, has a continuous derivative and is bounded in time. The material properties are assumed to be unknown and possibly time varying but belong to a closed set. The nominal values of properties and the sets’ bounds are expected to be known.



An adaptive robust control algorithm will be designed for the nonlinear FGM micro-beam. In this algorithm, vibrations of the micro-beam are being absorbed while the parameters of the system are unknown and unmodeled external forces affect the system performance. In the next section, the control algorithm for functionally graded material micro-switch’s dynamics model is simulated to verify its effectiveness.



The governing equations of motion, as discussed in the previous section, could be written as


[image: there is no content]



(30)




where [image: there is no content] denotes the vector of disturbances that acts independently in every channel of the system’s inputs. In the active vibration control of the micro-beam system, [image: there is no content] represents unknown external forces or an unmodeled dynamic. The vector of disturbance forces [image: there is no content] is assumed to be bounded. The vector of unknown parameters in the governing equations of motion is denoted by [image: there is no content] and is divided in three parts, [image: there is no content], where [image: there is no content], [image: there is no content], and [image: there is no content] denote the unknown parameters in matrixes [image: there is no content], [image: there is no content], and [image: there is no content], respectively. The unknown parameter [image: there is no content] enters linearly in the matrixes as in the governing equations of motion (see Equations (14)–(19)). The vector [image: there is no content] is assumed to be bounded and belongs to a neighborhood with nominal value [image: there is no content] and radius [image: there is no content]. In other words, [image: there is no content], [image: there is no content], and [image: there is no content], for some known values [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], and [image: there is no content]. In the case of active vibration control, [image: there is no content], [image: there is no content], and [image: there is no content].



It should be noted that [image: there is no content] is constant (but unknown) and diagonal with positive arrays in these research’s cases, such that [image: there is no content] is positive definite with known bounds.



To achieve zero tracking error, new state variables are introduced


[image: there is no content]



(31)






[image: there is no content]



(32)




in which [image: there is no content] and [image: there is no content] is an arbitrary positive definite matrix. Note that if [image: there is no content] tends to zero, [image: there is no content] will converge to [image: there is no content].



To evaluate the control algorithm’s performance for a system with unknown parameters and bounded disturbance, two penalty signals are introduced in what follows. These signals optimize the energy usage and the vibration overshoot.


[image: there is no content]



(33)




in which [image: there is no content] is [image: there is no content]. [image: there is no content] and [image: there is no content] are weighting matrixes.



The solution to the problem of robust adaptive control of the system is defined as follows.



Definition 1.

The adaptive tracking control is said to be globally solvable for the equations of motion (30), if for any smooth and bounded tracking signal [image: there is no content]with continuous time derivative, at least, up to order two, a state feedback law


[image: there is no content]



(34)




exists such that

	(i) 

	
[image: there is no content], [image: there is no content]and [image: there is no content]are bounded for any [image: there is no content].




	(ii) 

	
for any bounded disturbance [image: there is no content]and [image: there is no content], the following inequality holds for some positive numbers [image: there is no content], [image: there is no content], [image: there is no content]and [image: there is no content]


∫0T‖ℋ(t)‖dt≤2V(0)+γ2∫0T(‖D2‖+‖ξ¨d‖2+‖ξ˙d‖2+1β2‖p˙G‖)dt+α2∫0T(2pKR+ϵ0)‖ϕ˙K‖dt



(35)




as long as [image: there is no content]is square integrable and [image: there is no content]is absolutely integrable. [image: there is no content]is the vector of estimates of the unknown parameters, which is updated by an adaptation law,




	(iii) 

	
when the disturbance is zero at all times, [image: there is no content]and [image: there is no content](the regulation control problem), [image: there is no content]converges to zero asymptotically.











Note that if [image: there is no content] tends to zero, [image: there is no content] and [image: there is no content] converge to zero, too.



We introduce the control law as:


[image: there is no content]



(36)







As stated before, the unknown parameters enter linearly in the system’s equations, so two new matrixes [image: there is no content] and [image: there is no content] are defined as


[image: there is no content]



(37)







In the FGM micro-beam system [image: there is no content] can be obtained as


[image: there is no content]



(38)







Also, the adaption law for the system is defined as


[image: there is no content]



(39)




where [image: there is no content] is an arbitrary matrix that satisfies the relation [image: there is no content] and [image: there is no content] is maximum singular value of a matrix.



[image: there is no content] is the smooth projection as


[image: there is no content]



(40)




where


[image: there is no content]



(41)




and [image: there is no content]. [image: there is no content] is the identity matrix of appropriate size and [image: there is no content] is an arbitrary positive real number. The value of [image: there is no content] affects the adaptation’s convergency speed. It should be mentioned that the adaptive law would not let the estimate [image: there is no content] leave the compact set [image: there is no content].



Theorem 1.

Consider the system (30). By choosing the control law (36) alongside the adaptation law (39), then the adaptive control problem is stable as described in Definition 1.





Proof. 

Consider the positive definite function


[image: there is no content]



(42)




where [image: there is no content]. The derivative of the function [image: there is no content] with respect to time is


V˙=x˜2TMx˜˙2+x˜1TKx˜˙1+p˜KTA−1(p^˙K−p˙K) =x˜2TM(pMN)ξ¨r−x˜2TM(pM)ξ¨r+x˜2TG(pGN)ξ˙−x˜2TG(pG)ξ˙+x˜2T(−R−1x˜1+ω) +x˜1TKx˜˙1+x˜2ΓKp˜K+p˜KTA−1(p^˙K−p˙K)



(43)







If [image: there is no content] then


x˜2TM˜ξ¨r+x˜2TG˜ξ˙=x˜2T[M˜G˜][(−Λx˜˙1)Tx˜˙1T]T+x˜2TM˜ξ¨d+x˜2TG˜ξ˙d≤δ22ϵ12x˜2Tx˜2+ϵ122[x˜˙1Tx˜1T][ΛTΛ+I00ΛTΛ][x˜˙1x˜1]+δ22ϵ12x˜2Tx˜2+ϵ122‖ξ¨d‖2+ϵ122‖ξ˙d‖2



(44)




where [image: there is no content]. Equation (39) has these properties [48]

	(a)

	
[image: there is no content]




	(b)

	
[image: there is no content] is Lipschitz and continuous




	(c)

	
[image: there is no content]




	(d)

	
[image: there is no content].









If the initial estimate [image: there is no content] is in the neighborhood [image: there is no content] and [image: there is no content]; then by virtue of property (d),


[image: there is no content]



(45)







Using Equations (44) and (45), we derive


V˙≤δ2ϵ12x˜2Tx˜2+ϵ122[x˜˙1Tx˜1T][ΛTΛ+I00ΛTΛ][x˜˙1x˜1]+ϵ122(‖ξ¨‖d2+‖ξ˙d‖2)+x˜2T(−R−1x˜1+ω)+x˜1TKx˜−p˜KTA−1p˙K



(46)







We introduce a new variable [image: there is no content] less than [image: there is no content] that satisfies Riccati-like inequality:


[image: there is no content]



(47)




where [image: there is no content] is an arbitrary matrix. This is a linear matrix inequality, which could be solved by iterative numerical methods.



Using Equation (47), it could be concluded that the new defined function [image: there is no content] satisfies the following inequality


V=V˙+12(x˜TQx˜+(R−1x˜1)TR(R−1x˜1))−12α2 (2pKM+ϵ)‖p˙K‖−12γ2(‖ω‖2+‖ξ¨d‖2+‖ξ˙d‖2+1β2‖p˙G‖2)≤δ2ϵ12x˜2Tx˜2+ϵ122[x˜˙1Tx˜1T][ΛTΛ+I00ΛTΛ][x˜˙1x˜1]+12(ϵ12−γ2)(‖ξ¨d‖2+‖ξ˙d‖2)−x˜2TR−1x˜1+12(R−1x˜1)TR(R−1x˜1)+x˜2Tω−12γ2‖ω‖2+12[x˜˙1Tx˜1T]([0KK0]+Q)[x˜˙1x˜1]−p˜KTA−1p˙K−12α2 (2pKM+ϵ)‖p˙K‖



(48)







Using the property (a) of the adaptation algorithm,


p˜KTA−1p˙K−12α2 (2pKM+ϵ)‖p˙K‖≤‖p˜K‖σ(A−1)‖p˙K‖−12α2 (2pKM+ϵ)‖p˙K‖≤σ(A−1)(2pKM+ϵ)‖p˙K‖−12α2 (2pKM+ϵ)‖p˙K‖=(σ(A−1)−12α2)(2pKM+ϵ)‖p˙K‖=0



(49)




because it was set that [image: there is no content]. On the other hand,


x˜2Tω−γ22‖ω2‖=−γ22‖ω−x˜2γ2‖2+12γ2‖x˜2‖2



(50)







As a consequence of these recent results and substituting them in Equation (48),


[image: there is no content]



(51)







The inequality (35) in Definition 1 is a result of integrating the above equation.



If [image: there is no content], then


[image: there is no content]



(52)







As stated before, matrix [image: there is no content] is bounded and positive definite, so that there exists a [image: there is no content] function [image: there is no content] and [image: there is no content] that satisfy [49]


[image: there is no content]



(53)







The result is that [image: there is no content] is bounded. The boundedness of [image: there is no content] is a result of the adaptive projection law. By using Barbalat’s lemma, it could be concluded that [image: there is no content] converges to zero with time. ☐





Remark 1.

It should be noted that by using this control algorithm, only the unknown parameters in the matrix [image: there is no content]are being updated. So the normalized parameter [image: there is no content]is not being updated, but, the parameters [image: there is no content], [image: there is no content]and [image: there is no content]are being updated. The results of simulating the estimations updates will be presented in the next section.






4. Simulations and Discussion


In this section, the results of numerous numerical simulations are presented to demonstrate the performance of the proposed active control algorithm for the functionally graded material micro-switch.



Table 2 lists the material properties used in the simulations, and Table 3 specifies the geometric parameters of the micro-switch. As noted before, the parameters of the system are unknown but the maximum errors compared with the actual values are known. As can be seen from Table 3, the dielectric gaps for the bottom and top electrodes are not the same.



Table 2. Material properties of the FG micro-switch.







	
Material Property

	
Silicon Nitride (Si3N4)

	
Nickel (Ni)






	
Density ([image: there is no content])

	
[image: there is no content]

	
[image: there is no content]




	
Young’s modulus ([image: there is no content])

	
[image: there is no content]

	
[image: there is no content]




	
Shear modulus ([image: there is no content])

	
[image: there is no content]

	
[image: there is no content]




	
Poisson’s ratio

	
[image: there is no content]

	
[image: there is no content]










Table 3. Geometric parameters of the FG micro-switch.
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4.1. Safe Region for Applied Voltage


The validity of the model presented by Equation (2) is verified by comparing the simulation results with the experimental data.



Ebrahim et al. [50] found the maximum amplitude of a clamped-clamped micro-beam of [image: there is no content] length. The applied voltage is [image: there is no content], in which [image: there is no content] is the oscillation frequency. The equivalent rigidity of the micro-beam is [image: there is no content], the non-dimensional axial force is 76.3, the damping ratio is [image: there is no content], and the initial gap between two electrodes is [image: there is no content]. The results of numerical simulations (five modes approximation) of this paper are compared with the experimental results and are presented in Figure 2.


Figure 2. Comparison of the results of numerical simulations in this paper with the experimental results [50].



[image: Micromachines 08 00263 g002]






The response of the system when the applied voltage increases is also compared with experimental results demonstrated by Hu et al. [51]. Table 4 presents the tip deflection of a clamped-free micro-beam (five modes approximation) with [image: there is no content], [image: there is no content], [image: there is no content] and the initial gap is [image: there is no content].



Table 4. Comparison of the results of numerical simulations in this paper with the experimental results [51].







	
Applied Voltage

	
This Paper

	
Experimental Data

	
Error (%)






	
0

	
92

	
92.415

	
0.451087




	
20

	
90.41261

	
91.018

	
0.669583




	
40

	
85.21468

	
84.232

	
1.153177




	
45

	
81.97923

	
81.437

	
0.661419




	
50

	
79.51302

	
78.643

	
1.09419




	
55

	
75.30798

	
74.651

	
0.872396




	
60

	
71.47106

	
70.06

	
1.974304




	
64

	
64.40234

	
62.874

	
2.373112




	
67

	
59.20658

	
57.485

	
2.907757




	
69

	
52.79904

	
51

	
3.407331










As can be seen from Figure 2 and Table 4, the model presented in this paper is in good agreement with various experimental results.




4.2. Safe Region for Applied Voltage


The electrostatic actuation of micro-beams results in highly nonlinear dynamics, leading to a saddle-node bifurcation, called pull-in. The performance of electrostatic actuators is severely limited by the pull-in instability, which is due to electrostatic force increasing more rapidly than the spring force of the micro-beam [52]. In the active vibration control of micro-beams using electrostatic actuation, the value of pull-in voltage should be computed. Applied voltage of electrodes should be saturated to avoid the pull-in instability. For this reason, the controller gains are chosen such that the applied voltage of each electrode is less than 90% of the pull-in voltage. Table 5 presents the pull-in voltage for clamped-clamped and clamped-free boundary conditions for different volume fraction indices. It should be noted that the values in Table 5 are static pull-in voltages that are larger than pull-in voltages in a controlled system [53].



Table 5. Static pull-in voltage for C-C and C-F boundary conditions and various volume fractions.







	
Boundary Conditions

	
The Top Electrode

	
The Bottom Electrode




	
[image: there is no content]
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[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]






	
C-C

	
261.0 V

	
267.8 V

	
285.5 V

	
160.6 V

	
165.5 V

	
173 V




	
C-F

	
43.0 V

	
44.1 V

	
49.9 V

	
25.3 V

	
24.7 V

	
26.5 V











4.3. Multimode Simulation of the Controlled System in Regulation


The uncontrolled dynamic and controlled responses of the system for the mid-point of C-C and end-point of C-F boundary conditions are presented in Figure 3. The controlled system response converges to the desired trajectory [image: there is no content] in less than [image: there is no content] s. The design of the presented controller is based on the first two vibrational modes. To show the proper performance of the designed controller, higher vibration modes of the system are considered and the five-mode approximation responses of the uncontrolled and controlled systems are demonstrated in Figure 3c,d. The initial estimates of dimensionless parameters have 5% error. It is seen that the nonlinear vibrations are suppressed via the imposed controller. The dynamic response of the second to fifth coordinates for the C-C boundary conditions are shown in Figure 4. All the coordinates converge to zero, which is the desired signal.


Figure 3. Controlled and uncontrolled dynamic response using one mode approximation for: (a) clamped-clamped and (b) clamped-free boundary conditions and five modes approximation for: (c) clamped-clamped and (d) clamped-free boundary conditions.



[image: Micromachines 08 00263 g003a][image: Micromachines 08 00263 g003b]





Figure 4. Desired path and controlled time response of second to fifth modes for clamped-clamped boundary condition: (a) the second mode, (b) the third mode, (c) the fourth mode and (d) the fifth mode.



[image: Micromachines 08 00263 g004]






Figure 5 depicts the voltage values of the two electrodes. Based on the proposed control algorithm, only one of the voltage values is non-zero to decrease the control efforts.


Figure 5. Supplied voltage of two electrodes for: (a) clamped-clamped and (b) clamped-free boundary conditions.



[image: Micromachines 08 00263 g005]






The adaptive projection law is updating estimates of the unknown dimensionless parameters. The estimates belong to the known closed sets at all times. If the desired signal has enough dissimilar frequencies, the estimates will converge to exact values [54]. The necessary number of frequencies can be found by analyzing the complexity of the system. In the case of this paper, the desired signal should have seven or more dissimilar frequencies such that the estimates of parameters converge to exact values. This is a result of studying the results of various simulations. It should also be mentioned that the measure of unmodeled forces would affect the convergence rate. The estimations of [image: there is no content], [image: there is no content] and [image: there is no content] are plotted for the C-F boundary conditions in Figure 6 to show how the adaptive projection law operates.


Figure 6. Estimation of the parameters; (a) [image: there is no content], (b) [image: there is no content], and (c) [image: there is no content].
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4.4. Tracking the Non-Zero Desired Dynamical Response


Figure 7 depicts the dynamic responses of the end-point deflection of the C-F micro-switch for one mode and five modes approximation of the controlled system. The desired signal is considered as


[image: there is no content]



(54)






Figure 7. (a) Tip deflection of the clamped-free micro-switch for using the first mode; (b) tip deflection of the clamped-free micro-switch for using the first five modes; and (c) the deflection of the clamped-free micro-switch.



[image: Micromachines 08 00263 g007]






Two vibrational modes are used to obtain the control law. In this study, [image: there is no content]. The error of the initial estimates of the parameters is 10%. The disturbance is a periodic signal whose amplitude is a random multiplier from 0.5 to 0.8 of the designed input and its period is three times smaller than the first natural frequency of the C-F micro-switch. The displacement of all points of the micro-switch is simulated by five modes and presented in Figure 7c. In this three-dimensional figure, the switch displacement is plotted as a function of axial position and time of the micro-switch. This figure depicts how the micro-switch is deflected through time.




4.5. Energy Consumption


The applied energy for two micro-switches with different boundary conditions is plotted in Figure 8a. The energy is defined as [image: there is no content]. It can be seen that the consumption of energy is less for clamped-clamped switch, which is due to the higher structural stiffness of this micro-switch.


Figure 8. (a) Applied energy for tracking zero desired path; (b) increase in the settling time due to uncertainties in the system parameters; (c) the dynamic response of the clamped-clamped micro-switch subjected to an impulse; and (d) supply voltage of two electrodes under the effect of an impulse.
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4.6. Effect of Error of Initial Estimates of the Parameters


If the errors in initial estimates of the dimensionless parameters increase, the 5% settling time (when the dynamic response of the system is in the 5% neighborhood of the desired trajectory) of the system response will also increase. The effect of the error of initial estimates on the increasing settling time is investigated in Figure 8b. If the error of initial estimates of dimensionless parameters is 50%, the settling time of the system will be 50% higher. The adaptive projection law would compensate for the error of initial estimates of the parameters as long as the bounds for these parameters are known. However, the estimates may not converge to the exact values.



As a design tip, as the error increases, the adaptation gains should be lowered; otherwise, a higher frequency measurement device is needed. The low-frequency measurement device, high adaptation gains, and significant errors lead to an unstable controlled system.




4.7. Effect of Impulse on the System


The effect of the impulse is investigated in Figure 8c,d. The dynamic response of the uncontrolled system and the controlled system for C-C boundary conditions is shown in Figure 8c. The value of impulse is [image: there is no content], which is applied at [image: there is no content]. The higher values of impact lead to unacceptable deflections. The proposed active vibration control algorithm could absorb the vibration due to the impulse and initial conditions. Figure 8c depicts the dynamic response of the controlled system when the impulse value is [image: there is no content], and the desired signal is equal to zero. The boundary conditions are C-C, and the error of the initial estimates of the dimensionless parameters is 10%. The supplied voltages of the two electrodes for the controlled system are demonstrated in Figure 8d. As shown in Figure 8d, the controlled system could compensate for the effect of impulse by regulating the applied voltages of the electrodes instantly.




4.8. Effect of Material Volume Fraction


As the volume fraction index increases, the stiffness of the material increases, too. Figure 9a demonstrates the dynamic response of the uncontrolled C-C micro-switch for different volume fractions. The vibration suppression of the system is plotted in Figure 9b for three various volume fraction indices. In the case of this study, the desired signal is zero. As can be seen from Figure 9b, the dynamic response of the uncontrolled system depends on the volume fraction index, while the dynamic response of the controlled system is the same for various volume fraction indices. The active vibration control strategy is robust to changes in material properties as long as the initial estimates of the dimensionless parameters are not too inaccurate. The controlled system compensates for the change in material properties by adjusting the applied voltage of the two electrodes.


Figure 9. Deflection of the clamped-clamped micro-switch for various volume fractions: (a) the uncontrolled system and (b) the controlled system.
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5. Conclusions


This paper has investigated the multi-mode robust active vibration control of the FG micro-switch. The modified couple stress theory, which introduces a length-scale parameter, was used to derive the governing equations of motion. The FGM micro-switch was under the influence of electrostatic and intermolecular forces. Two sets of boundary conditions for the micro-switch were considered: clamped-clamped and clamped-free. The discretized model of the partial differential equation of motion was obtained using the modal analysis method. An active vibration control algorithm was proposed to overcome the system parameter uncertainties and unmodeled forces, while the deflection of the micro-switch should converge to the desired dynamical response. The inputs of the controlled system were the voltage values of the two electrodes and a nonlinear robust adaptive controller based on the first two modes of vibrations was introduced. The simulations for higher modes were demonstrated to show the decent performance of the designed controller. For increasing usability of the presented micro-switch, many remarks were established. By introducing a performance signal, high gain input voltages were avoided. Also, the controller gains were chosen such that the static pull-in voltage was avoided, too.



The controller was designed for two modes (of the modal analysis method) approximation, while a five-mode approximation of deflection was used to simulate the dynamic response of the system to demonstrate the performance of the proposed active control algorithm. The controlled system can track non-zero dynamical behavior while the undesired vibrations were being suppressed.



The effects of the error of estimates of the system parameters were also studied. It was concluded that this increase would result in an increase in the settling time of the controlled system. In this case, the parameter estimation should be updated with a lower rate.



Simulations of dynamical responses of the system showed that larger volume fraction indices of FG materials led to higher natural frequencies. However, the controlled system was robust, and the dynamic response of the controlled system was almost the same for various volume fraction indices.



In addition, the vibrational response of the system after an impulse was studied. By comparing the dynamic response of the uncontrolled and controlled systems, it was concluded that the controlled system was more robust to impulses. The controlled system could compensate for the effect of the impulse by instantly regulating the applied voltages of the electrodes.



The phase portrait of each coordinate was plotted to demonstrate the stability of the controlled micro-switch. Each coordinate and its time derivative converged straight to zero except for the first modal coordinate, which followed the desired dynamical response.
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