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Abstract: Micro functionally graded material (FGM) structures are able to have proper functions in
vast environments. In this paper, nonlinear governing equations of the size-dependent micro-switch
are derived using modified couple stress theory. Effective external forces including fringing field of
electrostatic force and Casimir force are considered. Two electrodes cooperate to track the in-plane
motions of the micro continuous system by tuning the supply voltages of the electrostatic force.
An adaptive projection law is proposed to compensate for the effect of error in the initial estimates
of system parameters. To achieve more reliability, a robust active vibration strategy is presented to
withstand external disturbances. At any time, just one electrode is operational, and optimization is
performed to decrease the controller gains. The highly nonlinear inputs have a singularity in the
dynamics of the system, which are known as pull-in instability, so for safety, the controller gains are
chosen such that the pull-in voltage is avoided. The dynamic response of the system is simulated
using a single mode or multiple modes to validate the effectiveness of the presented vibration control
approaches. The effects of error of the initial estimate of system parameters, the effect of impulse and
the influences of various volume fractions are studied.

Keywords: multimodal design; active vibration control; unmodeled forces and impulse; robust
adaptive

1. Introduction

Micro-Electro-Mechanical Systems (MEMS) have received extensive interest in the past two
decades [1,2]. Due to their great advantages such as small size or mass, low cost of production, low
power consumption, and easy integration into other systems, they are commonly used in numerous
engineering devices, e.g., micro-actuators [3], micro-switches [4], atomic force microscopes [5], and
micro-resonators [6]. Numerous analytical, numerical and experimental studies have been performed
by researchers on the static and dynamic behaviors of such systems. Modeling of electrical and
mechanical parts and their coupling is required in this field.

One of the important issues in the design of MEMS devices is the material selection with
appropriate properties. Pure metals are of little use in such engineering applications because of
the inconsistent properties. For instance, an application may require a material that is ductile as well as
hard; there is no such material in nature. As a solution, the combination of one metal with other metals
or non-metals (usually a ceramic) is used. Functionally Graded Material (FGM) can indeed be described
as a class of advanced materials characterized by continuous variation of properties over volume.
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This type of material provides the specific benefits of both materials (metal and non-metal). The FGM
concept originated in 1984 during the space plane project [7]. FGM structures play a significant role in
various industrial fields, for instance energy engineering, optics, aerospace, nuclear energy, etc. [8].
Many kinds of research have already been reported on the static behavior [9], buckling analysis [10,11],
contact problems [12], and free vibration behavior of FGM beams [13]. Most recently, Witvrouw
and Mehta [14], Fu et al. [15], and Rahaeifard et al. [16] proposed the idea of using functionally
graded materials in micro-electro-mechanical structures. Witvrouw and Mehta [14] designed and
studied the process of producing MEMS structure layers made of polycrystalline silicon–germanium
(poly-SiGe) on top of a standard 0.35 µm complementary metal-oxide-semiconductor (CMOS) process.
Rahaeifard et al. [16] studied the resonant frequencies and sensitivities of first two modes atomic force
microscope FGM cantilever.

Structures used in MEMS have a length on the order of microns. After many experimental
studies, it seems that a new theory is needed to analyze such systems. The size-dependent static
and vibration behaviors in micro-scales have experimentally been confirmed [17–20]. Torsion and
tension experiments [21] and micro-bend test [22] have been designed to prove the size-dependent
behaviors. The classical continuum mechanics theories cannot predict the size-dependent behaviors
that occur in micro-scale structures. On the other hand, non-classical continuum theories such as the
modified couple stress theory can interpret the size-dependent behaviors. Governing equations of
motion for linear Euler–Bernoulli [23,24], nonlinear Euler–Bernoulli [25,26], linear Timoshenko [27],
and nonlinear Timoshenko functionally graded micro-beams [25], using modified couple stress theory,
have been derived. Farokhi et al. [28] presented a new size-dependent nonlinear model for the
analysis of the behavior of carbon nanotube-based resonators. Ghayesh et al. [29] investigated the
size-dependent dynamical performance of a microgyroscope via the use of the modified couple stress
theory. Giunta et al. [30] proposed a unified formulation of one-dimensional beam models for the free
vibration analysis of functionally graded (FG) beams. Via their approach, higher-order models that
account for non-classical effects such as shear deformations and in- and out-of-plane warping can be
formulated straightforwardly.

Many studies have been performed by different researchers on the vibration behavior of
non-classical micro functionally graded beams. Mohammadi et al. [31] studied the mechanical behavior
of an FG cantilever micro-beam subjected to nonlinear electrostatic pressure and temperature changes.
Uncontrolled variation of electrostatic voltage may lead to instability in the dynamical behavior.
Jia et al. [32,33] studied free vibration and the pull-in instability of functionally graded poly-SiGe
micro-beams. Also, the free vibration characteristics of micro-switches under combined electrostatic,
intermolecular forces and axial residual stress have been studied [34].

Proper performance of many MEMS devices depends on appropriate use of MEMS actuators.
Magnetic, piezoelectric, thermal, optical and electrostatic devices are examples of on-chip actuators
in MEMS devices. These actuators are used to achieve better dynamical behavior. There are many
types of research concerning the control of MEMS [35–40]. The aims of the control algorithms are
to establish a regulation [36,37,40] or a tracking [41] control law based on the linear [38,40] or the
nonlinear [39,41,42] dynamic model of the micro-beam, where the supply voltage is considered a
control input. MEMS are driven in both open-loop and closed-loop procedures. In addition, techniques
for vibration absorbing can be divided into passive, semi-active and active control. The final step
for improving accuracy and speed of response in the active vibration control is the introduction of
feedback, e.g., closed-loop control. Sun et al. [43] designed a closed-loop controller for a 2-DOF
capacitive force sensor. Sun et al. [44] studied the design, fabrication and control problem of a two-axis
electrostatic micro-actuator. Nguyen and Krylov [41] developed a feedback controller to suppress the
vibrations of a micro-electro-mechanical clamped-free beam operated at parametric resonances.

Active vibration control usually involves stability and robustness issues. In this paper, robust
active vibration control of a functionally graded micro-switch is investigated. The boundary conditions
of the micro-switch are assumed to be clamped-clamped (C-C) or clamped-free (C-F) and the system
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is under a combined action of Casimir force and electrostatic force in the framework of the modified
couple stress theory. The supply voltage is considered the control input, and the vibration amplitude
and the velocity are considered the outputs of the system. A robust adaptive feedback controller,
which guarantees the proper transient dynamic response as well as steady state response while the
system is under the influence of unknown bounded forces and the dimensionless parameters are
unknown, is presented. This control algorithm ensures zero output tracking error when parameters
are constant, and disturbances are zero. It also guarantees zero regulation error when the parameters
are time-varying, and the dynamical disturbances are bounded. Several numerical simulation results
are presented to verify the analytical results. Uncertainty in the system parameters is considered in
these simulations. The performance of the designed control is shown for single-mode and multi-mode
vibrational system.

2. Dynamic Modeling and Equations of Motion

2.1. Continuous Modeling

As presented in Figure 1, the micro-switch is modeled as a functionally graded Euler–Bernoulli
micro-beam with cross section area A, length L, width b and thickness h is considered. The variable
z indicates the distance of a point from the neutral axis. It should be noted that the physical neutral
plane is not the same as the geometric middle plane for the functionally graded micro-beams, due to
the inhomogeneous material properties in the lateral direction [23]. It is assumed that the functionally
graded beam properties Γ(z̃) vary along the lateral coordinate based on a power law, i.e.,

Γ(z̃) = Γ1 +

(
z̃
h

)n
(Γ2 − Γ1) (1)

where Γ = ρ, µ, E and ν, represent the density, the shear modulus, the elastic modulus and the
Poisson’s ratio, respectively; subscripts 1 and 2 refer to the two basic constituent materials, usually a
ceramic and a metal. The power index n determines the type of the variation of the properties along
the lateral direction.
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Figure 1. Functionally graded material (FGM) micro-switch model and the electrodes configuration:
(a) clamped-free boundary condition and (b) diagram of the micro-switch.

Using the modified couple stress theory and the Hamilton principle, the following
non-dimensional governing equation of motion is obtained [33]:

α1
∂2w

∂t2 + α2
∂4w
∂x4 + δα3

∂2w
∂x2

∫ 1

0

(
∂w
∂x

)2
dx + α4

∂w
∂t

+ δα5
∂2w
∂x2 = q (2)
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where δ = 1 for the clamped-clamped (C-C) boundary conditions and δ = 0 for the clamped-free (C-F)
boundary conditions. Some authors [45–47] studied the effects of curvature-related and inertial-related
nonlinearities on the vibrational response for cantilever beams. These effects are not considered in this
paper. The normalized external lateral force per unit length, q, is expressed as

q =
A[

lb − w
]2 V2

b +
B[

lb − w
]V2

b −
A[

lt + w
]2 V2

t −
B[

lt + w
]V2

t +
C[

lb − w
]4 −

C[
lt + w

]4 (3)

In Equations (2) and (3) x, t, w, Vt and Vb are the non-dimensional form of longitudinal
position, time, transverse deflection, the applied voltage for the top electrode and the bottom
electrodes, respectively. lb and lt denote normalized distances between the FGM micro-switch from
the top electrode and the bottom electrode, respectively. The electrostatic forces considering the

first fringing field correction are AV2
t /
[
lt − w

]2
+ BV2

t /
[
lt − w

]
and the Casimir force is denoted by

C/
[
lt − w

]4
[33]. A, B, C, α1, α2, α3, α4, α5 are constants that depend on material properties and the

geometry of the micro-switch. These variables are defined as follows:

x =
x
L

, w =
w
h

, t =
t
tc

α1 =
mh
t2
c

, α2 =
Hh
L4 , α3 = −H1h3

2L4 , α4 =
cdh
tc

, α5 = −Nah
L2

m =
∫

A
ρ(z̃)dA, H1 = (EA)eq =

∫
A

Ê(z)dA, H2 = (EQ)eq =
∫

A
Ê(z)zdA

H3 = (EI)eq =
∫

A
Ê(z)z2dA, H4 = (µA)eq =

∫
A

µ̂(z)dA

H = H1z̃2
c − 2H2z̃c + H3 + H4l2 − (H1z̃c − H2)

2

H1

A =
ε0b
2h2 , B =

0.65ε0

2h
, C =

π2hcb
240h4

(4)

in which the effective modulus is obtained as Ê = E for a narrow beam (b < 5h) and Ê = E/
(
1− ν2)

for a wide beam (b ≥ 5h). The variable h = 1.055 × 10−34 Js is the reduced Planck’s constant,
c = 3 × 108 ms−1 is the speed of light in a vacuum, and tc is the time constant. The variables
tc, cd, Na and l are the time constant, the damping coefficient, the axial residual force and the material
length scale parameter, respectively.

The boundary conditions for the C-C micro-beam become

w(0) =
∂w
∂x

(0) = w(1) =
∂w
∂x

(1) = 0 (5)

and the boundary conditions for C-F are

w(0) =
∂w
∂x

(0) =
∂2w
∂x2 (1) =

∂3w
∂x3 (1) = 0 (6)

The initial conditions are

w(x, 0) =
disp(x)

h
= disp(x)

∂w
∂t

∣∣∣∣
t=0

=
vel(x)

L
tc = vel(x)

(7)

In the following, the overbar notation will be omitted for brevity.
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2.2. Discretized Modeling

The discretized form of the partial differential equation of motion (2) and boundary conditions (5)
and (6) can be obtained using modal analysis technique. The transversal deflection of the switch can
be acquired by a convergent series of infinite terms and can be approximated by a series of finite
terms. The number of terms of the series specifies the approximation’s accuracy. The finite term series
could be easily used in a simulation program. The deflection is approximated by sum of finite smooth
functions as

w(x, t) =
m

∑
i=1

ξi(t)φi(x) (8)

where ξi(t) is the time-varying generalized displacement of the ith mode. φi(·) is the continuous mode
shape function of the ith mode and these functions are orthogonal over the domain [0, 1]. The ith
vibrational mode shape function of C-C boundary conditions (Equation (5)) takes the form

φi(x) = Ei[(cos(si) + cosh(si)) sin(six)− (sin(si) + sinh(si)) cos(six)

−(cosh(si) + cos(si))sinh(six) + (sinh(si) + sin(si)) cosh(six)]
(9)

in which si is a solution of equation cos(si) cosh(si) = 1. The ith mode vibrational shape function for
the boundary conditions (6) can be obtained as

φi(x) = Ei[(cos(si) + cosh(si)) sin(six)− (sin(si) + sinh(si)) cos(six)

−(cosh(si) + cos(si))sinh(six) + (sinh(si) + sin(si)) cosh(six)]
(10)

where si is a solution of equation cos(si) cosh(si) = −1.
For both sets of boundary conditions, the coefficient Ei. in mode shapes are chosen such that

∫ 1

0
(φi(x))2dx = 1 (11)

and the natural frequencies are related to si as

ωi = s2
i

√
H

mL4 (12)

The first five modes si (i = 1, . . . , 5 ), for C-C and C-F boundary conditions are presented in
Table 1.

Table 1. The first five modes for clamped-clamped and clamped-free boundary conditions.

Boundary Conditions s1 s2 s3 s4 s5

C-C 4.7300 7.8532 10.9956 14.1371 17.2787
C-F 1.8751 4.6941 7.8548 10.9955 14.1372

To obtain the discretized form, first, both sides of Equation (2) are multiplied by the function φi(·)
and then an integrating is performed over the set [0, 1]. The new governing equations of motion are
derived in the matrix form of

M
..
ξ(t) + G

.
ξ(t) + Kξ(t) = U(ξ, Vb, Vt) (13)

where ξ(t) = [ξ1(t), . . . , ξm(t)] is the time-varying generalized displacement vector. In this case, K and
G are m×m matrixes. These matrices are obtained as follows

M(i, j) = δijα1

∫ 1

0

(
φ̂i(x)

)2dx = δijα1 (14)
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G(i, j) = δijα4

∫ 1

0
φ̂2

i dx = δijα4 (15)

K1(i, j) = δijα2

∫ 1

0

(
φ̂
′′
i (x)

)2dx (16)

K2(i, j) = δijδα3 f (ξ)
∫ 1

0

(
φ̂′i(x)

)2dx (17)

K3(i, j) = δijδα5

∫ 1

0

(
φ̂′i(x)

)2dx (18)

K(i, j) = K1(i, j) + K2(i, j) + K3(i, j) (19)

where

f (ξ) =
m

∑
k=1

ξ2
k(t)

∫ 1

0

(
φ̂k(r)

)2dr =
m

∑
k=1

ξ2
k(t) (20)

The function in Equation (20) introduces nonlinearity in the governing equations of motion and
the initial conditions for the Equation (13) are evaluated as

ξi(0) =
∫ 1

0
disp(x)φ̂i(x)dx

.
ξ i(0) =

∫ 1

0
vel(x)φ̂i(x)dx

(21)

where ξ(t) = [ξ1(t), . . . , ξm(t)]
T and

.
ξ(t) = [

.
ξ1(t), . . . ,

.
ξm(t)]

T
.

By the use of the binomial series and the multi-nominal expansion, the nonlinear terms in
Equation (3) due to Casimir and the electrostatic forces can be expanded as

1

(g± w)2 =
1
2

∞

∑
k=0

∑
k1+k2+...+kn=k

(k + 1)!g−2−k

k1!k2! . . . km!
(∓1)k

m

∏
i=1

(ξiφi)
ki (22)

1
g± w

=
∞

∑
k=0

∑
k1+k2+...+kn=k

k!g−1−k

k1!k2! . . . km!
(∓1)k

m

∏
i=1

(ξiφi)
ki (23)

1

(g± w)4 =
1
6

∞

∑
k=0

∑
k1+k2+...+kn=k

(k + 3)!g−4−k

k1!k2! . . . km!
(∓1)k

m

∏
i=1

(ξiφi)
ki (24)

To simplify the forcing function vector U(ξ, Vb, Vt), three sets of functions are defined as

F1,±(k1, . . . , km; i) =
1
2

∫ 1

0

(k + 1)!g−2−k

k1!k2! . . . km!
(∓1)kφi

m

∏
j=1

φ
kj
j dx

= (∓1)k 1
2
(k + 1)!g−2−k

0
k1!k2! . . . km!

∫ 1

0
φi(x)

m

∏
j=1

φ
kj
j (x)dx

(25)

F2,±(k1, . . . , km; i) =
∫ 1

0

k!g−1−k

k1!k2! . . . km!
(∓1)kφi

m

∏
j=1

φ
kj
j dx

= (∓1)k k!g−1−k
0

k1!k2! . . . km!

∫ 1

0
φi

m

∏
j=1

φ
kj
j dx

(26)
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F3,±(k1, . . . , km; i) =
1
6

∫ 1

0

(k + 3)!g−4−k

k1!k2! . . . km!
(∓1)kφi

m

∏
j=1

φ
kj
j dx

= (∓1)k 1
6
(k + 3)!g−4−k

0
k1!k2! . . . km!

∫ 1

0
φi

m

∏
j=1

φ
kj
j dx

(27)

The external forcing vector is

U(i) =
∞
∑

k=0
∑

k1+k2+...+kn=k
ξk1

1 . . . ξkm
m [A V2

b F1,−(k1, . . . , km; i) + BV2
b F2,−(k1, . . . , km; i)

+CF3,−(k1, . . . , km; i)− AV2
t F1,+(k1, . . . , km; i)

−BV2
t F2,+(k1, . . . , km; i)− CF3,+(k1, . . . , km; i)]

(28)

The series in Equation (28) may only be expanded for four terms in this paper. As will be stated in
the control algorithm, there is no need for state space presentation of Equation (13). For the numerical
simulation procedure, Equation (13) is presented in state space form as

.
x1 = x2

.
x2 = −M−1Kx1 −M−1Gx2 + M−1U(x1, Vb, Vt) + M−1D

(29)

where x = [x1 x2]
T is the state vector of size 2 m.

3. Active Vibration Control of a Nonlinear System

Let us consider the nonlinear governing equation of motion (Equation (13)) with the desired
smooth tracking signal ξd(t), which is designed so that the deflection of the micro-switch follows a
desired signal. The tracking signal is continuous, has a continuous derivative and is bounded in time.
The material properties are assumed to be unknown and possibly time varying but belong to a closed
set. The nominal values of properties and the sets’ bounds are expected to be known.

An adaptive robust control algorithm will be designed for the nonlinear FGM micro-beam. In this
algorithm, vibrations of the micro-beam are being absorbed while the parameters of the system are
unknown and unmodeled external forces affect the system performance. In the next section, the control
algorithm for functionally graded material micro-switch’s dynamics model is simulated to verify
its effectiveness.

The governing equations of motion, as discussed in the previous section, could be written as

M(pM)
..
ξ(t) + G(pG)

.
ξ(t) + K(pK)ξ(t) = U(ξ, Vb, Vt) + D(t, ξ) (30)

where D denotes the vector of disturbances that acts independently in every channel of the system’s
inputs. In the active vibration control of the micro-beam system, D represents unknown external forces
or an unmodeled dynamic. The vector of disturbance forces D is assumed to be bounded. The vector
of unknown parameters in the governing equations of motion is denoted by p and is divided in three
parts, p =

[
pT

M pT
G pT

K
]T , where pM, pG, and pK denote the unknown parameters in matrixes M, G,

and K, respectively. The unknown parameter p enters linearly in the matrixes as in the governing
equations of motion (see Equations (14)–(19)). The vector p is assumed to be bounded and belongs
to a neighborhood with nominal value pN and radius pR. In other words, ‖pM − pMN‖ ≤ pMR,
‖pG − pGN‖ ≤ pGR, and ‖pK − pKN‖ ≤ pKR, for some known values pMN , pMR, pGN , pGR, pKN , and
pKR. In the case of active vibration control, pM = α1, pG = α4, and pK = [α2 α3 α5]

T .
It should be noted that M is constant (but unknown) and diagonal with positive arrays in these

research’s cases, such that M is positive definite with known bounds.
To achieve zero tracking error, new state variables are introduced

x̃1(t) = ξ(t)− ξd(t) (31)
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x̃2 =
.
x̃1 + Λ x̃1 = (

.
ξ+ Λ ξ)− (

.
ξd + Λ

.
ξd) =

.
ξ −

.
ξr (32)

in which
.
ξr =

.
ξd −Λ x̃1 and Λ is an arbitrary positive definite matrix. Note that if x̃1 tends to zero,

ξ̃(t) will converge to ξd(t).
To evaluate the control algorithm’s performance for a system with unknown parameters and

bounded disturbance, two penalty signals are introduced in what follows. These signals optimize the
energy usage and the vibration overshoot.

H =

[
Q

1
2 x̃

R
1
2 U

]
(33)

in which x̃ is [
.
x̃

T
1 x̃T

1 ]
T

. R > 0 and Q ≥ 0 are weighting matrixes.
The solution to the problem of robust adaptive control of the system is defined as follows.

Definition 1. The adaptive tracking control is said to be globally solvable for the equations of motion (30), if for
any smooth and bounded tracking signal ξd(d) with continuous time derivative, at least, up to order two, a state
feedback law

U = U(ξ,
.
ξ, ξd,

.
ξd, φ̂, t) (34)

exists such that

(i) ‖ p̂‖, ‖ξ‖ and ‖
.
ξ‖ are bounded for any t ≥ 0.

(ii) for any bounded disturbance D(ξ, t) and T ≥ 0, the following inequality holds for some positive numbers
γ, α, ε0 and V(0)

∫ T

0
‖H(t)‖dt ≤ 2V(0) + γ2

∫ T

0

(
‖D2‖+ ‖

..
ξd‖2 + ‖

.
ξd‖2

+ 1
β2 ‖

.
pG‖

)
dt + α2

∫ T

0
(2pKR + ε0)‖

.
φK‖dt (35)

as long as
.
ξd is square integrable and

.
φ is absolutely integrable. p̂ is the vector of estimates of the unknown

parameters, which is updated by an adaptation law,

(iii) when the disturbance is zero at all times,
.
p = 0 and

.
ξd =

..
ξd = 0 (the regulation control problem), x̃

converges to zero asymptotically.

Note that if x̃ tends to zero, ξ and
.
ξ converge to zero, too.

We introduce the control law as:

U = M(pMN)
..
ξr + G(pGN)

.
ξ + K( p̂K)ξ − R−1 x̃1 (36)

As stated before, the unknown parameters enter linearly in the system’s equations, so two new
matrixes ΓG and ΓK are defined as

ΓK(ξ) p̂K = K( p̂K)ξ (37)

In the FGM micro-beam system ΓK can be obtained as

ΓK(ξ) = [K1, K2, K3] (38)

Also, the adaption law for the system is defined as

.
p̂ = A Proj

(
−ΓT

K(ξ)x̃2, p̂K

)
(39)

where A > 0 is an arbitrary matrix that satisfies the relation σ
(

A−1) = α2/2, and σ(.) is maximum
singular value of a matrix.
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Proj(z, p̂) is the smooth projection as

Proj(z, p̂) =


z i f P( p̂) ≤ 0

z i f P( p̂) ≤ 0 and P ′( p̂)z ≤ 0[
I − P( p̂)P ′( p̂)TP ′( p̂)

‖P ′( p̂)‖2

]
z otherwise

(40)

where

P( p̂) =
( p̂− pN)

T( p̂− pN)− p2
R

ε2 + 2 ε pN
(41)

and P ′( p̂) = dP( p̂)/dp̂. I is the identity matrix of appropriate size and ε is an arbitrary positive real
number. The value of ε affects the adaptation’s convergency speed. It should be mentioned that the
adaptive law would not let the estimate p̂ leave the compact set ‖p− pN‖ ≤ pR.

Theorem 1. Consider the system (30). By choosing the control law (36) alongside the adaptation law (39), then
the adaptive control problem is stable as described in Definition 1.

Proof. Consider the positive definite function

V =
1
2

x̃T
2 Mx̃2 +

1
2

x̃T
1Kx̃1 +

1
2

p̃K A−1 p̃K (42)

where p̃K = p̂K − pK. The derivative of the function V with respect to time is

.
V = x̃T

2 M
.
x̃2+ x̃T

1K
.
x̃1 + p̃T

K A−1
( .

p̂K −
.
pK

)
= x̃T

2 M(pMN)
..
ξr − x̃T

2 M(pM)
..
ξr + x̃T

2 G(pGN)
.
ξ − x̃T

2 G(pG)
.
ξ + x̃T

2
(
−R−1 x̃1 + ω

)
+x̃T

1K
.
x̃1 + x̃2ΓK p̃K + p̃T

K A−1
( .

p̂K −
.
pK

) (43)

If δ = σ
([

M̃ G̃
])

then

x̃T
2 M̃

..
ξr + x̃T

2 G̃
.
ξ = x̃T

2

[
M̃ G̃

][ (
−Λ

.
x̃1

)T .
x̃

T
1

]T
+ x̃T

2 M̃
..
ξd + x̃T

2 G̃
.
ξd

≤ δ2

2ε2
1

x̃T
2 x̃2 +

ε2
1

2

[ .
x̃

T
1 x̃T

1

][ ΛTΛ + I 0
0 ΛTΛ

][ .
x̃1

x̃1

]
+

δ2

2ε2
1

x̃T
2 x̃2 +

ε2
1

2
‖

..
ξd‖2 +

ε2
1

2
‖

.
ξd‖2

(44)

where G̃ = G(pGN)− G(pG). Equation (39) has these properties [48]

(a) ‖ p̂− pN‖ ≤ pR + ε f or any t ≥ 0
(b) Proj(z, p̂) is Lipschitz and continuous
(c) ‖ p̃T Proj(z, p̂)‖ ≤ p̃z
(d) p̃T Proj(z, p̂) ≤ p̃z.

If the initial estimate p̂K(0) is in the neighborhood ‖ p̂K(0)− pKN‖ ≤ pKM and
.
p̂K = A Proj(z, p̂K);

then by virtue of property (d),
p̃T

K(ΓK x̃2 + A−1
.
p̂K) ≤ 0 (45)

Using Equations (44) and (45), we derive

.
V ≤ δ2

ε2
1

x̃T
2 x̃2 +

ε2
1

2

[ .
x̃

T
1 x̃T

1

][ ΛTΛ + I 0
0 ΛTΛ

][ .
x̃1

x̃1

]

+
ε2

1
2

(
‖

..
ξ‖d

2 + ‖
.
ξd‖2

)
+ x̃T

2

(
−R−1 x̃1 + ω

)
+ x̃T

1Kx̃− p̃T
K A−1 .

pK

(46)
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We introduce a new variable γ less than ε1 that satisfies Riccati-like inequality:[
0 K
K 0

]
+ ε2

1

[
ΛTΛ + I 0

0 ΛTΛ

]
+ Q−

[
In

ΛT

](
R−1 − 2δ2 + 1

ε2
1

In

)[
In Λ

]
≤ 0 (47)

where K > 0 is an arbitrary matrix. This is a linear matrix inequality, which could be solved by iterative
numerical methods.

Using Equation (47), it could be concluded that the new defined function V satisfies the
following inequality

V =
.
V + 1

2 (x̃TQx̃ +
(

R−1 x̃1
)T R

(
R−1 x̃1

)
)− 1

2 α2 (2pKM + ε)‖ .
pK‖

− 1
2 γ2
(
‖ω‖2 + ‖

..
ξd‖2 + ‖

.
ξd‖2 + 1

β2 ‖
.
pG‖2

)
≤ δ2

ε2
1

x̃T
2 x̃2 +

ε2
1

2

[ .
x̃

T
1 x̃T

1

][ ΛTΛ + I 0
0 ΛTΛ

][ .
x̃1

x̃1

]
+ 1

2
(
ε2

1 − γ2)(‖ ..
ξd‖2 + ‖

.
ξd‖2

)
− x̃T

2 R−1 x̃1 +
1
2
(

R−1 x̃1
)T R

(
R−1 x̃1

)
+x̃T

2 ω− 1
2 γ2‖ω‖2 + 1

2

[ .
x̃

T
1 x̃T

1

]([ 0 K
K 0

]
+ Q

)[ .
x̃1

x̃1

]
− p̃T

K A−1 .
pK

− 1
2 α2 (2pKM + ε)‖ .

pK‖

(48)

Using the property (a) of the adaptation algorithm,

p̃T
K A−1 .

pK −
1
2

α2 (2pKM + ε)‖ .
pK‖ ≤ ‖ p̃K‖σ

(
A−1

)
‖ .

pK‖ −
1
2

α2 (2pKM + ε)‖ .
pK‖

≤ σ
(

A−1
)
(2pKM + ε)‖ .

pK‖ −
1
2

α2 (2pKM + ε)‖ .
pK‖ =

(
σ
(

A−1
)
− 1

2
α2
)
(2pKM + ε)‖ .

pK‖ = 0
(49)

because it was set that σ
(

A−1) = 1
2 α2. On the other hand,

x̃T
2 ω− γ2

2
‖ω2‖ = −γ2

2
‖ω− x̃2

γ2 ‖
2
+

1
2γ2 ‖x̃2‖2 (50)

As a consequence of these recent results and substituting them in Equation (48),

V ≤ 1
2

xTQx ≤ 0 (51)

The inequality (35) in Definition 1 is a result of integrating the above equation.
If ω =

.
ξd =

..
ξd =

.
p = 0, then

.
V ≤ −1

2
xTQx (52)

As stated before, matrix M is bounded and positive definite, so that there exists a K∞ function
kl(x, φ) and ku(x, φ) that satisfy [49]

kl(‖x‖, ‖φ‖) ≤ V(‖x‖, ‖φ‖) ≤ ku(‖x‖, ‖φ‖) (53)

The result is that x is bounded. The boundedness of φ is a result of the adaptive projection law.
By using Barbalat’s lemma, it could be concluded that x converges to zero with time. �

Remark 1. It should be noted that by using this control algorithm, only the unknown parameters in the matrix
K are being updated. So the normalized parameter α4 is not being updated, but, the parameters α2, α3 and α5 are
being updated. The results of simulating the estimations updates will be presented in the next section.
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4. Simulations and Discussion

In this section, the results of numerous numerical simulations are presented to demonstrate
the performance of the proposed active control algorithm for the functionally graded
material micro-switch.

Table 2 lists the material properties used in the simulations, and Table 3 specifies the geometric
parameters of the micro-switch. As noted before, the parameters of the system are unknown but
the maximum errors compared with the actual values are known. As can be seen from Table 3, the
dielectric gaps for the bottom and top electrodes are not the same.

Table 2. Material properties of the FG micro-switch.

Material Property Silicon Nitride (Si3N4) Nickel (Ni)

Density (kg/m3) 3200 8890
Young’s modulus (Pa) 322.27× 109 205.10× 109

Shear modulus (Pa) 129.95× 109 78.28× 109

Poisson’s ratio 0.24 0.31

Table 3. Geometric parameters of the FG micro-switch.

L b h lt lb l

400 µm 10 µm 1 µm 8 µm 6 µm 0.2 µm

4.1. Safe Region for Applied Voltage

The validity of the model presented by Equation (2) is verified by comparing the simulation
results with the experimental data.

Ebrahim et al. [50] found the maximum amplitude of a clamped-clamped micro-beam of 600 µm
length. The applied voltage is V = 3 + 2 cos(ωt), in which ω is the oscillation frequency. The
equivalent rigidity of the micro-beam is 2.93× 10−11 N·m2, the non-dimensional axial force is 76.3, the
damping ratio is 6× 10−4, and the initial gap between two electrodes is 2 µm. The results of numerical
simulations (five modes approximation) of this paper are compared with the experimental results and
are presented in Figure 2.
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The response of the system when the applied voltage increases is also compared with experimental
results demonstrated by Hu et al. [51]. Table 4 presents the tip deflection of a clamped-free micro-beam
(five modes approximation) with L = 20 mm, h = 54 µm, E = 155.8 Gpa and the initial gap is 92 µm.

Table 4. Comparison of the results of numerical simulations in this paper with the experimental
results [51].

Applied Voltage This Paper Experimental Data Error (%)

0 92 92.415 0.451087
20 90.41261 91.018 0.669583
40 85.21468 84.232 1.153177
45 81.97923 81.437 0.661419
50 79.51302 78.643 1.09419
55 75.30798 74.651 0.872396
60 71.47106 70.06 1.974304
64 64.40234 62.874 2.373112
67 59.20658 57.485 2.907757
69 52.79904 51 3.407331

As can be seen from Figure 2 and Table 4, the model presented in this paper is in good agreement
with various experimental results.

4.2. Safe Region for Applied Voltage

The electrostatic actuation of micro-beams results in highly nonlinear dynamics, leading to a
saddle-node bifurcation, called pull-in. The performance of electrostatic actuators is severely limited by
the pull-in instability, which is due to electrostatic force increasing more rapidly than the spring force
of the micro-beam [52]. In the active vibration control of micro-beams using electrostatic actuation,
the value of pull-in voltage should be computed. Applied voltage of electrodes should be saturated
to avoid the pull-in instability. For this reason, the controller gains are chosen such that the applied
voltage of each electrode is less than 90% of the pull-in voltage. Table 5 presents the pull-in voltage
for clamped-clamped and clamped-free boundary conditions for different volume fraction indices.
It should be noted that the values in Table 5 are static pull-in voltages that are larger than pull-in
voltages in a controlled system [53].

Table 5. Static pull-in voltage for C-C and C-F boundary conditions and various volume fractions.

Boundary
Conditions

The Top Electrode The Bottom Electrode

n = 0.5 n = 1 n = 10 n = 0.5 n = 1 n = 10

C-C 261.0 V 267.8 V 285.5 V 160.6 V 165.5 V 173 V
C-F 43.0 V 44.1 V 49.9 V 25.3 V 24.7 V 26.5 V

4.3. Multimode Simulation of the Controlled System in Regulation

The uncontrolled dynamic and controlled responses of the system for the mid-point of C-C and
end-point of C-F boundary conditions are presented in Figure 3. The controlled system response
converges to the desired trajectory ξd = 0 in less than 3× 10−4 s. The design of the presented controller
is based on the first two vibrational modes. To show the proper performance of the designed controller,
higher vibration modes of the system are considered and the five-mode approximation responses
of the uncontrolled and controlled systems are demonstrated in Figure 3c,d. The initial estimates of
dimensionless parameters have 5% error. It is seen that the nonlinear vibrations are suppressed via the
imposed controller. The dynamic response of the second to fifth coordinates for the C-C boundary
conditions are shown in Figure 4. All the coordinates converge to zero, which is the desired signal.



Micromachines 2017, 8, 263 13 of 23

Micromachines 2017, 8, 263  12 of 23 

 

indices. It should be noted that the values in Table 5 are static pull-in voltages that are larger than 
pull-in voltages in a controlled system [53]. 

Table 5. Static pull-in voltage for C-C and C-F boundary conditions and various volume fractions. 

Boundary Conditions The Top Electrode The Bottom Electrode = . = = = . =  =  
C-C 261.0 V 267.8 V 285.5 V 160.6 V 165.5 V 173 V 
C-F 43.0 V 44.1 V 49.9 V 25.3 V 24.7 V 26.5 V 

4.3. Multimode Simulation of the Controlled System in Regulation 

The uncontrolled dynamic and controlled responses of the system for the mid-point of C-C and 
end-point of C-F boundary conditions are presented in Figure 3. The controlled system response 
converges to the desired trajectory = 0  in less than 3 × 10  s. The design of the presented 
controller is based on the first two vibrational modes. To show the proper performance of the 
designed controller, higher vibration modes of the system are considered and the five-mode 
approximation responses of the uncontrolled and controlled systems are demonstrated in Figure 3c,d. 
The initial estimates of dimensionless parameters have 5% error. It is seen that the nonlinear 
vibrations are suppressed via the imposed controller. The dynamic response of the second to fifth 
coordinates for the C-C boundary conditions are shown in Figure 4. All the coordinates converge to 
zero, which is the desired signal. 

Figure 5 depicts the voltage values of the two electrodes. Based on the proposed control 
algorithm, only one of the voltage values is non-zero to decrease the control efforts. 

The adaptive projection law is updating estimates of the unknown dimensionless parameters. 
The estimates belong to the known closed sets at all times. If the desired signal has enough dissimilar 
frequencies, the estimates will converge to exact values [54]. The necessary number of frequencies 
can be found by analyzing the complexity of the system. In the case of this paper, the desired signal 
should have seven or more dissimilar frequencies such that the estimates of parameters converge to 
exact values. This is a result of studying the results of various simulations. It should also be 
mentioned that the measure of unmodeled forces would affect the convergence rate. The estimations 
of ,  and  are plotted for the C-F boundary conditions in Figure 6 to show how the adaptive 
projection law operates. 

(a) 

– 2.0
– 1.5
– 1.0
– 0.5

0.0
0.5
1.0
1.5
2.0

0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7

N
or

m
al

ize
d 

m
id

-p
oi

nt
 d

ef
le

ct
io

n

Time × 0.0001 s

Controlled signal Trajectory signal Uncontrolled signal

Micromachines 2017, 8, 263  13 of 23 

 

(b) 

(c) 

(d) 

Figure 3. Controlled and uncontrolled dynamic response using one mode approximation for:  
(a) clamped-clamped and (b) clamped-free boundary conditions and five modes approximation for: 
(c) clamped-clamped and (d) clamped-free boundary conditions. 

– 3.0

– 2.0

– 1.0

0.0

1.0

2.0

3.0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

N
or

m
al

ize
d 

tip
 d

ef
le

ct
io

n

Time × 0.0001 s

Controlled signal Trajectory signal Uncontrolled signal

– 2.0

– 1.0

0.0

1.0

2.0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

N
or

m
al

ize
d 

m
id

-p
oi

nt
 d

ef
le

ct
io

n

Time × 0.0001 s

Controlled signal Trajectory signal Uncontrolled signal

– 3.0

– 2.0

– 1.0

0.0

1.0

2.0

3.0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

N
or

m
al

ize
d 

tip
 d

ef
le

ct
io

n

Time × 0.0001 s

Controlled signal Trajectory signal Uncontrolled signal

Figure 3. Controlled and uncontrolled dynamic response using one mode approximation for:
(a) clamped-clamped and (b) clamped-free boundary conditions and five modes approximation for:
(c) clamped-clamped and (d) clamped-free boundary conditions.
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Figure 4. Desired path and controlled time response of second to fifth modes for clamped-clamped
boundary condition: (a) the second mode, (b) the third mode, (c) the fourth mode and (d) the fifth mode.

Figure 5 depicts the voltage values of the two electrodes. Based on the proposed control algorithm,
only one of the voltage values is non-zero to decrease the control efforts.
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Figure 5. Supplied voltage of two electrodes for: (a) clamped-clamped and (b) clamped-free
boundary conditions.

The adaptive projection law is updating estimates of the unknown dimensionless parameters.
The estimates belong to the known closed sets at all times. If the desired signal has enough dissimilar
frequencies, the estimates will converge to exact values [54]. The necessary number of frequencies
can be found by analyzing the complexity of the system. In the case of this paper, the desired signal
should have seven or more dissimilar frequencies such that the estimates of parameters converge to
exact values. This is a result of studying the results of various simulations. It should also be mentioned
that the measure of unmodeled forces would affect the convergence rate. The estimations of α1, α2

and α4 are plotted for the C-F boundary conditions in Figure 6 to show how the adaptive projection
law operates.
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Figure 6. Estimation of the parameters; (a) α1, (b) α2, and (c) α3.

4.4. Tracking the Non-Zero Desired Dynamical Response

Figure 7 depicts the dynamic responses of the end-point deflection of the C-F micro-switch for
one mode and five modes approximation of the controlled system. The desired signal is considered as

ξ(t) = 0.5 + 0.1 sin(10 t) + 0.2 cos(20 t) (54)

Two vibrational modes are used to obtain the control law. In this study, n = 1. The error of the
initial estimates of the parameters is 10%. The disturbance is a periodic signal whose amplitude is a
random multiplier from 0.5 to 0.8 of the designed input and its period is three times smaller than the
first natural frequency of the C-F micro-switch. The displacement of all points of the micro-switch
is simulated by five modes and presented in Figure 7c. In this three-dimensional figure, the switch
displacement is plotted as a function of axial position and time of the micro-switch. This figure depicts
how the micro-switch is deflected through time.
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Figure 7. (a) Tip deflection of the clamped-free micro-switch for using the first mode; (b) tip
deflection of the clamped-free micro-switch for using the first five modes; and (c) the deflection
of the clamped-free micro-switch.

4.5. Energy Consumption

The applied energy for two micro-switches with different boundary conditions is plotted in
Figure 8a. The energy is defined as

∫
V2dt. It can be seen that the consumption of energy is less for

clamped-clamped switch, which is due to the higher structural stiffness of this micro-switch.
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4.6. Effect of Error of Initial Estimates of the Parameters

If the errors in initial estimates of the dimensionless parameters increase, the 5% settling time
(when the dynamic response of the system is in the 5% neighborhood of the desired trajectory) of the
system response will also increase. The effect of the error of initial estimates on the increasing settling
time is investigated in Figure 8b. If the error of initial estimates of dimensionless parameters is 50%,
the settling time of the system will be 50% higher. The adaptive projection law would compensate for
the error of initial estimates of the parameters as long as the bounds for these parameters are known.
However, the estimates may not converge to the exact values.

As a design tip, as the error increases, the adaptation gains should be lowered; otherwise, a higher
frequency measurement device is needed. The low-frequency measurement device, high adaptation
gains, and significant errors lead to an unstable controlled system.

4.7. Effect of Impulse on the System

The effect of the impulse is investigated in Figure 8c,d. The dynamic response of the uncontrolled
system and the controlled system for C-C boundary conditions is shown in Figure 8c. The value of
impulse is 6.92× 10−3 N·s, which is applied at t = 0.5. The higher values of impact lead to unacceptable
deflections. The proposed active vibration control algorithm could absorb the vibration due to the
impulse and initial conditions. Figure 8c depicts the dynamic response of the controlled system when
the impulse value is 6.92× 10−2 N·s, and the desired signal is equal to zero. The boundary conditions
are C-C, and the error of the initial estimates of the dimensionless parameters is 10%. The supplied
voltages of the two electrodes for the controlled system are demonstrated in Figure 8d. As shown in
Figure 8d, the controlled system could compensate for the effect of impulse by regulating the applied
voltages of the electrodes instantly.

4.8. Effect of Material Volume Fraction

As the volume fraction index increases, the stiffness of the material increases, too. Figure 9a
demonstrates the dynamic response of the uncontrolled C-C micro-switch for different volume fractions.
The vibration suppression of the system is plotted in Figure 9b for three various volume fraction indices.
In the case of this study, the desired signal is zero. As can be seen from Figure 9b, the dynamic response
of the uncontrolled system depends on the volume fraction index, while the dynamic response of
the controlled system is the same for various volume fraction indices. The active vibration control
strategy is robust to changes in material properties as long as the initial estimates of the dimensionless
parameters are not too inaccurate. The controlled system compensates for the change in material
properties by adjusting the applied voltage of the two electrodes.Micromachines 2017, 8, 263  20 of 23 
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Figure 9. Deflection of the clamped-clamped micro-switch for various volume fractions: (a) the
uncontrolled system and (b) the controlled system.

5. Conclusions

This paper has investigated the multi-mode robust active vibration control of the FG micro-switch.
The modified couple stress theory, which introduces a length-scale parameter, was used to derive
the governing equations of motion. The FGM micro-switch was under the influence of electrostatic
and intermolecular forces. Two sets of boundary conditions for the micro-switch were considered:
clamped-clamped and clamped-free. The discretized model of the partial differential equation of
motion was obtained using the modal analysis method. An active vibration control algorithm was
proposed to overcome the system parameter uncertainties and unmodeled forces, while the deflection
of the micro-switch should converge to the desired dynamical response. The inputs of the controlled
system were the voltage values of the two electrodes and a nonlinear robust adaptive controller
based on the first two modes of vibrations was introduced. The simulations for higher modes were
demonstrated to show the decent performance of the designed controller. For increasing usability of
the presented micro-switch, many remarks were established. By introducing a performance signal,
high gain input voltages were avoided. Also, the controller gains were chosen such that the static
pull-in voltage was avoided, too.

The controller was designed for two modes (of the modal analysis method) approximation, while
a five-mode approximation of deflection was used to simulate the dynamic response of the system
to demonstrate the performance of the proposed active control algorithm. The controlled system can
track non-zero dynamical behavior while the undesired vibrations were being suppressed.

The effects of the error of estimates of the system parameters were also studied. It was concluded
that this increase would result in an increase in the settling time of the controlled system. In this case,
the parameter estimation should be updated with a lower rate.

Simulations of dynamical responses of the system showed that larger volume fraction indices of
FG materials led to higher natural frequencies. However, the controlled system was robust, and the
dynamic response of the controlled system was almost the same for various volume fraction indices.

In addition, the vibrational response of the system after an impulse was studied. By comparing
the dynamic response of the uncontrolled and controlled systems, it was concluded that the controlled
system was more robust to impulses. The controlled system could compensate for the effect of the
impulse by instantly regulating the applied voltages of the electrodes.

The phase portrait of each coordinate was plotted to demonstrate the stability of the controlled
micro-switch. Each coordinate and its time derivative converged straight to zero except for the first
modal coordinate, which followed the desired dynamical response.
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