Supplementary Materials: Numerical Investigation of a Novel Wiring Scheme Enabling Simple and Accurate Impedance Cytometry

Federica Caselli *, Riccardo Reale, Nicola Antonio Nodargi and Paolo Bisegna *

Figure S1. Fitting accuracy of the asymmetric bipolar Gaussian template (Equation (1) of the main text) to the simulated traces (suspensions of 5, 6 and 7 μ m diameter beads measured separately using the proposed wiring scheme), relevant to (**a**) facing electrode chip and (**b**) coplanar electrode chip. The histogram of the root mean squared error of the fit (RMSE), normalized by the mean value of the pulse amplitude control, $(a_1 + a_2)/2$, is plotted, showing good fitting accuracy of the template.

Figure S2. Coplanar electrode chip operated using the conventional wiring scheme. Virtual experiment relevant to a mixture of insulating beads with 5, 6 and 7 μ m diameter (data stream $C_{\text{mix}}^{\text{conv}}$). (a) Histogram of the electrical diameter *D*; (b) Density plot of electrical velocity *V* vs electrical diameter *D*; (c) Density plot of electrical velocity *V* vs velocity *V* vs velocity *v* (correlation coefficient 0.66).

Figure S3. Coplanar electrode chip operated using the new wiring scheme. Virtual experiment relevant to a mixture of insulating beads with 5, 6 and 7 μ m diameter (data stream C_{mix}^{new}). (a) Histogram of the electrical diameter *D*; (b) Density plot of electrical velocity *V* vs electrical diameter *D*; (c) Density plot of electrical velocity *V* vs electrical diameter *D*; (c) Density plot of electrical velocity *V* vs electrical diameter *D*; (c) Density plot of electrical velocity *V* vs electrical diameter *D*. The fitted parabolas $D = a[1 + b(\Delta - c)^2]$ are shown as red lines (average values of parameters *b* and *c*, Table S1); (e) Density plot of pulse amplitude relative difference Δ vs electrical velocity *V*; (f) Density plot of electrical *X* (Equation (7) of the main text, with $W = 40 \ \mu$ m, $\beta = 0.5$) vs *x*-coordinate (correlation coefficient 0.97); (g) Histogram of the corrected electrical diameter *D*-corr. Fitting a Gaussian allows the coefficients of variation (CVs) to be calculated as follows: 4.3%, 2.4%, and 1.8%, for the 5, 6, and 7 μ m diameter beads respectively; (h) Density plot of electrical velocity *V* vs corrected electrical diameter *D*-corr; (i) Density plot of corrected electrical diameter *D*-corr vs diameter *d* (correlation coefficient 0.96).

Table S1. Coplanar electrode chip. Parameters of quadratic model equation $D = a[1 + b(\Delta - c)^2]$ used to fit data plotted in Figure S3(d).

<i>d</i> (μm)	<i>a</i> (µm)	b	С
5.0	5.02	0.35	0.002
6.0	5.99	0.38	-0.003
7.0	6.98	0.38	-0.001
Mean	-	0.37	-0.001

Figure S4. Coplanar electrode chip. (**a**,**f**) Density plot of *x*- and *y*-coordinates of event centers (uniformly distributed in the channel cross-section, allowing a 2 μ m gap of the 6 μ m diameter beads from the microchannel walls). Additional events along (**a**) iso-*x* and iso-*y* lines, or (**f**) iso-*v* and iso- θ lines, are marked in red and green, respectively. Six significant positions are labeled with letters from A to F. (**b**,**g**) Density plots of electrical velocity *V* vs electrical diameter *D* relevant to particle distributions in (**a**,**d**), obtained using the conventional wiring scheme (data stream C_6^{conv} in Table A1 of the main text). (**c**,**h**) Density plots of electrical velocity *V* vs electrical diameter *D* obtained using the new wiring scheme (data stream C_6^{new} in Table A1 of the main text). The latter also yields (**d**,**i**) density plots of electrical diameter *D*, and (**e**,**j**) density plots of electrical position *X* vs electrical velocity *V*.