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Abstract: In order to eliminate the frequency mismatch of MEMS (Microelectromechanical Systems)
gyroscopes, this paper proposes a frequency tuning technology based on a quadrature modulation
signal. A sinusoidal signal having a frequency greater the gyroscope operating bandwidth is applied
to the quadrature stiffness correction combs, and the modulation signal containing the frequency
split information is then excited at the gyroscope output. The effects of quadrature correction combs
and frequency tuning combs on the resonant frequency of gyroscope are analyzed. The tuning
principle based on low frequency input excitation is analyzed, and the tuning system adopting this
principle is designed and simulated. The experiments are arranged to verify the theoretical analysis.
The wide temperature range test (−20 ◦C to 60 ◦C) demonstrates the reliability of the tuning system
with a maximum mismatch frequency of less than 0.3 Hz. The scale factor test and static test were
carried out at three temperature conditions (−20 ◦C, room temperature, 60 ◦C), and the scale factor,
zero-bias instability, and angle random walk are improved. Moreover, the closed-loop detection
method is adopted, which improves the scale factor nonlinearity and bandwidth under the premise
of maintaining the same static performances compared with the open-loop detection by tuning.

Keywords: dual-mass MEMS gyroscope; frequency tuning; frequency split; quadrature modulation
signal; frequency mismatch

1. Introduction

With the rapid development of MEMS (Microelectromechanical Systems) technology, silicon
micromachined gyroscopes have attracted more attention. As a miniature sensor for measuring angular
velocity, MEMS gyroscopes have been widely used in military and civilian fields [1–4]. Therefore,
the performance requirements of the MEMS gyroscope are also increasing [2,5,6]. When the drive mode
and sense mode of the gyroscope have the same resonant frequency (mode-matching), the gyroscope
can have a higher signal-to-noise ratio of the output signal without deteriorating the circuit noise. The
principle of operation of dual-mass MEMS gyroscopes is based on the Coriolis coupling between the
two operating modes (drive and sense modes) when a rotation is applied about the sensitive axis of the
device. Efficient energy transfer from the drive mode to the sense mode, which is largely determined
by the frequency matching condition, is a principal factor in performance. In practice, however,
fabrication imperfections and environmental variations are always present, resulting in a frequency
mismatch between the two modes [3,5,7,8]. This frequency mismatch lead to degraded sensitivity,
resolution, signal-to-noise ratio, and poor zero bias stability. Therefore, it is necessary to study the
method of eliminating frequency split (∆ f ) so that the gyroscope is in the mode-matching condition.
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There are several post-processing frequency tuning technologies to eliminate frequency split,
such as local thermal stress technology [9,10], micromachining correction technology [11,12],
and electrostatic adjustment technology [1–8,13–19]. In [9,10], the structural stress and material
parameters of the gyroscope are changed by the heat generated by loading voltage, and the resonant
frequency of the gyroscope is altered to realize the mode-matching. While frequency tuning by
micromachining correction technology is achieved by changing the structural parameters of the
gyroscope through polysilicon precipitation [11] or laser trimming [12]. The above two techniques
share the same drawback of requiring, to some extent, a manual intervention, so that they are not
desirable for mass production. Moreover, these two technologies can cause unstable output due to
temperature changes and are not suitable for real-time adjustment of the resonant frequency.

A more effective method at present is the electrostatic adjustment technology, which utilizes
a structure-specific electrostatic negative stiffness effect to change the stiffness of the structure
by adjusting the DC voltage, thereby altering the resonant frequency to achieve the purpose of
mode-matching. Complex algorithms are used for parameter fitting [13,14], identification [5,7],
and prediction [17] to achieve real-time frequency tuning. These strategies can effectively eliminate the
frequency split, but they need a large amount of original data acquisition, and the general applicability
is not ideal. Some literature utilize the characteristics of the gyroscope output signal to reduce the
frequency mismatch between the two operating modes. When ∆ f = 0, the amplitude of the Coriolis
signal and the quadrature signal reach the maximum [2,3,16], and the phase difference between the
quadrature signal and the drive detection signal is 90◦ [4,8,18]. However, these frequency tuning
strategies do not work properly if the input angular velocity changed. The frequency tuning strategies
that can satisfy the normal operation of the gyroscope is to introduce low-frequency oscillation signals
into the sense resonator, and realize mode-matching according to the amplitude or phase characteristics
of the output signals [1,6,15,19].

This paper presents a real-time automatic tuning technology for dual-mass MEMS gyroscopes.
A low frequency oscillation signal (its frequency is greater than the gyroscope’s bandwidth) is
introduced into quadrature stiffness correction combs, and the degree of the frequency mismatch is
then judged according to the output response of the sense mode. This paper is organized as follows.
Section 2 gives the structure of the gyroscope. The theory and simulation of frequency tuning are
analyzed in Section 3. In Section 4, the relevant experimental results are published to testify the
theoretical analysis and contrast the gyroscope’s performance. Section 5 concludes this paper with
a summary.

2. Dual-mass MEMS Gyroscope Structure

2.1. Gyroscope Overall Structure

In this paper, the structure of the dual-mass MEMS gyroscope is shown in Figure 1. Two fully
symmetrical masses perform a simple harmonic vibration of equal amplitude and reverse phase
along the X-axis direction under the action of electrostatic driving force. Due to the Coriolis effect,
the Coriolis mass drives the sense comb to move along the Y-axis through the U-shaped connecting
spring when the angular velocity exists in the sensitive axis (Z-axis), which causes the relative
motion between the moveable electrode and the fixed electrode of the sense combs, resulting in
the change in differential detection capacitance. By measuring the amount of capacitance change,
the corresponding input angular velocity can be obtained. In addition, the gyroscope has another three
combs: the sense feedback comb, the quadrature stiffness correction comb, and the frequency tuning
comb. The area-changing force rebalance combs are used to suppress the movement by Coriolis force,
the angular velocity information is obtained indirectly by the size of the feedback force, and the force
rebalance combs will not change the resonant of the two operating modes [6]. The quadrature stiffness
correction combs with unequal spacing are designed in Coriolis mass for restraining the quadrature



Micromachines 2018, 9, 511 3 of 18

error. The gap-changing frequency tuning combs are for applying a change in the resonant frequency
of the sense mode.
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Figure 1. Mechanical model of dual-mass MEMS gyroscope.

The MEMS gyroscope consists of two operating modes—the drive mode and the sense mode. Both
modes can be considered as a “spring-mass-damping” second-order system. According to Newton’s
second law, furthermore, only the effects of quadrature coupling stiffness are considered, simplified
dynamics equation for the drive mode and sense mode of MEMS gyroscope are obtained as follows:[

mx 0
0 my

] [
ẍ
ÿ

]
+

[
cx 0
0 cy

] [
ẋ
ẏ

]
+

[
kxx kxy

kyx kyy

] [
x
y

]
=

[
Fx

−2mcΩz ẋ + Fy

]
(1)

where x and y are the displacement of drive mode and sense mode, respectively; mx and my are the
equivalent mass of the two modes, respectively; cx, kxx and cy, kyy are the damp coefficients and the
stiffness coefficients of the drive and sense modes; kxy and kyx are the coupling stiffness coefficients in
each mode; Fx and Fy is the external force applied to drive mode and sense mode, respectively; mc is
the Coriolis mass and mc ≈ my; Ωz is the input angular velocity with respect to the Z-axis.

Assume the electrostatic driving force in the drive mode is Fx = AFsinωdt, where AF is
the amplitude of electrostatic driving force, and ωd is the frequency of electrostatic driving force.
The gyroscope system uses phase-locked loop technology to track the resonant frequency of the
driving mode, that is ωd = ωx. Substituting Fx into Equation (1), the stationary solution of x and y can
be obtained as

x(t) = Ax sin(ωdt + ϕx) (2)

y(t) = Ac cos(ωdt + ϕx + ϕy)︸ ︷︷ ︸
Coriolis Singal

+ Aq sin(ωdt + ϕx + ϕy)︸ ︷︷ ︸
Quadrature Singal

(3)

where Ax, Ac, and Aq can be written as

Ax =
AF/mx

ω2
x

√
(1− ω2

d
ω2

x
)2 + ( ωd

Qxωx
)2

(4)

Ac =
2Ωz Axωd

ω2
y

√
(1− ω2

d
ω2

y
)2 + ( ωd

Qyωy
)2

(5)



Micromachines 2018, 9, 511 4 of 18

Aq =
−Ωz Axkxy/my

ω2
y

√
(1− ω2

d
ω2

y
)2 + ( ωd

Qyωy
)2

(6)

ϕx = − arctan
ωxωd

Qx(ω2
x −ω2

d)
(7)

ϕy = − arctan
ωyωd

Qy(ω2
y −ω2

d)
(8)

where ωx =
√

kxx/mx (ωx = 2π fx) and ωy =
√

kyy/my (ωy = 2π fy) are the angular frequencies of
the drive mode and sense mode, respectively; Qx = ωxmx

cx
and Qy =

ωymy
cy

are the quality factors of
each mode.

Let ∆ω = |ωy − ωx|. The mechanical sensitivity of dual-mass MEMS gyroscope can then be
expressed as

S =
2AFQx

mxω2
y
· 1√

(1− ω2
d

ω2
y
)2 + ( ωd

Qyωy
)2

≈ Ax

∆ω
.

(9)

When ωx = ωy, the mechanical sensitivity reaches its maximum value:

Smax =
2AFQxQy

mxω3
d

=
2AxQy

ωd
. (10)

Based on Equations (9) and (10), the value of ωx, ωy, Qx, and Qy will affect the size of S and
Smax. Figure 2 shows the values of S and Smax at different temperatures when Ax = 5 um. It can be
concluded that S does not change monotonically with temperature, but its overall trend increases with
temperature and Smax decreases with increasing temperature. Furthermore, Smax is greater than S at
the same temperature. When the amplification factor of the interface circuit is fixed, the scaling factor
is proportional to the mechanical sensitivity.
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Figure 2. The mechanical sensitivity at different temperature (left red y-axis represents S and right blue
y-axis represents Smax).

Figure 3 shows the phase relationship between the drive mode and sense mode signals and takes
into account changes in the input angular velocity. When the input angular velocity exists or changes,
the technologies in [2–4,8,16,18] can not effectively identify the Coriolis signal and the quadrature
signal, which leads to frequency tuning failure.
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Figure 3. The phase relationship between the drive mode and sense mode signals.

2.2. Quadrature Stiffness Correction Structure

Quadrature stiffness correction structure as shown in Figure 1, these combs have the two degrees
of freedom in both X and Y directions, which is located in the Coriolis mass. In addition, they are
arranged at unequal intervals, with unequal pitch ratio λ > 1. The correction voltages Vq1 and Vq2

are respectively applied to Quadrature Electrodes 1 and 2. The right mass is used as an example to
analyze the working mechanism of the quadrature stiffness correction combs. The stiffness matrix of
the correction combs under electrostatic force can be expressed as[

kqxx kqxy

kqyx kqyy

]
=

− ∂Fqx
∂x − ∂Fqx

∂y

− ∂Fqy
∂x − ∂Fqy

∂y

 (11)

where Fqx and Fqy can be written as

Fqx =
1
2

V2
q1(

∂Cul1
∂x

+
∂Cul2

∂x
+

∂Cdr1
∂x

+
∂Cdr2

∂x
) +

1
2

V2
q2(

∂Cdl1
∂x

+
∂Cdl2

∂x
+

∂Cur1

∂x
+

∂Cur2

∂x
) (12)

Fqy =
1
2

V2
q1(

∂Cul1
∂y

+
∂Cul2

∂y
+

∂Cdr1
∂y

+
∂Cdr2

∂y
) +

1
2

V2
q2(

∂Cdl1
∂y

+
∂Cdl2

∂y
+

∂Cur1

∂y
+

∂Cur2

∂y
) (13)

where Fqx and Fqy are the electrostatic force generated by the quadrature correction combs in the X-
and Y-axes, respectively.

Consider the displacement of the sense mode y� d0. Moreover, Vq1 = Vd +Vq and Vq2 = Vd−Vq.
Thus, Equation (11) can be simplified as

[
kqxx kqxy

kqyx kqyy

]
=

 0 − 4nqε0hq

d2
q

(1− 1
λ2 )VdVq

− 4nqε0hq

d2
q

(1− 1
λ2 )VdVq − 4nqε0hq lq

d3
q

(1 + 1
λ3 )(V2

d + V2
q )

 (14)

where ε0 is the vacuum permittivity; hq is the thickness of the correct comb; lq is the initial combing
length of fixed comb and movable comb; dq is the distance between the fixed comb and moveable
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comb; nq is the number of quadrature stiffness correction combs; Vd is the preset fixed DC benchmark
voltage; Vq is the quadrature adjustment voltage.

From Equation (14), the quadrature stiffness correction structure does not affect the stiffness of
drive mode. In the drive mode and the sense mode, it can produce a negative stiffness to counteract
the quadrature coupling stiffness. In addition, Fqy will generate the negative stiffness in the sense
mode, and affected the resonance frequency of sense mode. Figure 4 illustrated the effect of Vq on
fx and fy. The continuous curves are the theoretical calculation data, and the discrete points are the
measured data. When Vd = 2.048 V and Vq = 1 V, both the test value and calculated value indicate the
effect of Vq on fy is less than 0.06 Hz. This makes it feasible to use the quadrature stiffness correction
structure to generate modulation signals for obtaining frequency mismatch information.

0 2 4 6 8
3977.6
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3978.0

3978.2

3978.4

f y(
H

z)

Vq(V)

fy

fyt

fx

fxt

3922

3924

3926

3928

f x(
H

z)

(1,3978.39)

Δfq<0.06Hz

Figure 4. The effect of Vq on fx and fy.

2.3. Frequency Tuning Structure

The frequency tuning combs are also shown in Figure 1. The combs are the gap-changing structure
and with an equal gap. The movable combs can only move in the Y direction. Taking a single frequency
tuning comb as an example, the frequency adjustment voltage Vt is applied to the fixed comb. When
the movable comb moves along the Y-axis, the capacitance variation on both sides of the fixed comb
can be described as {

Ct1 = ε0ht lt
dt−y

Ct1 = ε0ht lt
dt+y

(15)

where Ct1 and Ct2 are the capacitance between the fixed comb and the movable comb; ht is the thickness
of the comb; lt is the initial combing length of the fixed comb and the movable comb; dt is the distance
between the fixed comb and the moveable comb.

Furthermore, the stiffness matrix of the frequency tuning comb under electrostatic force can be
expressed as [

ktxx ktxy

ktyx ktyy

]
=

[
− ∂Ftx

∂x − ∂Ftx
∂y

− ∂Fty
∂x − ∂Fty

∂y

]
(16)

where Ftx and Fty can be written as
Ftx = 0, (17)

Fty = Ft1y + Ft2y =
1
2

V2
t (

∂Ct1
∂y

+
∂Ct2

∂y
) =

ε0htltV2
t

2
[

1
(dt − y)2 −

1
(dt + y)2 ] (18)

where Ftx and Fty is the electrostatic force generated by the two capacitors in the X and Y directions,
respectively.

Consider y� dt, Equation (16) can be simplified as[
ktxx ktxy

ktyx ktyy

]
=

[
0 0
0 − ε0ht lt

d3
t

V2
t

]
. (19)
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According to Equation (19), Vt does not cause a change in ωx. ωy will monotonically decrease
as Vt increases, so that ωx = ωy at a certain voltage value. Figure 5 shows the variation of fx and fy

at different Vt values. Similarly, the continuous curves are the theoretical calculation data, and the
discrete points are the measured data. Moreover, the frequency adjustment capability of the 8 V DC
voltage is 64.72 Hz.

0 2 4 6 8

3920

3940

3960

3980

f y(H
z)

Vt(V)

fy

fyt

fx

fxt

3922

3924

3926

3928

f x(H
z)

Δft=64.72Hz

Figure 5. The effect of Vt on fx and fy.

3. Automatic Frequency Tuning System

3.1. Frequency Tuning Theory

Combined Equations (14) and (19), the equivalent stiffness of the sense mode can be expressed as

keyy = kyy + ktyy + kqyy. (20)

The resonant frequency of the sense mode under Vt, Vd, and Vq can be represented as

ωeyy =

√
kyy

my
− ntε0htlt

myd3
t

V2
t −

4nqε0hqlq
myd3

q
(1 +

1
λ3 )(V

2
d + V2

q ). (21)

In this paper, Vd = 2.048 V. The influence of Vt and Vq on fy is shown in Figure 6. fqty and fty

respectively represent the variation curve of fy when Vq is a sine wave (Vq = 1× sin(160πt) V) and
a direct current amount (Vq = 1 V). When Vq = 1× sin(ωtt) V, the resonant frequency of the sense
mode will produce sinusoidal fluctuations, but the maximum frequency difference between fqty and
fty is less than 0.011 Hz. Moreover, according to Equation (19) and Figure 5, the voltage of 0.2 mV
only causes a deviation of 4× 10−8 Hz. Therefore, the effect of the sinusoidal signal applied to the
quadrature stiffness combs on fy can be neglected, which demonstrates the feasibility of frequency
tuning in the following section.

The automatic frequency tuning loop is shown in Figure 7. The quadrature stiffness correction
combs are applied with the low frequency sinusoidal voltage (Vq) and DC benchmark voltage (Vd),
which can equivalently produce a modulation excitation signal including ωt and ωx. By identifying
the output response of the gyroscope under the excitation signal, the frequency matching degree of
the two operating modes can be distinguished. The Coriolis signal, the quadrature signal, and the
frequency mismatch signal can be obtained by different multiplication demodulations. Figure 7 also
shows the configuration of the cut-off frequency for the four low-pass filters. In the frequency tuning
loop, a proportional integral controller is used to adjust the frequency tuning voltage to change the
resonance frequency of the sense mode.
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Figure 6. The effect of Vt and Vq on fy.
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The alternating voltage applied to the quadrature stiffness correction combs can be expressed as

Vq = At sin ωtt (22)

where At and ωt are the amplitude and frequency of the low frequency sinusoidal signal, respectively.
Combined Equations (14) and (22), the equivalent input force generated by the quadrature channel

can be expressed as

Fqt = Ad cos ωdt ∗
[

kxy −
4nqε0hq

d2
0

(
1− 1

λ2

)
Vd At sin ωtt

]
= kxy Ad cos ωdt + Aqt cos ωdt ∗ sin ωtt.

(23)

Considering the variation of Ωz, the input resultant force of the sense mode can be given as

Fr = Fc + Fqt

= −2my AdωdΩz cos ωzt ∗ sin ωdt︸ ︷︷ ︸
Coriolis force

+ kxy Ad cos ωdt︸ ︷︷ ︸
Quadrature coupling force

+ Aqt cos ωdt ∗ sin ωtt︸ ︷︷ ︸
Quadrature modulation force

. (24)
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The output of the sense mode should be the sum of the responses of the above three forces,

Vs = Vc + Vqt

= Ac1 sin[(ωd + ωz)t + ϕωd+ωz ]− Ac2 sin[(ωd −ωz)t + ϕωd−ωz ]︸ ︷︷ ︸
Coriolis signal

+ At1 sin[(ωd + ωt)t + ϕωd+ωt ]− At2 sin[(ωd −ωt)t + ϕωd−ωt ]︸ ︷︷ ︸
Frequency tuning signal

+ Aq cos(ωd + ϕq)︸ ︷︷ ︸
Quadrature signal

(25)

where

Ac1 =
−AdωdΩzKpre√

[ω2
y − (ωd + ωz)2]2 + [ωy(ωd + ωz)/Qy]2

(26)

Ac2 =
−AdωdΩzKpre√

[ω2
y − (ωd −ωz)2]2 + [ωy(ωd −ωz)/Qy]2

(27)

At1 =
AqtKpre/2my√

[ω2
y − (ωd + ωt)2]2 + [ωy(ωd + ωt)/Qy]2

(28)

At2 =
AqtKpre/2my√

[ω2
y − (ωd −ωt)2]2 + [ωy(ωd −ωt)/Qy]2

(29)

Aq =
kxy Ad/my√

(ω2
y −ω2

d)
2 + (ωyωd/Qy)2

(30)

ϕωd+ωz = − arctan
ωy(ωd + ωz)

Qy[ω2
y − (ωd + ωz)2]

(31)

ϕωd−ωz = − arctan
ωy(ωd −ωz)

Qy[ω2
y − (ωd −ωz)2]

(32)

ϕωd+ωt = − arctan
ωy(ωd + ωt)

Qy[ω2
y − (ωd + ωt)2]

(33)

ϕωd−ωt = − arctan
ωy(ωd −ωt)

Qy[ω2
y − (ωd −ωt)2]

(34)

ϕq = − arctan
ωyωd

Qy(ω2
y −ω2

d)
. (35)

Therefore, the output of low pass filter LPF2 can be obtained as

Vc1 =
1
2

Ac1 sin(ωzt + ϕωd+ωz)−
1
2

Ac2 sin(ωzt− ϕωd−ωz)

+
1
2

At1 sin(ωtt + ϕωd+ωt) +
1
2

At2 sin(ωtt− ϕωd−ωt)

+
1
2

Aq cos ϕq.

(36)
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When ωx = ωy, the value of cos ϕq is zero. The signal Vc1 pass through the low pass filter LPF3,
the Coriolis output can be written as

Vc =
1
2

Ac1 sin(ωzt + ϕωd+ωz)−
1
2

Ac2 sin(ωzt− ϕωd−ωz). (37)

According to Equation (37), the Coriolis output can eliminate the interference from the quadrature
signal and low frequency input signal, and correctly reflect the input angular velocity.

Similarly, Vq and Vt1 can be expressed as

Vq =
1
2

Ac1 cos(ωzt + ϕωd+ωz)−
1
2

Ac2 cos(ωzt− ϕωd−ωz)−
1
2

Aq sin ϕq (38)

Vt1 =
1
4

At1 cos ϕωd+ωt +
1
4

At2 cos ϕωd−ωt

=
AqtKpre

8my
(teq1 + teq2)

(39)

where teq1 and teq2 can be given as

teq1 =
ω2

y − (ωd + ωt)2

[ω2
y − (ωd + ωt)2]2 + [ωy(ωd + ωt)/Qy]2

(40)

teq2 =
ω2

y − (ωd −ωt)2

[ω2
y − (ωd −ωt)2]2 + [ωy(ωd −ωt)/Qy]2

. (41)

According to Equation (38), the quadrature output contains the momentum associated with ωz.
Since the quadrature quantity is a slow variable, in the actual system, the interference can be filtered
out as much as possible by a low pass filter (LPF1) with a very low cut-off frequency.

ωy = ωd + ∆ω is substituted into Equation (39), and the expression for ∆ω is as follows:

V(∆ω) =
AqtKpre

8my
(V∆ω1 + V∆ω2) (42)

where V∆ω1 and V∆ω2 can be obtained as

V∆ω1 =
(ωd + ∆ω)2 − (ωd + ωt)2

[(ωd + ∆ω)2 − (ωd + ωt)2]2 + [(ωd + ∆ω)(ωd + ωt)/Qy]2
(43)

V∆ω2 =
(ωd + ∆ω)2 − (ωd −ωt)2

[(ωd + ∆ω)2 − (ωd −ωt)2]2 + [(ωd + ∆ω)(ωd −ωt)/Qy]2
. (44)

Let ∆ω = 0 in Equation (42). The reference voltage for frequency tuning can be obtained
as follows:

Vre f = V(0) =
AqtKpre

8my
(Vre f 1 + Vre f 2) (45)

where Vre f 1 and Vre f 2 can be written as

Vre f 1 =
ω2

d − (ωd + ωt)2

[ω2
d − (ωd + ωt)2]2 + [ωd(ωd + ωt)/Qy]2

(46)

Vre f 2 =
ω2

d − (ωd −ωt)2

[ω2
d − (ωd −ωt)2]2 + [ωd(ωd −ωt)/Qy]2

. (47)

After the gyroscope structure and circuit parameters are determined, each parameter in
Equation (45) is a known quantity except for ωd and Qy. ωd can be acquired by the drive mode
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control system [20], and Qy is considered a function of the change with ωd [21]. Figure 8 shows
the relationship between ωd, Qy, and Vre f . The Vre f varies from 0.2597 to 0.2574 mV over a wide
temperature range (−20 to 60 ◦C).

(3920.45,367,0.2597)
60˚C

(3929.91,905,0.2574)

(3925.29,449,0.2587)

-20˚C     Room
Temperature

Figure 8. The effect of ωd and Qy on Vre f .

3.2. Frequency Tuning System Analysis

According to the principle as shown in Figure 7, an automatic frequency tuning system based on
low frequency modulation excitation was built on the Simulink simulation platform. The simulation
parameters are listed in Table 1. The quadrature stiffness correction comb was originally designed
to suppress the quadrature coupling stiffness by applying a slowly varying DC voltage, so the comb
cannot respond to a high frequency input. In order to balance the response frequency and the
gyroscope’s bandwidth, ωt = 80 Hz is selected. In addition, since the force rebalance comb does
not change the fx and fy [6], the open-loop and closed-loop detection methods do not interfere with
the operation of the frequency tuning system, so the open-loop detection method is adopted in the
simulation analysis.

Table 1. Simulation parameters of the dual-mass MEMS gyroscope.

Parameter Values Units

Drive mode resonant frequency (ωx) 3925.29 × 2π rad/s
Drive mode quality factor (Qx) 4673

Sense mode resonant frequency (ωy) 3978.45× 2π rad/s
Sense mode quality factor (Qy) 449

Drive effective mass (mx) 1.42× 10−6 kg
Sense effective mass (my) 1.58× 10−6 kg

Drive mode capacitance (Cd) 2.88 pF
Sense mode capacitance (Cd) 4.68 pF

Quadrature correction comb number (nq) 30
Quadrature correction comb thickness (hq) 60 um

Quadrature correction comb gap (dq) 5 um
Comb overlap length (lq) 10 um
Unequal spacing ratio (λ) 2.5
Vacuum permittivity (ε0) 8.85× 10−12 F/m
Tuning comb number (nt) 300

Tuning comb number thickness (ht) 60 um
Correction comb gap (dt) 4 um
Comb overlap length (lt) 200 um

Low-frequency signal amplitude (At) 1
Input signal frequency (ωt) 2π × 80 rad/s
DC benchmark voltage (Vd) 2.048 V

Interface circuit amplification factor (Kpre) 7.6159× 107

Controller parameters (Kp) 30
Controller parameters (Ki) 0.0075

Reference voltage (Vre f ) 0.2587 mV

Figure 9 shows the curves of some observation points when the frequency tuning system is
working normally (Ωz = 50◦/s, Ωq = 100◦/s). The first curve is the low frequency input signal
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(ωt = 80 Hz) that applied to the quadrature stiffness correction combs, and its function is to cause the
gyroscope to generate a modulated signal containing frequency split information. The second curve is
the gyroscope output signal, which is characterized by the modulated signals of ωt and ωx. The third
and fourth curves represent the changes in the frequency tuning input voltage and the sense mode
resonant frequency, respectively. The curves indicate that the system is in a stable state after 0.75 s,
the output fluctuation of Vt is less than 0.5 mV, and the fluctuation of the corresponding fy is less than
0.008 Hz.

-0.29
0.00
0.29

-4.9
0.0
4.9

0.0
2.4
4.8
7.2

0 1 2

3933
3952
3971

A q
(V

)
V s

(V
)

V t
(V

)
f y(

H
z)

Time(s)

-0.29
0.00
0.29

-4.9
0.0
4.9

7.2516
7.2521
7.2526

1.8 1.9 2.0

3925.2860
3925.2898
3925.2936
3925.2974

<0.5mV

<0.008Hz

0.75

Figure 9. The curves of observation points in the frequency tuning system.

The effects of different Ωz and Ωq values (quadrature equivalent input angular velocity [22]) on
fy are shown in Figure 10. The interference fluctuations of Ωz and Ωq to fy are less than 0.005 Hz and
0.0005 Hz, respectively. This illustrates that, when Ωz and Ωq exist, the frequency tuning system can
still work properly, and eventually can be stabilized at the desired frequency.

0 1 2

3939

3978 z=0°/s

z=25°/s

z=25sin(20πt)°/s

Ω
Ω
Ω

f y(
H

z)

1.9 2.0

3925.285

3925.290

3925.295

Time(s)

<0.005Hz

0 1 2

3939

3978
q=0°/s

q=20°/s

q=100°/sf y(
H

z)

1.9 2.0
3925.289

3925.291

Time(s)

<0.0005Hz

Ω

Ω

Ω

Figure 10. The disturbance of different Ωz (left) and Ωq (right) to fy.

Consider Ωq = 100◦/s, set Ωc to 0◦/s, 25◦/s, 50◦/s, and 25× sin(20πt)◦/s, and obtain the angular
velocity output response curves, as illustrated in Figure 11. This indicates that, when the frequency
tuning loop works normally, the system can still detect the input angular velocity.
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Figure 11. Coriolis path output curves.

4. Experiments

In order to verify the effectiveness of automatic frequency tuning technology in the MEMS
gyroscope, the gyroscope control circuit was designed and relevant tests were conducted. Figure 12
shows the experimental test equipment and the gyroscope system circuit. The circuit is mounted on
the printed circuit boards (PCBs) and its electrical signals and mechanical structure are connected to
each other through metal pins. First, the PCBs are wrapped in rubber pads that protect PCBs and fabric
chips from impact and vibration. The test equipment includes the power (GWINSTEK GPS-3303C,
GWINSTEK, New Taipei, China) providing ±8 V DC voltage and GND, the oscilloscope (Keysight
DSOX2024A, Keysight, Santa Rosa, CA, USA), which is applied to observe the different input and
output signals of the gyroscope, the computer, which is devoted to measuring the gyroscope data
in a variety of working conditions, and the temperature oven, providing a wide-temperature range
environment and a turntable test of the bandwidth of the gyroscope.The experiments were divided
into three methods: open-loop detection without frequency tuning (Test 1), open-loop detection with
frequency tuning (Test 2), and closed-loop detection with frequency tuning (Test 3).

Computer
Oscilloscope
   Keysight
DSOX2024A

     Power
GWINSTEK
GPS-3303C

Steel Sheel

Gyroscope in
a Vacuum Chip

 Temperature
Oven Turnable

Gyroscope Circuit

Figure 12. Photos of the MEMS gyroscope circuit and test equipment.

The test curves of the frequency tuning system at room temperature are shown in Figure 13. These
four curves are the drive mode detection signal, the drive mode input signal, the quadrature excitation
signal (Vq), and the sense mode output signal. The frequency of the drive mode input signal and the
drive mode detection signal were both ωx, and a phase difference of 90◦ was maintained, while the
amplitude of the drive mode detection signal remained stable. These curves indicated that the drive
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mode of the gyroscope was working properly. The frequency of the tuning input signal was 80 Hz,
and the sense mode output signal was the modulation signal of 80 Hz and ωx.

   Drive  mode
detection signal

Drive  mode
input signal

    Quadrature 
excitation signal

  Sense mode
output signal

Figure 13. The test curves of the frequency tuning system.

The gyroscope control circuit was placed in the temperature oven for a wide temperature range
test, and the temperature range was set from −20 ◦C to 60 ◦C. The curve of frequency tuning voltage
varying with temperature was obtained under the automatic frequency tuning technology, as shown
in Figure 14. Vt_test and Vt_real are the frequency tuning voltages of the temperature test and the
actual temperature conditions, respectively. Among them, Vt_real is the frequency tuning voltage at
each stable temperature condition under manual adjustment mode, which can be characterized as
the real frequency tuning voltage. ∆ fνt is the frequency split in the wide temperature range test,
which represents the mismatch frequency of the gyroscope adopting the frequency tuning technology.
In the wide temperature range, the frequency tuning voltage was changed from 7.27021 to 7.24871 V,
the maximum difference between the test tuning voltage and the real tuning voltage was 1.986 mV,
and the corresponding frequency difference was 0.29326 Hz.
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Figure 14. Wide temperature range test curves: (a) The variation of frequency tuning voltage, (b) The
variations of Vt_real −Vt_test and ∆ fνt.

The scale factor tests (listed in Table 2) at the three different temperatures were arranged with
input angular rates Ωz of ±0.1◦/s, ±0.2◦/s, ±0.5◦/s, ±1◦/s, ±2◦/s, ±5◦/s, ±10◦/s, ±20◦/s, ±50◦/s,
and ±100◦/s, and Figure 15 shows the residuals of the fit. According to Equation (10), Qx and Qy

change with temperature, resulting in a large change in the scale factor value of Test 2. The scale factor
of Test 2 was greater than that of Test 1, which is theoretically demonstrated in Figure 2, but its scale
factor nonlinearly was degraded. When the input angular velocity is ±100◦/s, the residual error of
Test 1 and Test 2 between the measured data and fitting data reached the maximum. Test 3 adopted
a close-loop detection method that made the scale factor independent of the mechanical sensitivity,
and the nonlinearity was improved.
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Figure 15. The residual errors of the scale factor under different temperatures: (a) −20 ◦C condition,
(b) Room temperature condition, (c) 60 ◦C condition.

Table 2. Scale factor performance of the tested gyroscope.

Temperature Test Type Scale Factor Scale Factor Nonlinearity Scale Factor Asymmetry
(mV/◦/s) (ppm) (ppm)

−20 ◦C
Test 1 −2.039 142 546
Test 2 40.453 107,155 46,978
Test 3 3.857 53 212

60 ◦C
Test 1 −2.048 144 596
Test 2 19.324 2526 10,074
Test 3 3.780 96 568

Room temperature
Test 1 −2.051 322 1009
Test 2 22.024 3398 14,792
Test 3 3.786 28 128

The static output performance of the three tests at three different temperature was also tested,
as listed in Table 3. The angle random walk (ARW) of the same test mode remained stable under
different temperature conditions. However, as the temperature rose, the damping coupling increased,
resulting in deterioration of the zero bias stability. Comparing Test 1 and Test 2, the static performance
of Test 2 was improved due to the adoption of frequency tuning technology. The performance of Test 3
and Test 2 was basically the same.

Table 3. Static performance of the three test methods at different temperatures.

Temperature Test Type Zero Bias Zero Bias Stability ARW
(◦/s) (◦/h) (◦/

√
h)

−20 ◦C
Test 1 1.138 24.746 12.780
Test 2 5.554 23.964 4.966
Test 3 5.381 24.580 4.862

60 ◦C
Test 1 5.991 70.187 12.536
Test 2 13.127 67.429 5.085
Test 3 13.526 64.926 5.058

Room temperature
Test 1 1.458 43.439 12.229
Test 2 2.602 37.648 4.784
Test 3 2.601 39.545 4.956

The bandwidth of the gyroscope at room temperature is shown in Figure 16. The bandwidth of Test
1 was 31 Hz, which is approximately equal to 0.54∆ f [20], while the detection transfer function of Test 2
can be approximated as a low-pass filter with a cut-off frequency of ωy/2Qy [17], so the bandwidth
of Test 2 was 5 Hz. Because of the previous bandwidth expansion technology [23], the bandwidth of
Test 3 reached 15 Hz.
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Figure 16. Gyroscope bandwidth under the three test methods.

5. Conclusions

This paper focuses on the automatic frequency tuning technology based on a quadrature
modulation signal. The quadrature stiffness correction combs are applied to a DC benchmark
voltage and a low frequency sinusoidal signal whose frequency is higher than the gyroscope’s
bandwidth, which can equivalently produce a modulation excitation signal acting on the input
of gyroscope. By identifying the output response of the gyroscope under this excitation signal, the
frequency mismatch degree of the two operating modes can be distinguished. In order to obtain a
frequency tuning signal, a Coriolis signal, and a quadrature signal, a low pass filter with different
cut-off frequencies were configured for demodulation. Simulation analysis and experimental results
demonstrate the feasibility of the automatic frequency tuning system. The wide temperature range
test demonstrates the reliability of the frequency tuning system with a maximum mismatch frequency
of less than 0.3 Hz in the range of −20 ◦C to 60 ◦C. The scale factor test and static test of the gyroscope
at three different temperatures (−20 ◦C, room temperature, 60 ◦C) prove that the performance of the
gyroscope under a mode-matching condition is improved. When the method of open-loop detection
with frequency tuning, compared with the method of open-loop detection without frequency tuning,
was employed, the scale factors were increased by 19.8 times, 10.7 times, and 9.4 times, the ARW was
improved by 157%, 147% and 156%, and the zero bias stability was promoted by 3.26%, 4.09% and
17.08% at −20 ◦C, room temperature, and 60 ◦C, respectively. In addition, the method of closed-loop
detection by frequency tuning was adopted, and, compared with the method of open-loop detection
with frequency tuning, the scale factor nonlinearity and bandwidth under the premise of maintaining
the same static performance improved. However, the large damping coupling and the small quality
factor resulted in a large drift of the gyroscope static output, which made the improvement of the
zero bias stability in the mode-matching condition not obvious. Moreover, the structure of quadrature
correction combs cannot respond to higher frequency sinusoidal signals, thereby limiting the working
bandwidth of the gyroscope. Therefore, it is necessary to design a quadrature stiffness correction comb
that can respond to a higher frequency sinusoidal input signal that improves the operating bandwidth
limitations of the gyroscope. The quality factor of the gyroscope needs to be improved, and an effective
compensation method can be adopted to suppress the zero bias drift caused by the small quality factor
and damping coupling, thereby improving the static performances of the gyroscope.
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