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Abstract: Due to their hardness and low tool wear, tungsten carbides are widely used in industrial
applications, such as spray nozzles, wire drawing dies and spinning nozzles. However, there is no
conventional machining process that is capable of fabricating micro-holes, slots and complicated
shapes in tungsten carbide. In this study, a low-cost desktop micro electro-chemical machining
(ECM) was developed to investigate the characteristics of tungsten carbide micro-hole drilling.
The performance parameters of the machining conditions by desktop micro-ECM, such as the
machining time, material removal rate, relative tool wear rate, surface quality and dimensional
accuracy, were also investigated in this study. The experimental results demonstrate that the
low-cost desktop micro-ECM could fabricate micro-holes in the tungsten cemented carbide
(WC-Co) workpiece.

Keywords: tungsten carbide WC; micro-hole; desktop micro-ECM

1. Introduction

Tungsten carbide (WC) is a material that is widely used by military—industrial complexes and
in multiple important fields, including metallurgy and aerospace, due to its excellent physical and
chemical properties [1,2]. Pure WC is very brittle. However, if it is bound with a small amount of
titanium, cobalt or other metals by sintering, the WC brittleness can be reduced. The interaction
between the Co-based binders and WC grains in the early stages of liquid-phase sintering can be
strongly affected by the carbon content of the binders [3]. Tungsten cemented carbide (WC-Co) has a
series of excellent properties, such as hardness, strength, toughness, wear resistance and corrosion
resistance. The most important of these are its high hardness and wear resistance. Tungsten cemented
carbide can also be used to produce rock drilling tools, metal grinding tools, precision bearings and
nozzles etc.

WC-Co meets the requirements of the hardness and lower wear for micro-nozzle applications.
Grinding, laser beam machining (LBM), electron beam machining (EBM), electrical discharge
machining (EDM) and electro-chemical machining (ECM) processes are popular methods for machining
WC-Co materials [4]. Conventional grinding is also able to create a high-quality surface on the
workpiece, but it is still difficult to manufacture a complicated shaped product and the material
removal rate is low. Micro-EDM and Micro-ECM are popular for drilling micro-holes into a WC-Co
workpiece [5,6].

Furthermore, some machining processes, such as micro-mechanical drilling, LBM and EBM, are
available for the mass or semi-mass production of micro-hole fabrication. The micro-EDM process is
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still an excellent method for micro-hole fabrication since the development of wire electro-discharge
grinding (WEDG) technology [7]. However, the wear of the micro-tools is the primary critical problem
for the EDM process. However, considering that the product is burr-free and lacks the limitation
of hardness, ECM is possibly a new process for tungsten carbide machining [8]. ECM is also called
electrolytic machining, which belongs to the class of nonconventional machining methods. This results
in more advantages. For example, all metal materials can be machined no matter how hard the material
is. The cathode tool will not break during the machining process. After machining, the workpiece will
not have any residual stress remaining on its surface. Finally, the machining reproducibility of ECM is
better than EDM [9].

ECM has other advantages, which include: No mechanical stress impact; no thermal impact
resulting in high surface quality; independence of material hardness and brittleness; and no tool
wear [10]. Electrochemical machining uses the “anode” (positive voltage) as the “workpiece”
and uses the “cathode” (negative voltage) as the “tool electrode.” The anode and cathode of the
workpiece and the tool electrode were created by oxidation and reduction in the electrolytes. ECM
is a difficult-to-control process due to stray corrosion [11]. In ECM, both the tool electrode and the
workpiece are submerged in an electrically conductive electrolyte, which is usually an aqueous solution.
This was chosen to be sodium hydroxide (NaOH) in this study. A direct current (DC) potential is
applied between the two electrodes, ensuring that the workpiece becomes the anode [12]. The applied
potential causes a current to flow between the electrodes, dissolving the anode material in the process.
The parameters of ECM, such as the machining time and electrolytes, for the WC-Co workpiece
micro-hole drilling were investigated in this paper.

2. Materials and Methods

For the experimental investigations, a desktop micro-ECM system was developed. A schematic
illustration of the desktop micro-ECM and its basic components, as well as their interactions, are shown
in Scheme 1. The desktop micro-ECM, which is shown in Figure 1, has X, Y and Z axes for micro-hole
drilling. The X-Y direction is manually controlled by the micro-meter screw gauge and the Z-axis can be
controlled by the microcontroller unit (MCU). The most important parts of the desktop micro-ECM are
the V-shaped block because the function of the V-shape is to maintain the concentricity and straighten
the spindle electrode tools. The spindle tools are mounted on the V-shaped block and rotated by a DC
motor. The electrolyte collector contains the spindle tools and electrolyte flow. The rotation speed is
changeable. The linear straightness and roundness are important for ensuring the high accuracy of
micro-hole drilling. The entire structure of the desktop micro-ECM is shown in Figure 2.
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Scheme 1. Schematic illustration of the desktop micro electro-chemical machining (ECM) system.
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Figure 2. Entire structure of the desktop micro-ECM.

The desktop micro-ECM uses the spindle electrode tools from the components found in the
market, which can be fabricated to have a tolerance of approximately 3 um in diameter and length.
The material used for the tool is tungsten cemented carbide, in which the diameter of the shank is
0.3 mm, while the diameter and the length of the drill are 150 pm and 5 mm, respectively. The pulley
was mounted onto the shank directly and the spindle micro-tool rotates on the V-shaped block, which
is shown in Figure 3. The accuracy of the rotation roundness could be maintained below 0.5 pm.
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The top and bottom of the V-shaped block will maintain the spindle electrode tools centrally and keep
it stable without any vibration. Although the WC has a lower tool wear rate for micro-ECM, this WC is
not available for mass production by the grinding process due to its insufficient toughness. The WC-Co
material can be mass-produced by the mechanical grinding process. However, in the commercial
market, it is still difficult to produce the spindle tools with a diameter less than 0.05 mm due to the
mechanical grinding force. With WEDG, it is possible to fabricate spindle tools with a diameter of 50
pum. The diameter of the micro-electrode tool could be adjusted by aligning the X-axis position by the
micro-meter screw gauge. The aspect ratio is only 3 or 4 times. This indicates that the low aspect ratio
of spindle tools is not available for mass micro-hole drilling by desktop micro-ECM.

———

b ©

Figure 3. The spindle micro-tool rotates on the V-shaped block with pulley. (a) Spindle electrode tool.

(b) Spindle micro-tool with pulley. (c) Micro-tool rotates on the V-shaped block.

A conventional desktop micro-ECM is operated by a NC controller. Both the position
alignment and the scanning process with tool compensation is possible. However, the large cost
of the conventional desktop micro-ECM makes the ECM process unpopular for micro-hole drilling.
This present study used the dsPIC30F4011 of the microchip corp. (Chandler, AZ, USA) as the MCU to
control the spindle tool motion on the Z-axis and to detect the electrolyte current of the circuit resistor
and determine the feed rate, which is shown in Figure 4. The I/O port of the dsPIC connection provides
the selection of the drilling depth. The desktop micro-ECM monitoring is based on the voltage and
current feedback signals from the current sensors of analog-to-digital converters (ADC). Short circuit
detection and prevention, thus enabling better process stability and precise machining, are further
advantages that result from using the desktop micro-ECM to control the processes, with the internal
structure of the device being shown in Figure 5. Most of the electrolyte current of ECM depends on
the machining parameters, such as working voltage, pulse duty cycle and electrolyte concentration.
The optimization of these parameters can be conducted in order to achieve machining with no spark
effect and to reduce electrode wear. By only pushing the start button, the desktop micro-ECM can
produce micro-holes automatically. The micro-tools and micro-hole fabrication could be performed on
the same desktop micro-ECM.
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Figure 5. The internal structure of the micro-ECM.

3. Results and Discussion

3.1. Micro-Hole Drilling by Desktop Micro-ECM

In this present study, the diameter (150 um) of the electrode tools on the micro-spindle was
used for fabrication in order to achieve the mass production of the micro-hole drilling by micro-ECM.
The machining parameters of the desktop micro-ECM is shown in Table 1, which uses a power voltage
of 5-20 V, concentration of 5% sodium hydroxide (NaOH), diameter of 150 um for the micro-tools
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and machining depth of 455 um. Furthermore, the WC-Co had a workpiece thickness of 0.3 mm in
order to avoid drilling the taper holes and to produce high-quality micro-holes, which means that the
machining depth must exceed the workpiece thickness. From the micro-ECM drilling experiments,
the machining time was about 20 min (Figure 6). After the experiment, the electrode of the tools and
micro-holes were measured by the optical microscope MF-UN1010TH of Mitutoyo Corp (Kawasaki,
Japan). The holes had a dissociation of 15 um after drilling, while there was nearly no tool wear.
Different views of the micro-holes of ECM drilling are shown in Figure 7. The micro-tool exhibits
evidence of wear during the ECM process due to the dissociation generation.

Table 1. Machining parameters of the desktop micro-ECM.

Machining Type DC-ECM
Workpiece Material WC-Co
Electrolyte Sodium hydroxide (NaOH) solution
Concentration 5%
Workpiece Thickness 0.3 mm
Tool Diameter 150 pm
Machining Depth 455 um
Machining Voltage 5V,10V,15V,20V
30.00
25.00 X
[}
£ m /\ /
£ 2000
22 T N OV
..g ‘E' 15.00 Machining condition
g ‘Workpiece thickness 0.3mm
10.00 ation 5%
‘Working voltage 5V,
5.00 ‘Working max. current 1A
Tool diameter 150pm
0.00 . . . . Feed depth 455pm

1 2 3 4 5 6 7 8 9 10 11
ECM machining (times)

Figure 6. Micro-hole micro-ECM machining time.
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Figure 7. Different views of micro-tools and hole drilling by micro-ECM. (a) Before ECM drilling tool
(/$150 pum). (b) After ECM drilling tool (/$135 pum). (c) Inlet (178 pum). (d) Outlet (147 pum).
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3.2. Limitations of Machining Depth

The micro-ECM hole drilling is dependent on the current density in the electrolytes. The sodium
hydroxide (NaOH) electrolyte solution has a 5% concentration and the working voltage is 5 V. In order
to compare the effect of the machining depth of ECM at different currents, we used a constant DC pulse
working voltage in 5 V with a target value of 455 under the same machining conditions. The current
level is calculated in increments every 5 min, data as shown in Table 2. It took about 48 min in 0.5 A,
34minin1A, 27 minin 2 A and 23 min in 3 A. The feeding depth of the micro-tool during WC-Co ECM
micro-hole drilling with different currents is shown in Figure 8. The machining efficiency increases
with an increase in the current. The length of the micro-tools changes with the gap working voltage
when using the sodium hydroxide (NaOH) electrolytic solution concentration of 10%, which is shown
in Figure 9. The length of the tools increases due to the artefacts of deposition when the gap working
voltage is larger than 10 V. It is clear that some remnants from deposition were attached to the tools,
which is shown in Figure 9. The length of the micro-tools does not wear but increases due to the
deposition of tungsten oxide. The non-linear electrolytic machining time and the tool electrode of the
micro-ECM are changing. From the above experiments, we determined that when we maintain the
sodium hydroxide (NaOH) electrolyte concentration at 10% with a maximum electrolytic current of
1 A, the electrode tool will produce some insulating materials as it deposited a layer of oxide onto the
surface with a working voltage higher than 12 V. As expected, the tool will not deposit materials at
a working voltage less than 12 V, which will affect the electrochemical processing. However, if we
lower the working voltage, the processing time will be extended and this affects the quality of the
electrochemical machining process.

Table 2. Data of feeding depth of the desktop micro-ECM.

Time (min)

Current (A)

0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00
1(05A) 0 30 80 110 160 210 260 340 455
2(1A) 0 60 145 180 245 350 455 - -
324A) 0 150 200 300 370 455 - - -
4(BA) 0 170 255 345 455 - - - -
500 ——1(0.5A)
450
—_ 2(1A
£ 400 / E”A;
= 3(2
= 350
g 300
= 250 o Machining condition
éﬁ 200 Workpiece 03
= thickness mm
é 150 . / concentration 5%
100 —— 5V

Working voltage
50 / Tool diameter | 150pm
0 Feed depth 455pm

0.00 5.00 10.00 15.0020.0025.00 30.0035.0040.00
Machining Time (min.)

Figure 8. Feeding depth in different currents.
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(@)
(b)
©

Figure 9. Micro-tool length changes in tungsten cemented carbide (WC-Co) by the desktop micro-ECM.
(a) New tool with a diameter of 0.15 mm. (b) After machining in 5 V; tool length wear is 25 pm. (c) After
machining in 10 V; tool length wear is 5 um. (d) After machining in 15 V; tool length deposition is
+12 pum. (e) After machining in 20 V; tool length deposition is +15 um.

3.3. Electrode Tool Wear and Roundness

In general, micro-tools should be free of tool wear in the electrolytic machining process. However,
in this present study, when the voltage between the two electrodes is higher than 12 V, an insulating
oxide will be deposited on the surface of the microelectrode tool, which makes the tool longer by about
15 um at 20 V and about 12 um at 15 V. When the gap working voltage is lower than 12 V, there will be
no deposits attaching to the microelectrode tool. However, due to the difficulty in the feeding control
of the ECM, a partial discharge will occur, causing tool wear. The wear of the tool is about 25 ym at 5 V
and about 5 um at 10 V. These micro-tool changes are shown in Figure 10 and data as shown in Table 3.
The inlet and outlet of the micro-holes are shown in Figure 11a,b. The quality of surface roughness and
roundness of the micro-holes can be observed from the measurements of the horizontal inlet diameter
of 167 um and the vertical inlet diameter of 167 um as well as the horizontal outlet diameter of 143 um
and the vertical outlet diameter of 145 um, which are shown in Figure 11c and data as shown in Table 4.
This phenomenon indicates that there were some small electrical discharge sparks during micro-ECM
erosion. Differing from ECM, EDM uses a higher voltage electric field to conduct spark discharge
machining compared to the micro-ECM. By using scanning electron microscope (SEM) to scan the
surface of the drilling holes of the micro-EDM and those of the micro-ECM machining process as shown
in Figure 12, we found that the surface of discharge cavity of the micro-EDM was more uniformed like
a grapefruit peel is shown in Figure 12a, while the surface of ECM was smooth and evenly circled as
shown in Figure 12b. Desktop micro-ECM is an excellent process for drilling the micro-holes in WC-Co
material without leaving burrs. However, it is difficult to control the electrolytic current as well as to
improve the control accuracy of the desktop micro-ECM machining and change different machining
parameters so that we can enhance the machining performance in terms of material removal rate,
average diameter, taper angle and roundness.

Table 3. Data of micro-tool changes.

Voltage (V)
Tool (um)
5V 10V 15V 20V
Before Machining 3645 3620 3615 3632
After Machining 3620 3615 3637 3647

Tool Change —25 -5 12 15
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Figure 10. Micro-tool changes in WC-Co by the desktop micro-ECM.
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Figure 11. Cont.
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Figure 11. Observation inlet and outlet of Tungsten cemented carbide (WC-Co) micro-holes. (a) The
inlet of WC-Co micro-holes by scanning electron microscope (SEM); (b) The outlet of WC-Co
micro-holes by SEM. (c) Inlet and outlet micro-hole diameters for the X and Y axes.

Table 4. Data of inlet and outlet diameter of micro-holes.

Times
Diameter (um)
1 2 3 4 5 6 7
Horizontal Inlet Diameter 163 164 164 157 178 161 167
Vertical Inlet Diameter 162 165 158 158 177 178 159
Horizontal Outlet Diameter 154 155 156 121 123 141 128
Vertical Outlet Diameter 153 160 161 122 124 142 130

kS Signal A = InLens g Date :17 Apr 2017
10 pm Mag = 300KX EHT = 5.00 kV EO Temp= 214°C Time :11:32:38
R — WD =100mm  System Vacuum=1.79¢-006 mbar ME NTUT
@)

Figure 12. Cont.
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2 Signal A =InLens Date :15 May 2017
Fopm Mag= 800X 1= DORRY EO Temp= 239°C Time :12:16:14
WD =228mm  System Vacuum =253e-005 mbar  ME NTUT

(b)

Figure 12. Micro electrical discharge machining (EDM) compared with the micro-ECM machining
process. (a) The surface of EDM presented to more uniformed like a grapefruit peel. (b) The surface of
ECM presented to be smooth and evenly circled.

3.4. Discussion

A low-cost desktop micro-ECM was developed for tungsten cemented carbide micro-hole drilling
in this study. The semi-mass production of micro-ECM hole drilling is possible using commercial
electrode tools. Using a spindle micro-tool with a screw slot, the desktop micro-ECM is able to
perform micro-hole drilling by the micro-ECM process. Moreover, compared with commercial ECM,
the desktop micro-ECM has more potential applications in tungsten cemented carbide micro-hole
drilling with a very low cost in the future.

4. Conclusions

At present, there are few studies focusing on WC-Co micro-hole drilling by micro-ECM. In this
paper, a low-cost desktop micro-ECM developed for WC-Co micro-hole drilling machining has been
created. The effects of working voltage and electrolytic current on the material removal and surface
roughness were investigated. The surface quality was evaluated by optical microscope and SEM
observations. Based on the results obtained from this research, some conclusions were found.

The machining parameters and the performance of micro ECM in this paper showed that the
ideal values of the working voltage and electrolytic current at 10 V and 3 A, are possible to fabricate
good quality micro holes on WC-Co materials. The surface of micro-ECM machining was smoother,
while the friction coefficient and wear rate were lower than EDM. WC-Co can be completely removed
by the micro-ECM machining of electrochemical dissolution.

In summary, WC-Co micro-hole drilling machining can be achieved by the developed desktop
micro-ECM. The experimental results demonstrated that high machining efficiency with good surface
quality is achievable for practical applications with the optimal machining parameters.
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