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Abstract: This work presents the simple and rapid fabrication of a polymer-based microfluidic
prototype manufactured by rolling up thin films of polymer. The thin films were fabricated via a
casting method and rolled up around a center core with the aid of plasma activation to create a
three-dimensional (3D) spiral microchannel, hence reducing the time and cost of manufacture. In this
work, rolled-up devices with single or dual fluidic networks fabricated from a single or two films
were demonstrated for heat sink or heat exchanger applications, respectively. The experimental
results show good heat transfer in the rolled-up system at various flow rates for both heat sink and
heat exchanger devices, without any leakages. The rolled-up microfluidic system creates multiple
curved channels, allowing for the generation of Dean vortices, which in turn lead to an enhancement
of heat and mass transfer and prevention of fouling formation. These benefits enable the devices to
be employed for many diverse applications, such as heat-transfer devices, micromixers, and sorters.
To our knowledge, this work would be the first report on a microfluidic prototype of 3D spiral
microchannel made from rolled-up polymeric thin film. This novel fabrication approach may
represent the first step towards the development of a pioneering prototype for roll-to-roll processing,
permitting the mass production of polymer-based microchannels from single or multiple thin films.

Keywords: prototype fabrication; roll-to-roll (R2R) processing; polymeric thin film; microfluidic heat
transfer; curved channels

1. Introduction

Recently, microfluidic devices have been implemented in a wide variety of applications, ranging
from biological analysis to energy harvesting [1–4]. These devices offer a number of useful
capabilities, such as the ability to precisely control fluid, as well as a reduced consumption of
samples or reagents. Microchannel-based devices allow for low fabrication and material costs for
polymer-based devices and they provide ultra-high surface-to-volume ratio properties, both of which
are desirable characteristics for cost-effective improvement of high-efficiency thermal applications [5–8].
Furthermore, the versatility of microchannel designs permits multi-functionality for the devices.
For instance, curved channels can create Dean vortices that are used for size-dependent separation
of microparticles and enhancements of mass and heat transfer in the channel [9–13]. In addition,
micro-structures (e.g., micro-pillars or herringbone micro-structures) that are integrated into the
microchannel can also dramatically improve heat and mass transfer by disrupting the boundary layers
of the flowing fluid.

Despite the aforementioned benefits, the present lack of an adequate method for the mass
production and rapid assembly of microfluidic systems for high fluidic flow rates hinders their
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usage in the industry level. One potential approach for mass production is to fabricate multiple layers
of microchannel and later assemble all layers to obtain the final device, however this approach is still
time-consuming in all stages of the process i.e., fabrication, alignment, and assembly [14]. This has
led to the development of a manufacturing method known as roll-to-roll (R2R) technology for mass
producing the thin-film microfluidic devices. This method works by first imprinting the microchannels
into a polymeric film and then laminating another layer of polymeric film onto the first to form the
microfluidic device [15,16]. However, this method is still expensive, impractical, and rigid (i.e., it makes
the fabrication of different designs cumbersome) for small-scale production, especially for prototyping
purposes or at the laboratory level. In general, a prototype should be simply and quickly fabricated at a
low cost to validate a numerical study or to evaluate the performance of a newly-designed device prior
to mass production. The current prototyping approaches reported in the literature for thin-film devices,
such as micromachining, xurography, and three-dimensional (3D) printing, can create 3D (out-of-plane)
microfluidic networks for facilitating high fluidic flow rates in the device, but still suffer from their low
throughput and time-consuming processes [17–19]. This has motivated the development of a novel
technique for the rapid fabrication of microfluidic device prototypes.

In this paper, we propose a novel and simple fabrication technique to rapidly manufacture a
thin-film microfluidic device with 3D (out-of-plane) spiral micro-channels. This technique works by
casting a polymeric thin film with patterned microchannels, rolling this thin film around a cylindrical
core to close the individual channels and form the 3D spiral structure. Hereafter, the device is referred
to as the rolled-up microfluidic device. The chosen material for the film is polydimethylsiloxane
(PDMS), so that a simple, fast, and low-cost casting method can be used to pattern the channels,
and the device can be assembled by using plasma bonding to avoid the use of adhesive and strong
chemicals [20]. Moreover, PDMS provides advantages including chemical resistance and good thermal
stability (up to 450 ◦C), which allows the devices to work in harsh conditions [21]. In this work,
the rolled-up polymeric devices were developed by focusing on heat-transfer applications i.e., heat
sink and heat exchangers. The rolled-up structures provide several potential benefits, such as the
highly-compact design of the device allowing for the usage in a confined space, and increased surface
area for high efficiency of heat transfer. Moreover, the rolled-up device contains multiple curved
channels, which can generate Dean vortices, which in turn aid in enhancing heat and mass transfer
within the channel [11]. Despite the low thermal conductivity of polymer, the thin polymer film would
still be beneficial in decreasing thermal resistance, allowing for higher thermal performance [22–24].

With the proposed fabrication technique, two different designs of rolled-up devices were made,
namely, (i) the single 3D spiral channel device, and (ii) the dual 3D spiral channels device. The single
and dual channel rolled-up devices were fabricated from a single thin film or two thin films in order to
be employed as a liquid-based heat sink and a liquid-to-liquid heat exchanger, respectively, and for
their effectiveness of heat transfer to be characterized.

To date, only one prior rolled-up microfluidic device by which the microchannels were made
by rolling PDMS-parylene thin films has been reported in the literature [25]. However, the method
used was a chemical vapor deposition technique (CVD), which would not be suitable for large scale
microfluidic systems or mass production of the devices, as the size of the CVD machine will limit
the scale of the device. Said microchannels was also employed solely as a particle-separator, not as a
heat sink or exchanger. As such, this current work would be the first report on a scalable microfluidic
prototype of 3D spiral microchannels fabricated by rolling up polymeric thin film(s). This novel fabrication
approach could represent an initial step in making a pioneering prototype for a polymer-based roll-to-roll
processing, allowing for the mass production of the polymer-based microchannels in form of thin films.
Our work was developed by focusing on the usage of polymer-based thin film for further development
of R2R technology, especially for cases where rapid and simple prototyping of the device is required
to validate transport phenomena, such as heat and mass transfer, in the new design of a microfluidic
network. For instance, in our previous work, simulations were performed to optimize the dimensions
of a microchannel rolled-up heat exchanger that is made from thin film polymers, demonstrating that
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the effects of curved microchannels can highly improve heat transfer performance when compared to an
equivalent straight channel [25]. This current work would then be a promising approach for fabricating a
prototyping device in order to validate that kind of numerical study. In addition, regarding the device
itself, Dean vortices are generated along the curved channel, which can be exploited for the size-dependent
separation of microparticles as well as the prevention of fouling in a microchannel [12,26]. These rolled-up
devices thus can be used for diverse applications, such as heat sinks, heat exchangers, micromixers, micro
separators, and desalination equipment [22–28].

2. Materials and Methods

2.1. Fabrication of the Rolling-Up Device

The microchannels were designed by using the modelling software SolidWorks to make molds
for casting the polymer replica. The metallic molds were fabricated by using a milling method (Whits
Technology, Singapore). The polymeric thin films with microchannels were made from PDMS, which
was fabricated via soft lithography [29]. Firstly, the PDMS resin was made by mixing a precursor and
curing agent with the mass ratio of 10 to 1. The mixed solution was then poured onto the mold and
degassed to remove all the air bubbles in the solution, prior to curing at 120 ◦C for one hour. Afterward,
the polymer thin film was gently peeled off from the mold. The center core was fabricated via the
same method. Next, the two components were activated by using oxygen plasma (Femto Science,
Gyeonggi-Do, South Korea) prior to aligning and rolling a thin film around the core to obtain the
final device, as illustrated in Figure 1A–C. Finally, PFA tubings (Monotaro, Amagasaki, Japan) with
an outer diameter of 3 mm were attached to the two ends of the center core, in order to connect the
device to the experimental setup and keep pressure drop at a minimum. PFA tubings are chemical
resistant, translucent, and can work under both high pressure (up to 18 bar) and high temperature (up
to 200 ◦C).
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Figure 1. The illustration of the roll-up microfluidic system made from polymer thin film. (A) The thin-film
microfluidic system was made by casting polymeric resin (PDMS) onto the mold containing the
microfluidic channels. (B) After curing, the PDMS thin film was flexible enough to be rolled up
around the PDMS center core, also made via casting. (C) The thin-film and center core were bonded
together by using oxygen plasma activation to obtain the three-dimensional (3D) spiral microchannel.
This method allows for the creation of multiple fluidic layers by rolling multiple microchannel thin
films (i.e., hot-water layers and cold-water layers) around the core, thereby forming a heat exchanger
device with two fluidic streams. The dual-channel device contains hot and cold fluid running in a
counter-cross flow arrangement, as shown by the red and blue arrows for hot and cold water streams,
respectively. (D) The rolled-up microfluidic device with single layer of microchannel was fabricated and
demonstrated as a heat-sink application. (E) The rolled-up microfluidic device with two microchannel
layers was employed as heat exchanger device. (F) The arrows indicate the fluidic direction inward or
outward relative to the device. The diameter of the center core was approximately 20 mm.
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2.2. Rolled-Up Microfluidic Device

The microfluidic networks with parallel channels were constructed so as to provide increased
heat transfer area whilst still maintaining a reduced pressure drop and avoiding the risk of channel
collapse that is caused by a high aspect ratio microchannel (see Figure 1A). The width of the channel
was 1 mm, whilst the heights of the channels were approximately 500 µm or 100 µm for the device
constructed from a single thin film or two thin films, respectively. Each device consists of ten parallel
channels with a branch length of 55 mm. To ensure the uniformity of the thin film, and to avoid
stretching and wobbling of the film as it is peeled off the mold and bonded to the core (especially in
the smaller dual-channel device), the thickness of the film should be at least twice the height of the
channel. Hence, in the current case, the films employed were 1000 µm or 200 µm for the single thin film
or dual-channel thin films, respectively. It should be noted that, though the high elasticity of PDMS
offers the possibility to roll up the PDMS film, thick PDMS film can create difficulties during rolling up
around the small core. In the current case, the PDMS film with a thickness greater than 1 mm cannot
be rolled up around a center core with diameter of 20 mm without suffering from fractures or cavities.
Due to this limitation, the dual-channel device that was constructed from two layers of microchannel
thin films was required to be have reduced thickness compared to the single channel device (down
to 100 µm from 500 µm). After removing the PDMS replicas from the molds, the thin film and the
center core were activated by using oxygen plasma. With the plasma activation, PDMS samples can
be bonded together at room temperature without an intermediate layer, such as adhesive, which can
lead to clogging in the microchannel. This plasma-aided bonding of PDMS allows for bonding of
delicate structures, such as small microchannels. The final state of the devices with fully rolled-up
microfluidic channels around the center core made from a single thin film and two thin films are shown
in Figure 1E,F, respectively.

In addition, to achieve a good alignment of the two microfluidic thin films, it was found to be
beneficial to peel off only one film, whilst the other was still attached onto the master mold. After
bonding both thin films together, the bonded films were then peeled off from the mold and attached to
the center core. Moreover, to avoid the issue of the “step” formed by the edge of the film when rolling
up, the film was designed with empty space without microchannel elements at the edge. This extra
space was firstly rolled around the center core for at least one revolution to create a uniform layer of
the film around the core, before rolling up the rest of the film with the microchannel around it. Since
the interface between access holes on the film and the fluidic pathway in the center core is critical, it is
recommended that, upon pre-bonding, the film is first punched to create the access hole, and then
carefully aligned with the center hole. A needle tip can then be used to create a small connection
between the access hole in the film and the pathway in the center core. The puncher can subsequently
utilize again to produce larger connecting holes. After cleaning all debris, the thin films and the center
core were activated by plasma. The film was vertically tiled in order to uniformly activate both side of
the film upon plasma treatment. By this methodology, the successful rate of fabrication for both device
types was around 80%. It is believed that this value can be greatly improved with superior materials
and further refinement of the manufacturing process.

The microfluidic network in the thin film contains multiple parallel microchannnels that are split
from one main channel. After rolling up, the rolled-up microfluidic system contains 3D multiple
curved microchannels that are connected together via the shared inlet. For the dual-channel design,
the device was made by rolling two layers of the microchannel thin film around the center core to
create two fluidic networks flowing around the core–the first layer for the hot fluidic stream and the
second for the cold fluidic stream, as illustrated in Figure 1D,F. To promote effectively heat transfer,
the dual-channel device contains hot and cold fluid running in a counter-cross flow arrangement, as
shown by the red and blue arrows for hot and cold water streams, respectively.

In addition, due to the transparency of the PDMS material, the quality of bonding can be simply
visualized upon the completion of fabrication, as well as any possible leakage. The casting method
allows for simple, fast, and cost-effective manufacture of devices with varying dimensions. In this
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current work, the fabrication approach was demonstrated with a 12 cm by 14 cm PDMS thin film and
a PDMS core with diameter of 20 mm, resulting in a final device with dimensions of 14 cm by 2 cm,
as shown in Figure 1E,F. Moreover, this rolled-up approach allows for the creation of 3D multiple
spiral microchannels along the center core with reduced time and cost of fabrication, as compared
with a conventional approach, such as multiple flat microchannels assembled together to create 3D
microfluidic system.

2.3. Thermal Performance Test

In this study, preliminary fluidic tests were conducted in order to validate the leakage-free system
and determine the heat transfer characteristics of the fabricated device. The rolled-up microfluidic
devices were employed for the application of thermal transport i.e., the single-channel device was
used as a heat sink and the dual-channel device was used as a heat exchanger. In the single-channel
experiment, the device was submerged into a Heated Circulating Bath (PolyScience, Niles, IL, USA)
with a controlled temperature of 50 ◦C, which was used as a heat source. The experiment was
conducted by injecting a circulating fluid (DI water) into the device at a constant flow rate by using
a Legato 200 Dual Injection Syringe Pump (KD Scientific, Holliston, MA, USA) to harvest the heat
from the water bath. The temperature and pressure of the fluid were measured both upstream and
downstream of the device, using OMEGA Ultra Precise Resistance Temperature Detector (RTD) Sensors
and OMEGA pressure transducers connected to a LabVIEW control and data acquisition system (DAQ).
The accuracy of the RTD sensors was approximately 0.1 ◦C. The schematic of the experimental setup is
shown in Figure 2A.
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Figure 2. Illustration of the experimental setup. (A) The setup for the single-channel device consisted of
one syringe pump to inject DI water into the device whilst the device was immersed in the warm water
bath. While running through the rolled-up device, the running DI water harvested the heat flux from
the hot water bath at varied flow rates, resulting in increasing temperature at the outlet. (B) The setup
for dual channel device contains two loops of fluids i.e., hot water stream and cold water stream.
Each loop had a peristaltic pump and water bath to set the flow rates and temperatures. The inlet
and outlet temperatures were measured by using resistance temperature detector (RTD) probes and
pressures were measured by pressure transducers, both of which were connected to a data acquisition
system (DAQ).

In the case of the dual-channel test, the device was mounted into a setup consisting of both a
hot water loop and a cold water loop (see Figure 2B). Hot and cold water streams were separately
injected into the system, so that the heat can transfer from the hot channel to the cold channel via the
rolled-up device. Each loop consisted of a Masterflex L/S Peristaltic Pump (Cole-Parmer, Vernon Hills,
IL, USA) to create a uniform flow of DI water, a Remote Liquid Flow Meter (Alicat Scientific, Tucson,
AZ, USA), the RTD sensors (OMEGA, Norwalk, CT, USA), pressure transducer (OMEGA, Norwalk,
CT, USA), and a Refrigeration Bath Circulator (Thermo Fisher Scientific, Waltham, MA USA) with
temperature control used as a water reservoir. To simplify the effects of fluidic flow in both the hot
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water and cold water loops in this preliminary test, the flow rate of the cold loop was kept constant
at 1.3 mL/min. In this way, the independent effect of altering the flow rate of the hot loop on the
heat-transfer characteristic of the device could be observed.

In the single-channel heat sink experiment, the inlet temperature of the DI water was chosen to be
300 K, so that the DI water would be injected into the device at close to room temperature. For the
heat exchanger experiment, the inlet temperature of the cold loop was also selected as 300 K, for same
reason. On the other hand, the hot loop inlet temperature ranged almost linearly from 305 K for the
lowest flow rates up to 330 K for the highest flow rates. This range was caused by the heat loss along
tubing between the heat source (the hot water bath) and the device. At the slower flow rates, a longer
residential time of hot water in contact with the tubing resulted in lower temperatures at the inlet of
the device.

2.4. Characterization of Thermal Performance

The temperatures and pressures of the fluid measured upstream and downstream of the devices
were used to determine the thermal performance of the devices. The heat transfer characteristics of the
device were expressed in terms of temperature change, pressure drop, Nusselt number, and thermal
performance factor (TPF). The Nusselt number, the ratio of convective heat to conductive heat transport
in a fluid, can be expressed as:

Nu =
Dh

.
mCp

(
Tf ,in − Tf , out

)
kA

×
ln
( Tw−Tf ,in

Tw−Tf , out

)
(

Tw − Tf ,in

)
−

(
Tw − Tf , out

) (1)

where Dh is the hydraulic diameter of the microchannel, ṁ is a mass flow rate of the fluid, Cp is the
specific heat capacity of the fluid, Tf, in is the temperature of inlet fluid, Tf, out is the temperature of
outlet fluid, Tw is the temperature of the channel wall, k is the thermal conductivity of the fluid, and A
is the heat transfer area. Similarly, f is the friction factor derived from Darcy–Weisbach equation as:

f =
2Dh∆P
LρU2 (2)

where ∆P is the pressure drop across the microchannel, L is the length of the channel, ρ is the density
of the fluid, and U is the fluid flow velocity. On the basis of a constant consumed energy of pumping
power, the thermal performance factor (TPF) can be derived from the Nusselt number and the friction
factor as:

TPF =
Nu

f
1
3

(3)

The thermal characteristics of the devices were plotted against the Reynolds number, as
determined from the equation below:

Re =
ρDhU

v
(4)

where ν is the viscosity of the fluid.

3. Results and Discussion

3.1. Preliminary Test of Thermal Performance of Rolled-Up Device as a Heat Sink

The results of the testing of the rolled-up device employed as a heat sink are shown in Figure 3.
The single-channel experimental results demonstrate that when DI water flows through parallel curved
channels along the rolled-up device, the heat from the hot water reservoir is harvested, resulting in
a temperature change between the inlet and outlet of up to 15 ◦C (see Figure 3A). This temperature
change increases with rising flow rate–steeply at Re < 50 and more slowly after that—until it reaches a
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maximum (around 15 ◦C) at approximately Re = 125, after which it stabilized at that value. As would
be expected, the pressure drop increases proportionally with flow rate, as shown in Figure 3B. The lack
of sudden drops or peaks in this measurement, combined with the absence of bubbles of other visual
signs of water loss, verify that the rolled-up device can be assumed to free of leakage. Much like for the
pressure drop, the Nusselt number (Nu) also increases with the flow rate, with no observable maximum
value within the parameter space explored, unlike for the temperature change (see Figure 3C). As both
the pressure drop and the Nusselt number form roughly linear relationships with Reynolds number,
so too does the thermal performance factor (TPF), as demonstrated in Figure 3D. This being the case,
these experimental results verify that, despite the low thermal conductivity of the material employed,
our rolled-up device can provide a prototype that features good thermal performance, which is suitable
for heat-recovery applications.
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Figure 3. The experimental results of the single-channel rolled-up microfluidic system. The device was
immersed into a warm water bath at constant temperature of 50 ◦C, as illustrated in Figure 2A. The flow
rates of DI water in the microchannel were varied to determine the thermal performance of this device.
(A) The temperature change of water was plotted against the Reynold number. (B) The pressure drop
along the channel was measured at varied flow rates. The thermal performances of the rolled-up device,
determined via Nusselt number (Nu) and thermal performance factor (TPF) (C,D), respectively. In this
thermal test, the fluidic flow rates were varied from 0.5 to 7 mL/min, corresponding to Re of 10 to 160.

The rolled-up devices were also tested to verify the limits of their leakage-free behaviour. In this
study, it was found that the single-layer device can withstand high pressures of up to 80,000 Pa before
internal leakage between microchannels, which is revealed via a sudden drop or rise of the pressure
inside each channel, as monitored in real-time by LabVIEW. In the future, tougher materials would be
able to significantly improve this limit.

In a review of the available literature, only a few reports were found demonstrating the thermal
performance of a microchannel-based device constructed from polymer. As would be expected,
when compared with a metal-based heat sink [30], the thermal performance of our polymer-based
thin film device is significantly lower, due to the fact that the thermal conductivity of copper is
3000 times higher than that of PDMS. These metal-based devices also operate at notably higher flow
rates. However, when compared with another device made from the same material as our device and
with comparable microchannel dimensions [31], the thermal performance of our heat sink (maximum
Nu of approximately 1.2) is comparable to the heat sink described in that work (maximum Nu of
approximately 1.7).
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3.2. Preliminary Test of Thermal Performance of Dual-Channel Rolled-Up Device as a Heat Exchanger

The results of the testing of the rolled-up device employed as a heat exchanger are shown in
Figure 4. For the preliminary test of the dual-channel device, the flow rate in the cold water loop was
keep constant in order to observe the effect of the flow rate of the hot loop on the thermal performance
of the device. As can be seen in Figure 4A, at a given constant cold loop flow rate, the water in the hot
loop can be cooled down by up to 8 ◦C between inlet and outlet. Unlike for the heat sink experiments,
there was no maximum temperature change or levelling-off observed in this test, though this could
possibly be due to the lower flow rates that were employed (required due to the increased pressure
from the peristaltic pumps and smaller channel size). The relatively linear plot of pressure drop
against the Reynolds number in Figure 4B again shows no evidence of water leakage within the device,
verifying that the dual-channel rolled-up device is also leakage-free. This preliminary result shows that
heat transfer can efficiently occur between hot and cold channels, despite the low thermal conductivity
of the material employed, thus suggesting that the dual-channel rolled-up device prototype made via
our approach can also be used effectively for heat-transfer applications.
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Figure 4. The experimental results of the dual-channel rolled-up microfluidic system. The device
was mounted into the two-loop experimental setup shown in Figure 2B. The hot water and cold
water were separately injected into a hot channel loop and cold channel loop in the rolled-up device,
respectively. The change in temperature of the hot water stream was plotted against the Reynolds
number (A) showing good heat transfer between hot and cold channels. (B) The pressure drop was
plotted against the Reynolds number, showing no leakage in our device. (C) The thermal performances
of the dual-channel rolled-up device were determined via the Nusselt number and thermal performance
factor (TPF), which are plotted against Reynolds number as shown in (C,D), respectively. In this thermal
test, the fluidic flow rates were varied from 0.6 to 8.5 mL/min corresponding to Re of 2 to 26.

Like for the single-layer device, the two-layer device was also tested for the maximum conditions
that it could remain leakage-free. For this device, the thin film was able to withstand up to 90,000 Pa
before suffering internal leakage between hot and cold channels. As for the heat sink, stronger
polymers would be able to increase this maximum survivable pressure.

In order to assess the thermal performance of our two-layer device employed as a heat-exchanger
when compared to the literature, another device that is made from the same material and with
comparable microchannel dimensions must be utilised. In this way, the heat transfer efficiency of
the dual-channel thin film (maximum Nu of approximately 0.2) is found to again be similar to the
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performance of the two-layer heat exchanger from the same study used previously to compare the
heat sink (maximum Nu of approximately 0.3) [31].

3.3. Fabrication Techniques and Implications

As discussed, our fabrication approach of microfluidic system by rolling up polymeric thin films
can provide several advantages in many aspects. First, our proposed fabrication technique allows for a
simple and fast manufacturing process, starting from casting of the thin film, to alignment, and finally
assembly of the device. In the conventional approach, the multilayers of microfluidic samples are
separately made prior to layer-by-layer assembly of the device. In our approach, the device can be made
from a single step of rolling up the large microfluidic thin film. This is significantly less time-consuming
than the conventional assembly method. Moreover, the manufacturing cost of polymeric thin films in
term of a labor cost (manufacturing time) and the cost of materials is lower than conventional materials
(i.e., metal), allowing for further development of the cost-effective mass production of the microfluidic
system in the future. As compared with metallic materials, some properties of polymeric materials,
such as biological and chemical resistance, light-weight, and transparency, have beneficial qualities.
For instance, polymers can be used for the fabrication of devices that are used in harsh conditions,
such as environments in contact with high acidic or basis solutions, or seawaters. Additionally, in the
aerospace or offshore industries, equipment with highly-compact design, low-footprint area and low
weight are strongly advantageous. Thin-film polymer-based devices would be promising for these
applications due to the material properties of polymers. Furthermore, the transparency of the polymer
can allow for optical observation of the fluid inside the device, for instance, permitting straightforward
observation of clogging or fouling inside the device.

In terms of thermal transport performance, when the thin film is rolled up around the center
core and the multiple curved channels are created, generation of secondary flow in the form of Dean
vortices will occur along the microchannel. In addition, the microchannel design can dramatically
increase the surface area per volume ratio of the fluid, and thus the thin film of the polymer can
provide decreased thermal resistance along the film, despite the low thermal conductivity of the
polymer. These characteristics are all greatly beneficial for heat transfer. In this way, the thin-film
microfluidic system is well suited to be employed for heat transfer applications, such as heat sinks
and heat exchangers. For example, Heng et al., [26] proposed a polymer-based heat exchanger made
from polymeric thin films. They optimized the parameters of the device (i.e., the thickness of the
film, dimensions and configuration of the microchannels) to achieve highly-efficient heat transfer in
the microchannel by using computational fluid dynamic simulations in the software FLUENT. Our
proposed fabrication approach could be applied to produce the rapid prototype of that system to
validate experimentally that numerical work.

Lastly, via our fabrication approach, the rolled-up device can be manufactured from multilayers
of polymeric thin film. The multilayered rolled-up microfluidic device containing multiple parallel
curved microchannels allows for high fluidic flow through the device while maintaining reduced
pressure drop along the system. This principle would be promising for further development of the
rolled-up microfluidic system for industrial level usage. As mentioned previously, the rolled-up
microfluidic system consists of multiple curved channels that generate Dean vortices, boosting the
mass and heat transfer in the microchannel. This principle vortices-induced enhancement of mass and
heat transfer in the curved channel has been well-explained and applied for numerous applications,
such as mixers, microsorters, waste heat recovery, and heat exchange. In this work, the devices made
by using this rolling-up technique were employed as a heat sink to achieve heat recovery and a heat
exchanger to achieve thermal transport. For future work, the rolled-up device could be developed and
employed for other applications, including micromixers and cell/microparticle separation.
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4. Conclusions

This work presents the fabrication of a new prototype system made of rolled-up polymeric thin
film, with validation of its heat-transfer properties. The production of the microfluidic device is
simple and feasible and the principle of this fabrication approach can be further developed for making
multi-layer microfluidic thin films that can facilitate high fluidic flow. Due to the creation of the
multiple curved channels from this fabrication approach, the rolled-up devices can be employed for
diverse applications, such as heat sinks, heat exchangers, micromixers, microparticle separators, etc.
In all cases, the Dean vortices that the curved channels generate act to enhance heat and mass transport
relative to an equivalent straight channel. The novel fabrication approach reported in this work
may represent the first step towards the development of a pioneering prototype for polymer-based
roll-to-roll (R2R) processing, permitting the mass production of polymer-based microchannels from
single or multiple thin films.
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