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Abstract: The nanomechanical properties and nanoindentation responses of bismuth selenide (Bi2Se3)
thin films are investigated in this study. The Bi2Se3 thin films are deposited on c-plane sapphire
substrates using pulsed laser deposition. The microstructural properties of Bi2Se3 thin films are
analyzed by means of X-ray diffraction (XRD). The XRD results indicated that Bi2Se3 thin films are
exhibited the hexagonal crystal structure with a c-axis preferred growth orientation. Nanoindentation
results showed the multiple “pop-ins” displayed in the loading segments of the load-displacement
curves, suggesting that the deformation mechanisms in the hexagonal-structured Bi2Se3 films might
have been governed by the nucleation and propagation of dislocations. Further, an energetic
estimation of nanoindentation-induced dislocation associated with the observed pop-in effects was
made using the classical dislocation theory.
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1. Introduction

Recently, topological insulators (TIs) have attracted enormous research attention owing to their
intriguing fundamental physical properties, such as their conduction mechanisms [1,2], as well as
their potential applications in the emergent fields of spintronics [3], optoelectronics [4] and quantum
computation [5]. Among various TI materials based on Bi compounds [6,7], bismuth selenide (Bi2Se3) is
one of the most popular representative candidates in three-dimensional TIs [7,8] suitable for electronic
applications, because of its large bulk energy gap of 0.3 eV and a single Dirac cone in the Brillouin
zone [1,7]. In addition, Bi2Se3 also exhibits excellent thermoelectric properties at roomtemperature [9]
and low-temperature regime [10]. For the fundamental study and device application, it is essential to
grow Bi2Se3 thin films with high-quality and desired mechanical properties [11,12].

Epitaxial Bi2Se3 thin films have been successfully prepared by molecular beam epitaxy
(MBE) [13–16]. Compared to MBE deposition, pulsed laser deposition (PLD) offers advantages such
as a higher instantaneous deposition rate, relatively high reproducibility, and low costs. Thus, PLD
has become one of the most widely used deposition techniques for growing thin films containing
multi-elements. Both epitaxial and polycrystalline Bi2Se3 thin films have been successfully prepared by
PLD [9,17–20]. In particular, PLD-grown Bi2Se3 thin films on InP (111) substrate presented triangular
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pyramids with step-and-terrace structures and growth along the [0001] direction [17]. Though lattice
misfit over 13%, the Bi2Se3 films were epitaxially grown on Al2O3 (0001) with in-plane the relationship
of (0001) Bi2Se3 ||(0001) Al2O3 and [21̄1̄0] Bi2Se3 ||[21̄1̄0] Al2O3 or [21̄1̄0] Bi2Se3 ||[112̄0] Al2O3 [19].
Meanwhile, the Bi2Se3 films prepared by metal organic chemical vapor deposition and thermal
evaporation exhibited polycrystalline morphologies and c-axis preferred oriented structures [21,22].
In this study, PLD technique is adopted to grow textured Bi2Se3/Al2O3 (0001) thin films and study
their nanomechanical properties.

The mechanical properties of thin films in nanometer-scale are of great interest since they can
be significantly different from their bulk counterparts. Especially, when thin films are used as
structural/functional elements of certain nanodevices, robustness to stringent mechanical impacts
arising from various fabrication processes is also of pivotal importance. Thus, studies on the
correlations between the microstructural and mechanical properties of thin films are indispensable.
Nanoindentation has been widely used as a powerful depth-sensing probe for measuring the
primary mechanical property parameters, such as hardness and elastic modulus, as well as in
revealing the plastic deformation behaviors and mechanisms of various nanoscaled materials [23–26],
thin films [27–31] and single-crystal materials [32,33]. Herein, we report the nanomechanical properties
of Bi2Se3 thin films deposited on c-plane sapphire substrates by PLD using nanoindentation with
the aid of the continuous contact stiffness (CSM) mode. In addition to obtaining the characteristic
nanomechanical properties of Bi2Se3 thin films, we also performed detailed analyses on the first pop-in
event displayed on the load-displacement curves of nanoindentation to elucidate the underlying
plastic deformation mechanisms and the associated dislocation physics [34–37].

2. Materials and Methods

The Bi2Se3 thin films investigated in the present study were deposited on Al2O3 (0001) substrates
by using PLD at a substrate temperature of 300 ◦C with a helium ambient pressure of 220 mTorr.
In particular, in order to obtaining near stoichiometric films at the relatively high substrate temperature
of 300 ◦C, the Se-rich target with a nominal composition of Bi2Se8 was used. For the PLD process,
ultraviolet (UV) pulses (20-ns duration) from a KrF excimer laser (λ = 248 nm, repetition: 5 Hz) were
focused on a polycrystalline Bi2Se8 target at a fluence of 6.25 J/cm2 and a target-to-substrate distance
of 40 mm. The deposition time was 20 min, which resulted in an average Bi2Se3 film thickness of
approximately 360 nm (the growth rate of approximately 0.6 Å/pulse).

The crystalline structure of the obtained Bi2Se3 thin films was examined by X-ray diffraction (XRD;
Bruker D8, Bruker, Billerica, MA, USA) using theCuKα radiation, λ = 1.54 Å. The surface morphology
and film compositions were analyzed by a field emission scanning electron microscopy (FESEM; JEOL
JSM-6500, JEOL, Pleasanton, CA, USA) and an Oxford energy-dispersive X-ray spectroscopy (EDS)
attached to the SEM instrument, respectively. The analyses were conducted using an accelerating
voltage of 15 kV, with the dead time of 22–30% and collection time of 60 s, respectively.

The nanoindentation tests were carried out at a Nanoindenter MTS NanoXP® system (MTS
Cooperation, Nano Instruments Innovation Center, Oak Ridge, TN, USA). A three-sided pyramidal
Berkovich-type diamond indenter tip with radius of curvature of 50 nm was used for all indentation
measurements. The mechanical properties of Bi2Se3 thin films were measured by nanoindentation
with the continuous contact stiffness (CSM) mode [38]. The indenter was loaded and unloaded three
times to ensure that the tip was properly in contact with the material surface, and that any parasitic
phenomenon was released from the measurements. Then, the indenter was loaded for the fourth and
final time at a strain rate of 0.05 s−1, with a 5 s holding period inserted at the peak load in order to
avoid the influence of creep on unloading characteristics, which were used to compute the mechanical
properties of Bi2Se3 thin films. Finally, the indenter was withdrawn with the same strain rate until
10% of the peak load was reached. At least 20 indents were performed. We also followed the analytic
method proposed by Oliver and Pharr [39] to determine the hardness and Young’s modulus of Bi2Se3

thin films. In order to investigate the cracking phenomenon, cyclic nanoindentation tests were also
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performed. For the first cycle, the indenter was loaded to some chosen load and then unloaded by
90% of the previous load. It then was reloaded to a larger chosen load and unloaded by 90% for
the second cycle. Noticeably, in each cycle, the indenter was hold for 10 s at 10% of its previous
maximum load for the thermal drift correction and for assuring unloading completion. The same
loading/unloading rate of 10 mN/s was used. The thermal drift was kept below ±0.05 nm/s for
all indentations.

3. Results

In Figure 1a, XRD patterns show the dominant (0 0 3n) diffraction peaks of Bi2Se3 films in addition
to a minor Bi2Se3 (0 1 5) peak and a Al2O3 (0 0 6) peak of the substrate, indicating the film growth along
the [0001] direction. This is due to the rhombohedral crystal structure of Bi2Se3 (space group D5

3d(R3m)),
in which a hexagonal primitive cell consists of three layers of –(Se(1)–Bi–Se(2)–Bi–Se(1))–lamellae
(called quintuple layers, QLs) stacking in sequence along the c-axis [15]. The interaction between
the neighboring QLs is mainly the Se(1)–Se(1) van der Waals bond (Figure 1b). The interlayer
Se(1)–Se(1) bonding not only is substantially weaker than the intralayer ionic-covalent bonds within
individual QLs but also results in a lowest surface energy on the {001} planes, which leads to observed
preferred (001)-oriented crystal growth behavior [9]. As shown the inset of Figure 1a, the full width
half maximum (FWHM) of the (0 0 6) peak from the XRD rocking curve was found to be 0.49◦,
which suggests the presence of certain disorientation between grains (see also Figure 1b). This FWHM
was comparable to that of Bi2Se3 film grown on Al2O3 by PLD [17]. Moreover, the in-plane orientation
of the films were examined by XRD Φ-scan on {0 1 5} planes of the Bi2Se3 films at a tilt angle (χ) of 57.9◦.
The films did not show any diffraction peaks, indicating their in-plane polycrystalline characteristics.
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Figure 1. (a) X-ray diffraction (XRD) patterns of a bismuth selenide (Bi2Se3) thin film grown on c-plane
sapphire using pulsed laser deposition (PLD). The inset in (a) shows the XRD rocking curve of (006)
peak for the film. (b) Crystal structure of Bi2Se3 (QL is quintuple layer).

Intriguingly, the films presented polycrystalline morphology with mutually crossed nanoplatelets
(Figure 2a), which are somehow similar to those of Bi2Te3 grown by electrodeposition [40]. It has been
proposed that the formation of mutually crossed Bi2Te3 nanoplatelets can be mainly attributed to the
anisotropic bonding nature and growth facet planes with appropriate chemical stoichiometry [40].
This formation mechanism may be also prevailing in the present Bi2Se3 films due to the similar
anisotropic bonding nature of Bi2Se3 and Bi2Te3. The film exhibited layered structure and uniform
thickness of ~360 nm, as shown by the cross-sectional SEM image in Figure 2a. The upper inset of
Figure 2a summarizes the EDS result of the film. Clearly, the film obtained stoichiometric composition
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of Bi2Se3 (i.e., 40.56 at.% Bi and 59.44 at.% Se). The surface roughness can be represented by center line
average (Ra), as shown by the AFM image in Figure 2b. The Ra of the film was 8.54 nm.
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Figure 2. (a) A plane-view SEM image of the Bi2Se3 thin film deposited on c-plane sapphire. Lower
inset: a cross-sectional SEM image of the film; upper inset: The energy-dispersive X-ray spectroscopy
(EDS) spectra and relative compositions of the film. (b) AFM image of the film, Ra is the center line
average roughness.

Figure 3a displays the typical load-displacement curve of the present Bi2Se3 films obtained by
CSM. The corresponding indentation depth-dependent hardness and Young’s modulus are shown
in Figure 3b,c, respectively. As is evident from Figure 3b, the indentation depth-dependent hardness
of Bi2Se3 thin film can be roughly divided into two stages. Namely, the hardness, after reaching
the maximum in the first 10 nm, precipitously decreases with further increasing indentation depth
and eventually reaches a constant value at 2.1 ± 0.1 GPa after the first stage. It is noted that the
present results are well within the 30% depth/thickness criterion for nanoindentation test suggested
by Li et al. [23,41]. Thus, the effects arising from the substrate or film/substrate interface are excluded.
In this respect, the “noisy” depth-dependent hardness, especially in the first stage, might be arisen
from the extensive dislocation activities in this stress range. Similar tendency in the depth-dependent
Young’s modulus is observed (Figure 3c), presumably due to the same mechanism. The Young’s
modulus of the present Bi2Se3 thin film is 58.6 ± 4.1 GPa. It is interesting to note that both the
hardness and Young’s modulus of present PLD-derived Bi2Se3 thin films are much larger than that
of single-crystal Bi2Se3 reported by Gupta et al. [12], where the respective values of 85.09 MPa and
6.361 GPa were obtained. The reason for the apparent discrepancy is not clear at present. Nevertheless,
in addition the apparent differences in microstructure, such as grain boundaries (see Figure 2a),
we also note that the load and penetration depths carried out in Reference [12] were both much larger
than that employed in the present study. Recently, it has been found in a hybrid double perovskite
(MA)2AgBiBr6 that Young’s modulus decreased considerably with increasing indentation depth [42],
which partially explains for the larger Young’s modulus in this study than that of in Reference [12].
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Figure 3. (a) A load-displacement curve showing the multiple “pop-ins” during loading part,
(b) hardness-displacement curve and, (c) Young’s modulus-displacement curve are obtained from the
nanoindentation continuous contact stiffness (CSM) results of Bi2Se3 thin film.

From Figure 3a and the cyclic load-displacement curve in the inset of Figure 4, signatures of the
multiple pop-ins are clearly observed in the loading part, as indicated by the arrows shown in both
figures. It is noted that similar behaviors were also observed in nanoindented Bi2Se3 single crystals
and was interpreted as being due to heterogeneous nucleation of dislocations beneath the indenter
tip [12]. Since the multiple pop-ins is generally closely related to the sudden collective activities
of dislocations [43] (such as dislocation generation or movement bursts), we believe that massive
dislocation activities are the predominant deformation mechanism in this material, which, in fact,
is also consistent with the conjectures of the resultant “noisy” features seen in the depth-dependent
curves hardness and Young’s modulus described above.

It is also interesting to note that no “pop-out” event is observed in both the unloading curves
displayed in Figure 3a and in the inset of Figure 4. Such pop-out behavior is often interpreted as a
manifestation of indentation-induced phase transition (for example: nanoindentation-induced phase
transformation of single-crystal Si [44]), which is not found in our case. However, as revealed by
the SEM image shown in Figure 4, it is evident that significant cracks and pile-ups phenomena
along the three corners and edges of the residual indent are also observable. The multiple pop-ins
were observed in a large array of materials and were demonstrated to result mainly from massive
nucleation and/or propagation of dislocations during loading [45], or micro-cracks initiated around
the indentation tip [46]. Hence, it is clear that not only the first pop-in event may reflect the onset of
plasticity due to the dislocation activities, but the cracking and pile-up event could also be dominated
by the similar mechanism in the present Bi2Se3 thin films under nanoindentation. On the other
hand, the pressure-induced structural phase transition in Bi2Se3 using high pressure Raman and
XRD experiments [47] has evidenced that the magnitude of required pressure to induce phase
transitions is significantly higher than the apparent room-temperature hardness of hexagonal Bi2Se3

thin film measured here. It is worthwhile mentioning that in many hexagonal structured materials,
such as, sapphire [48] and GaN thin films [49–52], the primary nanoindentation-induced deformation
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mechanisms have been consistently identified to be the nucleation and propagation of dislocations.
It is, thus, plausible to state that deformation behavior in the present Bi2Se3 thin films is most likely
governed by the similar mechanisms.
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Figure 4. Nanoindented SEM micrograph of Bi2Se3 thin film showing cracks propagate along
the corners and pile-up beside the edges of the Berkovich indent. The inset shows the cyclic
load-displacement curve at a load of 50 mN. Notice that the multiple “pop-ins” is observable (indicated
by the arrows) in loading segments.

Within the scenario of the dislocation nucleation and propagation, the first pop-in event appearing
in the loading segment naturally reflects the onset of plasticity for Bi2Se3 thin film, which also provides
prominent information about the critical shear stress (τmax) the energy associated with the nucleation
of dislocation loops. Following the analytical model proposed by Johnson [53], τmax can be related to
the indentation load (Pc), at which a discontinuity in the load-displacement curve takes place, through
the following equation [53]:
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Here, R is the radius of indenter tip and Er is the effective elastic modulus, respectively.
The maximum shear stress for Bi2Se3 thin films investigated in the present study is about 0.7 GPa.
To the first approximation, the work done by this τmax is mainly associated with the dislocations
nucleated within the deformation region underneath the indenter tip. Assuming the nucleation is
homogeneous during nanoindentation [34], then, according to the classical dislocation theory [54],
the stress at which the first “pop-in” taking place and the energy “dissipated” in it can be regarded,
respectively, as the shear stress required to initiate plastic deformation and the energy required for
generating a dislocation loop to prevail the deformation. The free energy (UF) of a circular dislocation
loop with radius r can be written as:

UF = γdis2πr − τbπr2 (2)

where γdis is the energy per unit length of the dislocation loop, b is the magnitude of Burgers vector
(~0.4 nm) [55] and τ is the external shear stress acting on the dislocation loop, respectively. The first
term on the right-hand side of Equation (2) describes the energy increased by forming a dislocation
loop of radius r in an initially defect-free lattice. The second term is nothing but the strain energy



Micromachines 2018, 9, 518 7 of 10

released via work done by the applied stress (τ) to expand the dislocation loop over a displacement of
one Burgers vector. The linear energy density (γdis) for a dislocation is given by [54]:

γdis =
G b2

8π

(
2 − v f

1 − v f

)[
ln

4r
rcore

− 2
]

(3)

where G, vf and rcore are the shear modulus (≈24 GPa), the Poisson’s ratio (assumed to be 0.25) of
Bi2Se3 thin film, and radius of dislocation core, respectively. Substituting Equation (1) and Equation (3)
into Equation (2) gives:

UF =
Gb2r

4

(
2 − v f

1 − v f

)(
ln

4r
rcore

− 2
)
− πbr2τc (4)

Here, τc is the resolved shear stress of τmax on the active slip systems of the material and is
usually taken as half value of τmax [56]. Equation (4) clearly indicates that UF contains terms with first
and second power of r. Thus, there must exist a critical radius, rc, at which UF of the system reaches a
maximum value. When the radius of the dislocation loop exceeds rc, further expansion lowers UF,
hence is thermodynamically favorable. In contrast, if r < rc, the loop would shrink to reduce the energy.
Consequently, when the loading reaches to the “pop-in” point, homogeneous formation of circular
dislocation loop becomes possible without thermal energy at UF = 0 [57]. The condition (UF = 0) allows
τc to be determined from through Equation (2) and Equation (3), yielding rc = 2γdis/(bτmax). Since τc

has a maximum value as dτc/dr = 0, one obtains: rc = (e3rcore)/4. The values of rcore and rc for the
present Bi2Se3 thin films were calculated to be 1.08 nm and 5.4 nm, respectively.

By assuming that the nucleation of dislocation loops is entirely responsible for the indentation-
induced plastic deformation and no thermal effect is involved, one can further estimate the number
of dislocation loops formed during the first “pop-in” event by using the associated work-done (Wp).
As depicted in Figure 5, the estimated Wp is ~0.11 × 10−12 Nm, suggesting that ~8 × 103 dislocation
loops with critical diameter might have been formed. Although the estimated number is relatively low
compared to that of typical polycrystalline thin films (~106 cm−2) [58], it is, nevertheless, consistent with
the scenario that the “pop-in” is induced by massive homogeneous dislocation nucleation, instead of by
the activated collective motion of pre-existing grown-in dislocations [34]. Alternatively, one can take the
total dissipation energy as the energy to estimate the number of dislocations with critical radius being
generated during entire nanoindentation practice. In that case, as high as ~3 × 105 dislocation loops may
be formed during nanoindentation. This number, albeit not entirely realistic, may be considered as the
upper limit within the context of dislocation dominant deformation mechanism.

Micromachines 2018, 9, x  7 of 10 

 

2

dis

core

2 4
ln 2

8π 1

f

f

vGb r

v r


   
        

 (3) 

where G, vf and rcore are the shear modulus (≈24 GPa), the Poisson’s ratio (assumed to be 0.25) of 

Bi2Se3 thin film, and radius of dislocation core, respectively. Substituting Equation (1) and Equation 

(3) into Equation (2) gives: 

2
2

F c

core

2 4
ln 2 π

4 1

f

f

vGb r r
U br

v r


   
        

 (4) 

Here, τc is the resolved shear stress of τmax on the active slip systems of the material and is usually 

taken as half value of τmax [56]. Equation (4) clearly indicates that UF contains terms with first and 

second power of r. Thus, there must exist a critical radius, rc, at which UF of the system reaches a 

maximum value. When the radius of the dislocation loop exceeds rc, further expansion lowers UF, 

hence is thermodynamically favorable. In contrast, if r < rc, the loop would shrink to reduce the 

energy. Consequently, when the loading reaches to the “pop-in” point, homogeneous formation of 

circular dislocation loop becomes possible without thermal energy at UF = 0 [57]. The condition (UF = 

0) allows τc to be determined from through Equation (2) and Equation (3), yielding 

c dis max/ ( )2r b  . Since τc has a maximum value as 
c / 0d dr  , one obtains: c core

3 ) / 4r e r（ . 

The values of rcore and rc for the present Bi2Se3 thin films were calculated to be 1.08 nm and 5.4 nm, 

respectively. 

By assuming that the nucleation of dislocation loops is entirely responsible for the indentation-

induced plastic deformation and no thermal effect is involved, one can further estimate the number 

of dislocation loops formed during the first “pop-in” event by using the associated work-done (Wp). 

As depicted in Figure 5, the estimated Wp is ~0.11 × 10−12 Nm, suggesting that ~8 × 103 dislocation 

loops with critical diameter might have been formed. Although the estimated number is relatively 

low compared to that of typical polycrystalline thin films (~106 cm−2) [58], it is, nevertheless, consistent 

with the scenario that the “pop-in” is induced by massive homogeneous dislocation nucleation, 

instead of by the activated collective motion of pre-existing grown-in dislocations [34]. Alternatively, 

one can take the total dissipation energy as the energy to estimate the number of dislocations with 

critical radius being generated during entire nanoindentation practice. In that case, as high as ~3 × 105 

dislocation loops may be formed during nanoindentation. This number, albeit not entirely realistic, 

may be considered as the upper limit within the context of dislocation dominant deformation 

mechanism. 

 

Figure 5. The corresponding first pop-in event from Figure 3a is zoomed in to depict the plastic strain 

work, Wp, which is approximated as the product of critical loading and the sudden incremental 

displacement indicated by the shaded area. 

Figure 5. The corresponding first pop-in event from Figure 3a is zoomed in to depict the plastic
strain work, Wp, which is approximated as the product of critical loading and the sudden incremental
displacement indicated by the shaded area.



Micromachines 2018, 9, 518 8 of 10

4. Conclusions

To sum up, XRD, SEM, AFM and nanoindentation techniques are used to investigate the
microstructural and surface morphological features, as well as the nanomechanical properties of Bi2Se3

thin films. The results show that the Bi2Se3 thin films are polycrystalline with highly (00l)-orientation
(texture films) and stoichiometric compositions. The hardness and Young’s modulus of Bi2Se3 thin
film are obtained 2.1 ± 0.1 GPa and 58.6 ± 4.1 GPa, respectively. Similar to many hexagonal-structured
semiconductors, the primary deformation mechanism for the present Bi2Se3 thin film is governed by
nucleation and propagation of dislocations or the formation of cracking events. Preliminary energetic
estimations indicated that the number of dislocation loops induced by nanoindentation to trigger
the plastic deformation accounts for the first pop-in event was in the order of 103 with a critical
radius (rc ≈ 5.4 nm). Although the estimated dislocation density is relatively low compared to that of
typical polycrystalline films, it is, nevertheless, in line with the scenario of homogeneous dislocation
nucleation-induced first “pop-in” event.
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