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Abstract: Ever since a new energy harvesting technology, known as a triboelectric nanogenerator
(TENG), was reported in 2012, the rapid development of device fabrication techniques and mechanical
system designs have considerably made the instantaneous output power increase up to several tens
of mW/cm2. With this innovative technology, a lot of researchers experimentally demonstrated
that various portable/wearable devices could be operated without any external power. This article
provides a comprehensive review of polyvinylidene fluoride (PVDF)-based polymers as effective
dielectrics in TENGs for further increase of the output power to speed up commercialization of the
TENGs, as well as the fundamental issues regarding the materials. In the end, we will also review
PVDF-based sensors based on the triboelectric and piezoelectric effects of the PVDF polymers.
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1. Introduction

1.1. Background of Energy Harvesting Based on the Triboelectric Effect

Most recently, a newly designed energy generating device named the triboelectric nanogenerator
(TENG) was reported and various types of TENGs have been demonstrated, proven as a highly
efficient, simple, robust and cost-effective technique for efficiently converting various mechanical
energies around us to electricity [1–18]. In principle, the electrical energy is generated as two different
materials are brought into contact with each other, in conjunction with the triboelectric electrification
and electrostatic induction. The sources of mechanical energy such as winds and moving things are
available anywhere and anytime in our surroundings [18,19], thus, TENG will be appropriate as a
power-supply unit for portable devices although the energy is not big as expected [20]. Since the
first demonstration of the TENG on 2012, various TENG structures and new functional materials
brought about the significant increase of the instantaneous power density up to several tens of
mW/cm2, as shown in Figure 1 and Table 1 [1,2,12,21–29]. The output current also increased up
to several mA although it seemed that there was no significant increase recently. By virtue of the
increased output power, it was successfully demonstrated that it was possible to power up various
portable electronic devices as well as to fabricate the self-powered physical and chemical sensors.
Actually, many portable/wearable devices such as smart phones/watches, healthcare sensors, smart
goggles, etc., could be charged by the TENGs, which generated enough power to turn on or use the
devices for a moment. The TENGs also made various sensors which could mechanically detect the
ambient pressure [16,30–33], motion [34], airflow [35], vibration [36], and chemically detect various

Micromachines 2018, 9, 532; doi:10.3390/mi9100532 www.mdpi.com/journal/micromachines

http://www.mdpi.com/journal/micromachines
http://www.mdpi.com
http://dx.doi.org/10.3390/mi9100532
http://www.mdpi.com/journal/micromachines
http://www.mdpi.com/2072-666X/9/10/532?type=check_update&version=2


Micromachines 2018, 9, 532 2 of 13

chemical/molecular species including methanol [37], ethanol [38–40], mercury [41], glucose [42],
phenol [43], metal ions [44] without any external power.
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Figure 1. The areal power densities and output currents of various triboelectric nanogenerators
(TENGs) reported for the last 5 years [45].

Table 1. The areal power densities, output currents, and charge densities of various triboelectric
nanogenerators (TENGs) reported for the last 5 years.

Positively Charged
Materials

Negatively Charged
Materials Working Mode Output Power

(mW/cm2)
Charge Density

(µC/m2)

#1 [1] PET Kapton Vertical-contact 0.00036 -
#2 [2] PET PDMS Vertical-contact 0.00234 -

#3 [21] Al PDMS Vertical-contact 3.56 -
#4 [22] Au PDMS Vertical-contact 31.3 594.2 (calculated)
#5 [23] Nylon PTFE Lateral-sliding 0.53 59
#6 [24] Al FEP Vertical-contact 31.5 240
#7 [46] Al PVDF Vertical-contact 0.26 360.2
#8 [12] Cu PTFE Freestanding 50 323

#9 [47] Al ZnSnO3-PVDF
(composites) Vertical-contact 3 101.3

#10 [25] Cu Kapton Lateral-sliding 13.2 -
#11 [26] Al PDMS Vertical-contact 46.8 270
#12 [48] Al PVDF-Gn Vertical-contact 2.6 23

1.2. The Four Fundamental Modes of the Triboelectric Nanogenerator

Up to now, there are two representative modes in TENGs such as the vertical contact-separation
mode and lateral sliding mode depending on the direction. An object moves with respect to the other
one. In the vertical contact-separation mode, the working mechanism of the TENG is understood
as the potential difference occurring due to the contact and separation of two surfaces, as shown in
Figure 2a. When an external force is applied onto the top surface of the device, the surface comes
into contact with the other surface and the charge transfer occurs between them, generating positive
charges on the surface of one material and negative charges on the other one. The charge transfer is
mainly determined by the intrinsic properties of the materials, known as the triboelectric series. As the
force is released, the two surfaces with opposite charges are separated, inducing a potential difference
across the top and bottom electrodes. This is the driving force of the electron flow through the external
circuit from one electrode to the other one.
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contact-separation mode. (b) The lateral sliding mode. (c) The single-electrode mode. (d) The
free-standing mode.

In the second operation mode, the two surfaces are brought into contact in parallel with each
other, named as the lateral sliding mode, as shown in Figure 2b. Once the top surface with positive
charges slides outward, the decrease of the contact area induces the flow of electrons through the
external circuit because of the in-plane charge separation generating an electric field parallel to the
plates. Subsequently, when the top surface reverts to the original position, the electrons on the top
electrode will flow back through the external circuit to the bottom electrode in the same manner.
Compared with the vertical contact-separation mode, the lateral sliding mode shows a quite high
energy conversion efficiency and is quite promising in wearable application because of the low input
energy and various sliding motions occurring during human movement.

Additionally, there were two more operation modes, the single electrode mode, and free-standing
mode. Specifically, the single electrode mode has only one electrode, as shown in Figure 2c. In the
mode, the surfaces of the polymer and metal electrode are brought into contact with each other and the
charge transfer occurs between them. Once the polymer and the electrode are separated, the negative
charges on the surface of the polymer induced positive charges on the electrode, driving free electrons
to flow from the electrode to the ground, creating a current. The free-standing mode triboelectric
nanogenerator can scavenge electrical energy without an attached electrode, as shown in Figure 2d.
The TENG consists of two electrodes underneath a dielectric layer and the other frictional layer.
The frictional layer approaching to and departing from the electrodes creates an unbalanced charge
distribution, causing the electrons to flow between the two electrodes to balance the local potential
distribution. It is well-known that this mode could generate quite a high energy by the optimization of
the electrode pattern and the proper choice of the materials.

1.3. The Importance of Dielectrics in the Triboelectric Nanogenerator

As mentioned above, the instantaneous areal power density has reached up to several tens of
mW/cm2. However, this does not mean the improvement of the energy conversion efficiency. It tells us
facts that the fabricated TENGs can generate the output powers at confined input conditions (i.e., large
input force or optimized input conditions). The areal output currents reported are also still less than
1 mA/cm2, too low to provide enough energy for electronic devices. Recently, it seems that there was
no more significant increase in the output power of the TENGs.

It is well-known that the output current of the TENGs is determined by the density of the
surface charges transferred between the two materials. As a positively charged material, aluminum
(Al) was widely used because of the excellent electron donor characteristics although there have
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been promising candidates consisting of Au, Cu, etc. On the other hand, various polymers such as
polydimethylsiloxane (PDMS) [49,50], polytetrafluoroethylene (PTFE) [51–53], fluorinated ethylene
propylene (FEP) [54,55], and polyimide (PI) [56–58] have been tested as negatively charged materials.
Among many polymers, polyvinylidene difluoride (PVDF) has many advantages such as a large
dipole moment [59], good formability [60], and flexibility [61], thus, it has been considered as a
good candidate for an effective dielectric in TENG. Until now, various key approaches have been
applied to develop promising materials for the enhancement of the output performance, such as the
work function, the dielectric constant, the functional group (−F), the frictional coefficient, the surface
resistivity, the carrier density, the intrinsic carrier density, etc. Among the approaches, a high dielectric
constant and high work function were mainly studied theoretically and mathematically. In virtue of
the dielectric constant, the total transferred charge density (σ′) in the metal-polymer system can be
expressed by [62]

σ′ =
−σ0dgap

dgap +
ddielectric
εdielectric

(1)

where σ0 is the triboelectric surface charge density at the equilibrium state, dgap and ddielectric are the gap
distance and the thickness of the dielectric films, and εdielectric is a dielectric constant of the dielectric
films. Thus, the charge density will be increased by the increase of the dielectric constant. The charge
density is also influenced by the surface chemical potential difference between the two materials,
according to the following general equation [27]

σ =
[(W − E0)e]

(
1 + t

εz
)

t
εε0

+
(

1/Ns(E)e2
)(

1 + t
εz
) (2)

where W − E0 is the difference in the effective work functions between the two materials, e, t, ε, ε0, z,
and Ns(E) are the charge of an electron, distance of space, relative permittivity of the dielectric, vacuum
permittivity of free space, thickness of the dielectric film, and the averaged surface density of states.
This indicates that as the work function increases, the surface charge density accordingly increases.
However, despite the above-detailed studies, the charge density by the artificial charge injection is
practically limited and easily lost at ambient conditions. It implies that dielectric materials that can
efficiently accept many charges by physical contact need to be developed.

2. Polyvinylidene Fluoride (PVDF) as an Effective Dielectric in Triboelectric Nanogenerators

PVDF, a highly non-reactive polymer with a strong piezoelectric response and low acoustic
impedance, has been regarded as one of the most popular polymers in energy harvesting technologies.
It also shows a good flexible and mechanical properties, making it a good candidate as an effective
dielectric in triboelectric nanogenerator. It is a linear homopolymer produced by the repetition of
CH2-CF2 monomers, crystallized into four possible conformations named as the α, β, γ, and δ phases.
In general, they possess a permanent dipole moment. When the dipoles are aligned in one direction
via mechanical stretching or an electrical poling process under a high electric field, the highest dipole
moment can be obtained and this type of structure is known as β-phase PVDF film. The β-phase
PVDF structure of PVDF has fluorine atoms and hydrogen atoms in the opposite direction, forming
a high dipole density. Thus, it intrinsically has a high dielectric constant (~10), compared to other
polymers. In order to additionally the dielectric constant, various ferroelectric particles such as
BaTiO3 [63], ZnSnO3 [47], and SrTiO3 [64] are blended and functional groups such as -TrFE [28],
-HFP [29], and -PtBA [48] are grafted via copolymerization technique. These fluorine functional groups
exhibit large electron affinity, increasing the charges-accepting characteristics from the metal during
the instantaneous contact. With this material synthesis by exploiting intrinsic properties of ferroelectric
materials, new dielectric materials should be developed to increase the energy conversion efficiency
for sustainable self-powered devices.
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2.1. PVDF-Based Polymers as an Effective Dielectric

The Wang group, for the first time, used PVDF as a dielectric without any modifications [46].
As shown in Figure 3a, the TENG consists of two layers, a nanoporous aluminum (Al) foil and a
PVDF thin film deposited on a copper substrate with Kapton films of a thickness of 125 µm as a
spacer. During the cycled contact under a compressive force of around 50 N, the TENG produced a
short-circuit current density (Jsc) of 6.13 µA/cm2 (Figure 3b). After forward and reverse polarization,
the Jsc increased to 8.34 µA/cm2 and 4.83 µA/cm2, respectively. By averaging the instantaneous
peaks, the forward-polarized TENG showed an output performance 3 times larger than that of
the reverse-polarized TENG. They explained the enhancement in terms of the surface potential of
the PVDF thin film modified by the polarization process, as shown in Figure 3c. When the film
was forward-polarized, the net dipole moment was increased because of the arrangement of the
dipoles along the same direction. This reduced the characteristic energy level of the PVDF, thereby
increasing the potential difference with the Fermi level of Al. This resulted in an enhancement of the
charge-transfer characteristics between the PVDF and the Al electrode. The light-emitting diode (LED)
connected to the forward-polarized TENG was much brighter than that of the reverse-polarized TENG
(Figure 3d). This shows the experimental evidence of the relationship between the work function
difference between the PVDF and Al, and the electric outputs of the TENG.
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Figure 3. (a) The schematic of the TENG with a double-layer structure. A SEM image of nanopores
on an aluminum foil. Photograph of a TENG. (b) Jsc of TENGs fabricated using different types of
polyvinylidene fluoride (PVDF) films under a periodic compressive force of around 50 N applied
by an electric shaker at a frequency of 4 Hz. (c) Schematic energy band diagram illustrating the
process when electrons tunnel between EF and E0. The electric field developed by charge transfer
raises the energy of the electrons in the PVDF’s surface states by δE(Q). The positive bond charges
of the forward-polarized PVDF reduce the characteristic energy level of PVDF to E0′ . The negative
bond charges of the reverse-polarized PVDF increase the characteristic energy level of PVDF to E0”.
(d) Circuit diagrams and the different performances among TENGs fabricated using different types of
PVDF when they were used as direct power source for LED bulbs. Reproduced with permission from
Wang et al., Nano Research 2015, 15, 990–997. Copyright 2015 Springer Nature.

The PVDF nanofibers of approximately 790 nm in diameter by the electrospinning method
were also prepared, deposited on Kapton film, and contacted with the nylon nanofibers as shown in
Figure 4a [65]. Based on the triboelectric series, negative charges are transferred to the PVDF from
the nylon, creating instantaneous electrons flow through the external circuit between two electrodes.
The TENG produced an instantaneous output power of 26.6 W/m2 and it was demonstrated that the
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nanofibers were so effective in increasing the output current of TENGs, compared with the films as
shown in Figure 4b. Thus, electrospinning, as a fiber production method, is appropriate for fabricating
roughened surfaces to enhance the output power. The nanofibers also seem so flexible, quite helpful
for harvesting wearable energy sources. The TENG was also connected to Zener diodes and a ZnO
nanowire sensor to demonstrate the possibility of the TENG as a power source for a self-powered UV
sensor, which was successfully proven (Figure 4c).
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Figure 4. (a) The schematic of the TENG based on electrospun nanowires (ENTENG). SEM images of
the electrospun PVDF and nylon nanofibers. The charge distribution in the device and the flowing
direction in the circuit when the device is pressed and released. (b) The output current of the ENTENG
and the output current of the smooth surface TENG with a similar device structure. (c) The schematic
and optical images of the ultraviolet radiation (UVR) level detection system powered by an ENTENG.
Current flowing across the UV sensor and the optical images of the LEDs at UV intensities of 0, 5,
12.5, 17.5, and 25 Wm−2. Reproduced with permission from Jing et al., Nanoscale 2014, 6, 7842–7846.
Copyright 2014 The Royal Society of Chemistry.

Very recently, there has been some progress in developing PVDF-based polymers as an effective
dielectric in TENG. Baik group successfully synthesized poly (tert-butyl acrylate) (PtBA)-grafted PVDF
copolymers through an atom transfer radical polymerization technique and demonstrated that the
copolymers were very effective in increasing output performance, compared with pristine PVDF [48].
Unlike the PVDF copolymers such as P(VDF-TrFE), P(VDF-HFP) was mainly composed of β-phase.
The copolymer was reported to be mostly composed of α phases with enhanced dipole moments
by π-bonding and polar characteristics of the ester functional groups in the PtBA, bringing about
the increase of the dielectric constant by approximately twice. In order to understand the effect of
the dielectric constant on the output signal of the TENG, a very flat PVDF surface was made by
the peeling-off process, as shown in Figure 5a. As the grafting ratio increased to 18%, the dielectric
constant was increased from 8.6 to 16.5 in the frequency range of 102–105 Hz. This was attributed to
the increase of the net dipole moment, as shown in Figure 5b. This increase in the dielectric constant
enhanced the charge density that can be accumulated on the surface, generating the output voltage
and current density of 64.4 V and 18.9 µA/cm2, respectively, twice enhancement in both, compared
to pristine PVDF based nanogenerator as shown in Figure 5c. To prove the results, they measured
the accumulated surface charges density with different dielectric constant values, which showed an
excellent agreement with the measured output current values as shown in Figure 5d. This paper,
for the first time, experimentally proved that the output power linearly increased with the dielectric
constant. However, the output power was still low because of the low dielectric constant value.
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Figure 5. (a) The schematic diagrams of the fabrication process for the PVDF-Gn–based TENGs.
(b) Frequency dependence of the dielectric constant values with various PtBA mole percentages
ranging from 0 to 18%. (c) Output current densities generated by the PVDF-based TENGs as a function
of the PtBA mole percentage ranging from 0 to 18%. (d) Charge densities generated by the PVDF-based
TENGs as a function of the PtBA mole percentage ranging from 0 to 18%. Reproduced with permission
from Baik et al., Sci. Adv. 2017, 3, 1500661. Copyright 2017 American Association for the Advancement
of Science.

2.2. PVDF-Based Polymers Hybridized with Inorganic Materials

As mentioned above, despite the many advantages of PVDF polymers as a dielectric, it still had
a low dielectric constant, thereby it limits the output power of the TENG. Thus, PVDF polymers
embedded with inorganic nanoparticles have been utilized as dielectrics in TENGs. Zinc stannate
(ZnSnO3) materials with a strong piezoelectric response and huge spontaneous polarization value
have been widely used as a candidate in polymers—such as PDMS—in which most of those studies
have been focused on piezoelectricity or the piezoelectric nanogenerator. Recently, a TENG with
the vertical contact-separation mode which consisted of ZnSnO3 nanocubes-PVDF composites and a
polyamide-6 (PA6) membrane was reported, as shown in Figure 6a. The high dispersion of ZnSnO3 in
the composites was obtained by increasing the shear speeds during the compounding process. By the
phase inversion process, the composites showed that a porous structure only exists on the surface in
which the pore size is in the range of 0.5–1.0 µm, as shown in Figure 6b. Compared with the pristine
PVDF, the composites also showed the increase of the dielectric permittivity corresponding to a higher
polarization and a higher piezoelectric coefficient d33 of −65 pm/V. In the TENG, the PA6 membrane
was attached by using an adhesive aluminum tape electrode on one side and a PVDF or PVDF-ZnSnO3

composite attached to the opposite side using aluminum tape. The composites are contacted with a
PA6 membrane, showing an increase of the instantaneous output signals such as 520 V and 2.7 mA/m2

in output voltage and output current, respectively. It corresponds to an enhancement of 70% and 200%,
respectively as shown in Figure 6c.

In addition to the inorganic nanoparticles, PVDF based nanocomposites composed of
PVDF-PBA-MWCNTs (PCNTs) were successfully synthesized, as shown in Figure 7a [66]. With the
incorporation of PCNTs into the PVDF matrix, the crystalline phase transition significantly occurred
from the α-phase to the β-phase, meaning that the β-phase was enhanced. It was explained in terms
of the enhancement of compatibility of the PCNTs with CF2 groups in the PVDF by the carboxylic
acid groups, increasing the nucleation sites for the β-phase. Under the mechanical deformation at
3 Hz, the PVDF-10PCNT composite showed an output performance enhancement of almost 8 times
compared to the pristine PVDF film by the physical contact with the Al film, as shown in Figure 7b.
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Figure 7. (a) The cross-section structural schematic; Charge distribution of triboelectric and piezoelectric
effect during force pressing and releasing. Inside of the picture, 0 < x1

′ < x1, hs is the summation
height of TPENG, hP (VDF-TrFE) is the height of P(VDF-TrFE) film, R is the stretching radius. (b) The
open-circuit performance of the triboelectric and piezoelectric under the force of 5 N as a function of
frequency. The circuit diagram of the hybrid output in which the piezoelectric and triboelectric outputs
are combined in parallel. Hybrid open-circuit output voltage. Reproduced with permission from Luo
et al., Sci. Rep. 2016, 6, 36409. Copyright 2016 Springer Nature.

3. PVDF Based Applications

In addition to power generation, PVDFs have been also extensively studied in sensor applications
by many researchers. Actually, PVDFs have attracted much attention as an important material in
various applications for its exceptional properties such as its high thermal stability, outstanding
chemical resistance, low acoustic impedances, low permitivities, flexibility, and membrane forming
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properties. Additionally, PVDF is pyroelectric, meaning that it has a higher temperature dependent
performance compared to other ceramic based sensors. With these excellent properties of PVDF, human
skin-inspired multimodal e-skins were developed by mimicking various structures and functions of
the elaborate sensory system in human finger-tips [67]. Here, polymer composites consisted of PVDF
and reduced graphene oxide (rGO) were synthesized and a micro-structured ferroelectric skin was
fabricated by mimicking the sensor system in human fingertips, in which the piezoresistive change
between interlocked microdome arrays of rGO/PVDF composites was measured. This e-skin was also
multifunctional and could detect pressure, vibration, and temperature with quite high sensitivities.
A free-standing ZnO nanorods/PVDF composites are synthesized to fabricate a multifunctional tactile
sensor that can independently measure the pressure and temperature [68]. Due to the enhanced
β-phase of the PVDF film by the ZnO nanostructures, the minimum detectable pressure of the sensor
was about 10 Pa and could detect temperatures in the range of 20–120 ◦C.

However, most of the research on the sensor based PVDF relies on the piezoelectric/ferroelectric
properties of the material. Recently, there have been some reports on the sensing performance based
on triboelectric effects in which the PVDF-based materials were used as positively charged layers to
utilize its piezoelectric properties, thus, to fabricate the hybrid nanogenerator [69]. To enhance the
flexibility and stretchability, and thus, the contact uniformity, the PVDF nanofibers were fabricated
by the electrospinning technique. The hybridization was very effective in increasing the output
voltage when both outputs were combined in parallel. It was also reported that it could exhibit a high
sensitivity of 0.068 V/kPa in the range of 100 and 700 kPa.

4. Conclusions

Herein, various TENG technologies including the device structures, operation modes, a few
functional materials, as well as the fundamental issues such as the working mechanism, and
the contribution to the substantial increase of the output power up to several tens of mW/cm2,
were reported. We also reviewed PVDF-based materials as a promising candidate for efficient
dielectrics in TENGs with a high output performance. PVDFs have many advantages such as their
excellent mechanical properties (e.g., flexibility) and molecular structures showing high ferroelectric
properties and high electron affinities due to the C-F bonds, making it possible to synthesize new
dielectrics for further increases in the output power of TENGs. Up to now, although there were a few,
not many reports on the synthesis of the PVDF-based materials exist as most of the papers have focused
on the increase of the dielectric constant via the copolymerization techniques or the hybridization with
inorganic nanomaterials. This strategy, together with the increase of surface roughness, was proven
to be very effective in increasing the output power of the TENG. However, despite many efforts, the
output power may not be enough for the realization of self-powered systems. From the material’s
aspect, the efficiency of the charge transfer to the dielectric and the capability of holding the charge in
the dielectric need to be improved. The fabrication of TENGs based on the multilayered dielectric film
has been reported as being quite effective in increasing the output power. Thus, it is thought that the
TENGs will be used as portable power sources for low-power electronic devices such as sensors because
of the low outputs. The TENG can also be utilized to fabricate physical sensors which are capable of
sensing strain/stress, motion, acceleration etc. By virtue of increased output power and advanced
technologies, self-powered systems consisting of some devices with high-power consumption will also
be realized in the near future. This review can be useful and helpful for developing effective dielectrics
of energy harvesters and sensor which are able to supply sufficient energy with portable electronic
devices and to be highly sensitive and multifunctional.
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