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Abstract: In this paper, a seesaw torsional relay monolithically integrated in a standard 0.35 µm
complementary metal oxide semiconductor (CMOS) technology is presented. The seesaw relay is
fabricated using the Back-End-Of-Line (BEOL) layers available, specifically using the tungsten VIA3
layer of a 0.35 µm CMOS technology. Three different contact materials are studied to discriminate
which is the most adequate as a mechanical relay. The robustness of the relay is proved, and its
main characteristics as a relay for the three different contact interfaces are provided. The seesaw
relay is capable of a double hysteretic switching cycle, providing compactness for mechanical logic
processing. The low contact resistance achieved with the TiN/W mechanical contact with high cycling
life time is competitive in comparison with the state-of-the art.

Keywords: MEMS relays; MEMS switches; mechanical relays; CMOS-MEMS; MEMS

1. Introduction

It is expected that new micro- and nanoelectromechanical (M/NEM) relays can play an important
role as a new device for adding functionality and decreasing the power consumption for the more
demanding area of consumable devices (IoT, wearables) [1]. One of the important things in mechanical
relays is the capability of a quasi-ideal switching behavior (with a very abrupt on-off switching,
and zero current leakage during the OFF-state) and multi-terminal operation which can serve to save
energy, as it has been envisioned in several different digital applications [2–5]. The possibility of using
the complementary metal oxide semiconductor (CMOS) platform for the monolithic fabrication of
such M/NEMS relays in a real combination with classical CMOS devices can open a myriad of new
possibilities for decreasing power consumption. Additionally, the high number of metal layers used
in the advanced CMOS technology nodes make very attractive the exploitation of a CMOS-MEMS
platform for using metal layers, not only as an electrical connection path, but also to provide some
active processing using these layers as embedded MEMS devices [6,7]. Despite this interest in obtaining
functional mechanical switching devices embedded in CMOS, most of the presented examples from the
literature are only CMOS-compatible [8–12], with few of them being really embedded in CMOS [13–17].
In all cases, the devices are far from possessing all of the ideal characteristics (low contact resistance,
low operation voltage and high yield). For instance, the TiN coated relay presented in [8] presents a
non-ohmic contact resistance with a high life cycling, while the similarly TiN coated PolySilicon relay
in [9] has low contact resistance, but presents limited cycling operation. In Reference [10], a NEMS relay
with a very low pull-in voltage (0.4 V) is presented, but it is only operable for 20 cycles. In Reference [11],
a demonstration of a CMOS driven Pt-NEMS relay fabricated over the CMOS is presented, but with
a very high contact resistance (100 MΩ) and without testing the life time of the relay. Reference [12]
presents a two-terminal TiN NEMS relay fabricated under a CMOS compatible process with an
operability of hundreds of cycles, but with a limited current operation (nA range). Concerning papers
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with MEMS relays embedded in CMOS, similar problems are encountered. Papers using the same
CMOS-MEMS tungsten-based relay as presented in this paper, but with different configurations and
designs, suffers from these non-ideal characteristics: Reference [13] presents a torsional relay with a
high pull-in voltage and below one hundred operation cycling; References [14,15] are based on lateral
relays exhibiting in both cases a high contact resistance (1 MΩ and 750 MΩ in References [14,15],
respectively). Even higher contact resistances and low cycling operation are encountered in other
CMOS-MEMS approaches: In Reference [16], contact resistance is greater than 500 MΩ and 30 operation
cycles; in Reference [17], the contact resistance is in the GΩ range and only 10 operation cycles. As a
consequence of these reported characteristics, more research is necessary in order to improve the
performance of these CMOS-MEMS relays.

In this paper, we present new MEMS devices capable of providing five-terminal relays with a
bidirectional operation and embedded in CMOS, demonstrating enhanced performance compared
with the already reported TiN-based MEMS relays. The main issue with the fabrication of the
presented relays is the use of the tungsten VIA of the conventional AMS (Austria Microsystems)
0.35 µm CMOS technology. The exploitation of the VIA3 made from tungsten as the main structural
layer for CMOS-MEMS devices presents a series of attractive characteristics that are suitable for
mechanical relays: high hardness, being resistant to wear and plastic deformation; high melting point
(tungsten exhibits the highest melting point); being resistant to welding-induced failure due to Joule
heating at the contact. Furthermore, VIA3 is a top Back-End-Of-Line (BEOL) layer more thinly covered
in SiO2, which implies small releasing times, and thus increased yield in the fabrication process.

The use of the tungsten VIA3 has been demonstrated previously for MEMS devices: resonators for
monolithically CMOS-MEMS stand-alone oscillators [18,19], relays for switching applications [13–15],
and very recently as CO2 transducers [20]. All these applications demonstrate the importance of the
approach and the opportunity to explore new MEMS structures and devices based on this tungsten
VIA3 approach. In this paper we will focus on a mechanical five-terminal relay working in its torsional
operation with an enhancement of the electrostatic coupling, and consequently lower pull-in voltage,
and a decrease of the contact resistance due to the ability to define larger contact areas compared
with the above reported examples. Moreover, the paper studies all the different contact materials
available in the BEOL-CMOS metal layers without adding any additional metallization in order to
provide a totally monolithic integration with CMOS. From the presented results we can state that the
CMOS-MEMS relay with TiN-W contacts presents the highest ON-OFF current ratio (107), the lowest
contact resistance 2 kΩ, and the highest cycling life test compared with the state-of-the-art MEMS
relays based on TiN contacts [8,9,12–17].

2. Materials and Methods

2.1. Device Design and Fabrication

The torsional relay consists of a five-terminal seesaw device schematically drawn in Figure 1.
The seesaw relay design consists in a main plate formed by two sandwiched metal layers (MET3 and
MET4) of the CMOS technology contacted through the contacting metal VIA layer (specifically,
a sandwiched MET4-VIA3-MET3). This main plate is anchored by two VIA3 torsional beams
(called source, S) which allow the ends of the main beam to move up and down by electrostatically
actuating the relay with the basally located gate electrodes (GR and GL). This gate electrode is formed
by metal layer (MET1) and its contacting VIA (VIA1). Three types of endings (the final contacts for
the seesaw relays) are made (see cross-section A3–A4 in Figure 1c): (a) Type I, MET4-VIA3-MET3,
which make contact with the drain electrodes made by MET2, (b) Type II, MET4-VIA3, which make
contact with the drain electrodes of MET2; and (c) Type III, MET4-VIA3, which makes contact with
the drain electrodes defined in this case with MET2-VIA2. Each of the metal layers (METi) of the
0.35 µm CMOS technology are a sandwiched layer consisting of TiN/Al/TiN. In this sense, three kinds
of contacts will be characterized: (a) TiN vs. TiN in type I relays; (b) W vs. TiN in type II relays;
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and (c) W vs. W in type III relays. Note that these three types of relays will provide contact gaps at
different heights.

The design parameter values for the three types of relays are listed in Table 1. The parameters
used have been chosen taking into account the following requirements: (a) torsional actuation
selecting VIA3 torsional beams to have an equivalent torsional spring constant smaller than the
vertical actuation, using the minima dimension for the VIA3 width (WT = 0.5 µm), and gate electrodes
(GR and GL) are situated at the end of the body to promote torsional movement; (b) maximize actuation
area (gate electrodes size and body size) between MET3 and MET1 to minimize pull-in voltage in
comparison with previous designs [13] (note that the VIA1 contacts used over the MET1 are intended
to enhance electrostatic coupling between actuation electrodes and relay body to further reduce pull-in
voltage); (c) squared contact area of 2.5 µm × 2.5 µm to decrease contact resistance. All of the other
parameters are constraints from the CMOS technology used. Due to the non-uniform material based
seesaw relay, as well as to the structure of the gate electrodes (with the small metal contacts, VIA1),
it is not possible to analytically compute the behavior of the seesaw relay (i.e., pull-in voltage).
Consequently, finite-element-model simulations using Coventor have been extensively used to tune
design parameters (Table 2 summarizes the main simulated characteristics for the seesaw relays).
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post-CMOS MEMS releasing process to be done directly while the passivation layer of silicon nitride 

Figure 1. (a) 3D schematic of the designed seesaw relay including cross-sectional views (red lines).
(b) Cross-section A1–A2 along the length of the relay, the gate electrodes are defined with MET1
and VIA1. (c) Cross-section A3–A4 at the contact area of the relay (between Source and Drain) with the
three possibilities: (i) Type I, (ii) Type II, and (iii) Type III.

Table 1. Seesaw relay design parameters and their values.

Design Parameter Value (µm)

Torsion beam length LT 4.7
Torsion beam width WT 0.5

Torsion beam thickness TT 1.3
Body length LB 59.6
Body width WB 16

Electrode length GR,L 30
Electrode width GW 16

Contact length LC 2.5
Contact width WC 2.5
Actuation gap TGap 1.95
Contact gap (i) Tcon 1
Contact gap (ii) Tcon 1.3 a

Contact gap (iii) Tcon 0.45 a

a The gap is measured after fabrication.

The fabrication process of the VIA3 MEMS structures is based on a mask-less wet-etching
process [21,22]. A passivation aperture is defined over the resonator which allows this in-house
post-CMOS MEMS releasing process to be done directly while the passivation layer of silicon nitride
is used as a protective layer for the rest of the chip. The releasing process consists basically of three
steps: (a) isotropic wet-etching in a bath of buffered hydrofluoric acid solution at room temperature
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(with an oxide etching rate of around 300 nm/min [21]); (b) chip washing in distilled water followed
by an isopropyl alcohol bath to eliminate the water; and (c) heating in an oven at 100 ◦C to evaporate
the remaining alcohol. No sticking problems have been encountered for the seesaw MEMS relay with
this etching, which does not require critical point drying for the releasing. As it is an isotropic process,
the etching time depends on the MEMS dimensions and the quantity of oxide over the structure. In the
case of the seesaw relays, and due to the large area of the body structure, releasing holes have been
included to facilitate the wet etching of the sacrificial SiO2 layer underneath the large main plate.
The etching time used was typically in the range between 10 and 18 min. This etching process is CMOS
compatible, as it has already been demonstrated with VIA3 MEMS structures embedded in functional
CMOS circuitry [18,19,23].

It is necessary to ensure that the torsional mode operation of the seesaw relay dominates over the
flexural mode operation while it is switching. Therefore, the vertical flexural spring constant must be
much stiffer than the torsional spring constant. Table 2 shows the simulated resonant frequency of
the torsional and vertical mode and their respective effective stiffness using the following material
properties: Young modulus of 410 GPa, 70 GPa and 600 GPa, and mass densities of 19,300 kg/m3,
2700 kg/m3 and 5430 kg/m3 for tungsten, aluminum and titanium nitride, respectively. As can be seen,
the vertical spring constant is 55× higher than the torsional spring constant.

Figures 2 and 3 show the layout, optical and SEM images of the fabricated seesaw relays,
along with the focused ion beam (FIB) cross-sectional views to detail the different technological
implementations of the relay body (Figure 2) and relay contact (Figure 3). The cross-sections are
provided before and after the releasing of the seesaw relay. From these images, the gap distances of
the relay contact (Table 1) are extracted.
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Figure 2. (a) Layout of the seesaw relay. The gate electrodes are the pink areas below the body structure.
(b) Top view optical image of fabricated and released seesaw relay. (c) Top view SEM image indicating
the cut-line A-A′ over the body structure and B-B’ over the contact area. (d,e) SEM images of the
cross-section in the A-A′ cut-line (d) before and (e) after the releasing process. These images allow
one to see the gate electrodes composed by the MET1 and VIA1 layers, as well as the sandwiched
composition of the body element of the relay (a sandwich of MET3-VIA3-MET4).
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2.2. Electrical Characterization

The fabricated seesaw relays were tested under two different conditions: (1) at room temperature
in air at atmospheric pressure, and (2) under vacuum at 10−5 mbar. In ambient conditions, the chips
were exposed to air and tested in a Cascade Microtech probe station (PM8). Under vacuum conditions,
the chip was mounted and bounded onto a printed circuit boardand placed inside a homemade vacuum
chamber. The current-voltage (I-V) characterization was performed with an Agilent semiconductor
analyzer B1500A equipped with four high-resolution source measure units (SMU) (Figure 4).
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Figure 4. Electrical set-up for the current voltage (I-V) switching characteristics of the five-terminal relay.
Four high-resolution source measure units (SMU) are used: the source electrode (relay structure) is
grounded, drain electrodes (left and right) are fixed to a VD = 5 V, gate electrodes (left and right) are
swept up and down from 0 to a voltage gate VG voltage higher than the pull-in voltage, VPI. Note that
gates and drains are underneath the relay structure and are not visible in the image.

3. Results

In this section, the current voltage (I-V) curves for the three types of fabricated seesaw relays
placed in both air conditions and vacuum conditions are reported. The pull-in and pull-out voltages,
ION-IOFF ratio, contact resistance, and the cycling, or life-time, of the different relays are provided.

3.1. Seesaw Relay with Contact Type I: TiN vs. TiN

Figure 5a,b shows the first nine current voltage (I-V) curves taken from both the left and right
ends of a seesaw relay being exposed to air conditions. As the right gate voltage VGR is increased from
0 to 85 V, the right side of the torsion beam turns on abruptly at 54.8 V, while the left side remains off.
Thus, a conductive path is formed between the right contact electrode (or right drain) and the movable
structure (or source) by fixing the drain-to-source voltage (VDS) to 5 V. Similarly, the left side of the
relay is also actuated by sweeping up and down the left gate voltage VGL from 0 to 85 V and fixing the
left drain voltage VDL also to 5 V (protected with 1 MΩ). In this case, the left side turns on abruptly at
55.5 V. For both sweeps, the measured on-off current ratio is ~105, and the contact resistance Rc is ~108.
Instead, an asymmetric behavior is observed comparing the VPO of both tested sides. Since the VPO,
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and thus the hysteresis window, is strongly related with the adhesion forces at the contact interface,
this would mean that different contact scenarios are involved in both contact ends. SEM images were
taken to confirm this hypothesis, as shown in Figure 6. As can be seen, the bottom thin TiN layer that
forms the sandwiched MET3 layer of TiN-Al-TiN fell over the MET2 layer due to the long wet-etching
to release the structure, causing the observed asymmetry in the hysteresis window.Micromachines 2018, 9, x FOR PEER REVIEW  8 of 14 
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layer contained in the sandwiched MET3 layer of TiN-Al-TiN.

3.2. Seesaw Relay with Contact Type II: W vs. TiN

Figure 7a shows the first ten current voltage (I-V) curves taken in a contact-type-(ii) seesaw
relay being exposed to air conditions, exhibiting a similar Rc of ~108 and an ION/IOFF ratio of 104.
Figure 7b shows how VPI and VPO evolve over these ten cycles. VPI is fairly stable, but VPO increases
gradually with exposure to air. This phenomenon can be explained by the reduced surface adhesive
force from metallic surfaces to oxide surfaces. Therefore, the hysteresis window reduces over time due
to oxide formation in the W surface. Figure 8 shows the I-V characterization conducted under vacuum
conditions at 10−4 mbar. The first current voltage (I-V) curve shows no abrupt transition due to the
breakdown of the native oxide at the TiN/W contact interface (see Figure 8a). Next, ten current voltage
(I-V) curves are taken as shown in Figure 8b, which already show the typical hysteretic behavior with
initial sharp VPI and VPO voltages of 57.4 V and 14.6 V, respectively. The RC is ~1 MΩ, 500× better
compared to air conditions, which leads to an increased ION/IOFF ratio of 107. Recall that a wider
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hysteresis window means that adhesion forces are exacerbated in the contacting region due to an
increased effective contact area from the larger levels of current obtained.Micromachines 2018, 9, x FOR PEER REVIEW  9 of 14 
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Figure 9 shows how VPI, VPO and Rc evolve over a total of 355 switching cycles. Compliance
was set over the maximum level of measured current. A nominal VPI of 57 V is found to be stable
over these cycles, with an absolute error of only 0.75 V. VPO appears to increase over these cycles.
Unexpectedly, it was found that Rc drops to 2 kΩ from cycle 251, ultimately leading to permanent
stiction. This effect can be due to excessive localized Joule heating at the contact asperities, which at
sufficient contact temperature, annealing of the contact takes place, reducing the contact hardness.
The final 2 kΩ contact resistance is the smallest RC found.

The VPI, VPO and Rc are recorded over 200 cycles in a new fresh relay (Figure 10), but this
time keeping the compliance limit to 1 µA to avoid excessive Joule heating. The VPI shows a
nominal value of 58.2 V, with an absolute error of only 0.4 V over these cycles, demonstrating
again the great stability of the VIA3 platform. Regarding the Rc, it is shown to increase with the
switching cycles. Therefore, the compliance limit at 1 mA favors avoiding excessive Joule heating,
but favors the insulating native-oxide formation at the contacting interface (W site of the relay),
increasing the Rc. To substantiate this, Figure 11 shows the acquired current with the relay in the
ON-state (VG = 75 V >> VPI), applying higher VDS voltages (VDS > 3 V); the current level is higher for
higher VDS after breaking down the grown oxide, restoring the contact performance. This indicates
that the contact endurance is not intrinsically degraded but strongly affected by the oxide regrowth.
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Figure 11. Successive source current versus drain voltage (IDS-VDS) sweeps showing the restoring of
the contact performance after breaking down the grown native oxide on the W contact site of the relay.
VGS is fixed to 75 V to keep the relay in the ON-state.

3.3. Seesaw Relay with Contact Type III: W vs. W

Figure 12 shows the I-V characterization of both left and right ends of a contact Type III seesaw
relay being exposed to air conditions. It can be observed an initial symmetric VPI of 47.4 and 47.1 V in
the left and right ends respectively. However, the current degrades to the noise level in only five cycles.
Thus, contact Type III seesaw involving W-to-W interfaces exhibit the most exacerbated degradation
when cycling in air.
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Figure 12. Successive current voltage (I-V) curves in air from the (a) left contact and (b) right contact of
the Type III seesaw relay.

In contrast, the contact performance of the Type III seesaw relay is found to behave completely
differently when it is operated under vacuum conditions. First, the initial native oxide breakdown is
produced switching the device on (with VGS = 75 V) and sweeping up the VDS until the drain current
spike is detected (see Figure 13). After this non-conductive oxide breakdown, I-V characteristics of
the same relay for four different VDS bias voltages are acquired (see Figure 14). The same pull-in and
pull-out voltages are obtained no matter the VDS bias used, as expected. Only the level of current in
the ON-state is changed according with the VDS bias. In Figure 14b, the RC is computed sweeping the
VDS voltage while the relay is in its ON-state (VGS = 75 V), obtaining a value of 51.4 kΩ. An attempt is
then made to monitor the evolution of contact properties after each cycle by taking continuous I-V
curves with fixed VDS = 1 V (Figure 15). By doing so, VPI is found to be stable, but the relay is stuck
after 16 cycles, which indicates a lower cycling life compared with the Type II seesaw relays. In Table 3,
a brief summary of the three types of relays based on the seesaw torsional structure is provided.
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in its ON-state (VG = 75 V), showing an ohmic dependence. The RC values extracted from the I-V
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Device SEM Image
Structural/Material

Contact
Material VPI (V) ON-OFF

Ratio RC (Ω) Cycles
(EOL)

This work
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4. Discussion and Conclusions

From the above characterization of the performance of the relays, we can state that a symmetric
switching operation with a five-terminal torsional relay has been achieved, providing lower pull-in
voltage and contact resistance (Type II, W/TiN contact) than previously reported, based on the same
technological VIA3 platform [13] (see Table 3). In addition, if we compare the presented five-terminal
torsional Seesaw device with relays already reported with TiN contacts, the seesaw relays provide
the lowest contact resistance with higher cycling time. Only Reference [9] provides similar contact
resistance, but they report lower switching life time and additionally these relays are not monolithically
integrated into CMOS. The life time of the presented relay could be improved through the use of a
proper vacuum packaging.

Overall, the five-terminal relay allows for the operation as two independent relays (left and right
contact), with the guarantee that they will never be ON at the same time—one clear advantage over
the CMOS transistor-based relays. This implies that a higher degree of compactness for mechanical
digital logic circuits can be achieved. In this sense, the presented device is an advancement towards
more robust and reliable mechanical relays which can provide a decrease in power consumption for
portable and wearable devices.
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