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Abstract: Recently, with the miniaturization of electronic devices, problems with regard to the
size and capacity of batteries have arisen. Energy harvesting is receiving significant attention to
solve these problems. In particular, the thermoelectric generator (TEG) is being studied for its
ability to harvest waste heat energy. However, studies on organic TEGs conducted thus far have
mostly used conductive polymers, making the application range of TEGs relatively narrow. In this
study, we fabricated organic TEGs using carbonaceous nanomaterials (i.e., graphene nanoplatelet
(GNP) and single-walled carbon nanotube (SWNT)) with polyelectrolytes (i.e., poly(vinyl alcohol)
(PVA) and poly (diallyldimethyl ammonium chloride) (PDDA)) via layer-by-layer (LbL) coating on
polymeric substrates. The thermoelectric performance of the carbonaceous multilayer structure was
measured, and it was confirmed that the thermoelectric performance of the TEG in this study was not
significantly different from that of the existing organic TEG fabricated using the conductive polymers.
The 10 bilayer SWNT thin films with polyelectrolyte exhibited a thermopower of −14 µV·K−1

and a power factor of 25 µW·m−1K−2. Moreover, by simply changing the electrolyte, p- or
n-type TEGs could be easily fabricated with carbonaceous nanomaterials via the LbL process. Also,
by just changing the electrolyte, p- or n-type of TEGs could be easily fabricated with carbonaceous
nanomaterials with a layer-by-layer process.

Keywords: thermoelectric; layer-by-layer; graphene; carbon nanotube; thin film

1. Introduction

The internet of things (IoT) and wearable devices market is experiencing rapid growth. As a result,
the demand for batteries to be used in these devices is increasing; however, increasing miniaturization
of electronic devices is limited by the replacement of batteries and explosion risk [1,2]. To solve these
problems, various approaches have been studied, among which energy harvesting is currently the
most significant.

Energy can be harvested by triboelectric [3], thermoelectric [4], or piezoelectric [5] techniques,
and extensive thermoelectric research is underway owing to the advantages of harvesting waste
heat. The thermoelectric generator (TEG) harvests electricity via the Seebeck effect, which states that
thermoelectric power is generated when there is a temperature gradient in the system. Traditional
TEGs have been fabricated using inorganic semiconductors such as bismuth telluride to maximize the
Seebeck effect [6–8]. However, the conventional thermoelectric materials possess the disadvantages
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of being hard, deformable, toxic, and expensive. Therefore, studies regarding organic thermoelectric
materials have been actively conducted to overcome these limitations [9,10]. An organic TEG is basically
composed of conductive polymers such as polyaniline (PANi) or poly(3,4-ethylenedioxythiophene)
doped with poly(styrene sulfonate) anions (PEDOT:PSS). It has a low thermal conductivity and can be
deposited on a flexible substrate, indicating that conductive materials are advantageous thermoelectric
materials. Moreover, the incorporation of carbon-based nanofillers in the polymer matrix can enhance
or manipulate the electrical properties of the nanocomposites. Therefore, studies have been focused
on enhancing the thermoelectric effect using composites with carbonaceous nanomaterials such as
graphene or carbon nanotubes (CNTs) [11–16]. Several methods exist to fabricate polymeric composites
with carbonaceous nanomaterials. In this study, polymer-CNT and polymer-graphene multilayers
were fabricated using a simple, inexpensive, and versatile method.

The layer-by-layer (LbL) technique, which has been studied for a long time as one of the wet
coating methods, has gained attention as a very simple and low-cost process [17,18]. In particular, it is
possible to fabricate flexible thin films of various materials on a substrate, such as cotton, which is
difficult to coat using conventional methods. Using the LbL method, various properties such as
flame retardancy [19], electrical conductivity [20], or sensor characteristics [21], can be imparted to
the desired materials. However, only a few papers have observed the thermoelectric properties of the
LbL-assembled thin film TEGs [22–25]. In this study, the thermoelectric properties of graphene or CNT
thin films coated on a poly(ethylene terephthalate) (PET) substrate were analyzed.

Carbonaceous nanomaterials with a high electrical conductivity, such as graphene and CNTs,
have been studied with organic/inorganic composite TEGs combined with polymers. Since these
studies aim to increase the thermoelectric performance of an organic TEG, conductive polymers (e.g.,
PANi, PEDOT:PSS, etc.) were mostly used for organic materials. In this study, the thermoelectric
properties of the TEG were investigated using poly(vinyl alcohol) (PVA) and poly(diallyldimethyl
ammonium chloride) (PDDA) without a conducting polymer. In addition, using the LbL technique,
it was possible to readily fabricate a carbonaceous nanomaterial-polymer composite TEG, enabling the
wider use of organic TEGs.

2. Materials and Methods Methods

2.1. Materials

Purified electric arc single-walled carbon nanotubes (SWNTs, TUBALL™ SWNT, individual
tube: average 1 µm length and 2 nm diameter, carbon content 75%) and graphene nanoplatelets
(GNPs, Angstron, maximum X–Y dimensions of 10 µm, carbon content 95%, oxygen content ≤ 2.5%)
were used in this study. PDDA (Mw~200,000–350,000 g/mol, Figure 1a), sodium deoxycholate (DOC,
C24H39NaO4, Figure 1b), PVA (Mw~89,000–98,000 g/mol, Figure 1c), poly(4-styrenesulfonic acid) (PSS,
Mw~75,000 g/mol, 18 wt% in H2O, Figure 1d), isopropyl alcohol (IPA), and methanol were purchased
from Sigma-Aldrich (Yongin, Korea). All chemicals were used as received. A PET film (100 µm
thickness, Goodfellow, Huntingdon, England, UK) and single-side-polished silicon wafers (University
Wafer, Boston, MA, USA) were purchased as substrates.
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2.2. Layer-by-Layer Assembly

The LbL technique was used in this study to uniformly coat GNPs or SWNTs on the PET substrate
(see Figure 2). First, 0.05 wt% SWNTs were added to deionized (DI) water with 1.5 wt% DOC
and dispersed for 60 min using a tip sonicator (UW2070, Banderin Electronic, Berlin, Germany).
CNTs require special chemicals to disperse in water owing to their entanglement and hydrophobicity.
DOC is widely known as a surfactant that aids in the proper dispersion of SWNTs in deionised (DI)
water [26]. The prepared SWNT-DOC solution had a negative charge [27]. Subsequently, 0.25 wt%
PDDA was added to DI water and dispersed for 30 min using a bath sonicator (Branson, CPX-3800H,
Emerson Electric Company, Ferguson, MO, USA). The PDDA solution had a positive charge, which
serves as a counterpart of the SWNT-DOC solution. The PET film, which was surface-cleaned using a
plasma etcher (Harrick Plasma, PDC 32G-2, Ithaca, NY, USA) for 5 min, was initially applied to PDDA,
a positively charged solution, for 5 min. After rinsing and drying, it was placed in the SWNT-DOC
solution, which was a negatively charged solution. After 5 min, rinsing and drying were repeated,
by which the PDDA and SWNT-DOC layers were uniformly deposited on the PET substrate by charge
bonding [20,27]. One bilayer (BL) was generated by the first cycle and consisted of one layer of PDDA
and SWNT-DOC. Thus, in the case of n BL coating, PDDA and SWNT-DOC multilayers were coated on
the PET substrate, and this was labeled as PET[PDDA/SWNT-DOC]n. Similarly, the GNP multilayers
were coated on a PET substrate as follows: 0.1 wt% GNP was added to DI water with 0.1 wt% PSS
and dispersed for 180 min using a tip sonicator. PSS is widely known as a dispersing agent to help
disperse GNP properly in DI water. This is because the sulfonic functional groups of PSS prevent the
aggregation of GNP in DI water [28]. As a counterpart of the GNP-PSS solution, 0.25 wt% PVA was
added to DI water and dispersed via magnetic stirring at 70 ◦C for 30 min. PVA forms a hydrogen
bond with PSS, allowing the stable formation of multilayers of GNP-PSS and PVA [28,29]. Similarly,
each layer of PVA and GNP-PSS was labeled as 1 BL and a PVA and GNP-PSS multilayer film coated
on the PET substrate was labeled as PET[PVA/GNP-PSS]n.
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Figure 2. (a) Schematics of layer-by-layer process for PET[PDDA/SWNT-DOC] and
PET[PVA/GNP-PSS] thin films. (b) Schematics of a PET[PDDA/SWNT-DOC]2 sample based on
charge bonding. (c) Schematics of a PET[PVA/GNP-PSS]2 sample based on hydrogen bonding.

2.3. Characterization

LbL thin films on a PET substrate were used to analyze UV–Visible (UV–Vis, Ocean optics, Largo,
FL, USA) light absorbance. The thicknesses of the LbL films deposited on the thermally oxidized silicon
wafers were determined using a spectroscopic ellipsometer (SE, V-VASE, J.A. Woollam Co., Lincoln, NE,
USA). Surface images of the LbL-coated PET samples were observed using a field emission scanning
electron microscope (FE-SEM) device (SU-70, Hitachi, Tokyo, Japan) at 15 kV. Images for cross-sections
of both samples were obtained using a transmission electron microscope (TEM, JEM-2100F, JEOL,
Tokyo, Japan) to characterize the carbonaceous nanomaterial-polymer multilayers on PET.
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For thermoelectric performance measurement, a PET[PVA/GNP-PSS] or
PET[PDDA/SWNT-DOC] LbL sample (width: 10 mm, length: 55–60 mm) was installed between
two Peltier devices (Marlow industries, Dallas, TX, USA) acting in opposite directions. The Peltier
device initiates thermoelectric measurement by providing a temperature gradient to the test sample.
The temperature gradient of the sample can be measured with a thermocouple composed of copper
and constantan. The Peltier device operates in the temperature range of −4 to +4 K, and the maximum
temperature difference range is approximately 7 K. Subsequently, to measure the electrical resistance
and voltage of the specimen, a silver paste was applied to the surface of the specimen to minimize the
electrical contact resistance. Thereafter, with a four-point probe, the electrical resistance was measured
using a pair of electrodes, and the potential difference was measured by connecting a voltmeter to
the other pair. The electrical resistance was obtained from the I-V curve, and the thermopower was
obtained from the V-T curve.

3. Results

Figure 3a shows the thickness of the [PDDA/SWNT-DOC] and [PVA/GNP-PSS] LbL thin films.
The thickness increases with an increase in the number of BLs in both systems. SWNT LbL thin films,
with a thickness of approximately 7 nm at 3 BLs, increase in thickness to 20 nm at 10 BLs. This suggests
that SWNT is linearly coated as the number of BLs increases. The GNP LbL thin film possesses a
thickness of 30 nm at 3 BLs, which increases to 82 nm at 10 BLs. It also demonstrates that GNPs are
linearly coated with increasing BLs. The SWNT LbL film is thinner than the GNP sample, because
GNP is a 2-D platelet and SWNT is a 1-D tube [27,29]. As the number of BLs increases, the GNP LbL
thin film becomes relatively thicker than the SWNT film, as shown in the SEM and TEM images in
Figure 3b,c.

Micromachines 2018, 9, x  4 of 10 

 

For thermoelectric performance measurement, a PET[PVA/GNP-PSS] or PET[PDDA/SWNT-
DOC] LbL sample (width: 10 mm, length: 55–60 mm) was installed between two Peltier devices 
(Marlow industries, Dallas, TX, USA) acting in opposite directions. The Peltier device initiates 
thermoelectric measurement by providing a temperature gradient to the test sample. The 
temperature gradient of the sample can be measured with a thermocouple composed of copper and 
constantan. The Peltier device operates in the temperature range of −4 to +4 K, and the maximum 
temperature difference range is approximately 7 K. Subsequently, to measure the electrical resistance 
and voltage of the specimen, a silver paste was applied to the surface of the specimen to minimize 
the electrical contact resistance. Thereafter, with a four-point probe, the electrical resistance was 
measured using a pair of electrodes, and the potential difference was measured by connecting a 
voltmeter to the other pair. The electrical resistance was obtained from the I-V curve, and the 
thermopower was obtained from the V-T curve. 

3. Results 

Figure 3a shows the thickness of the [PDDA/SWNT-DOC] and [PVA/GNP-PSS] LbL thin films. 
The thickness increases with an increase in the number of BLs in both systems. SWNT LbL thin films, 
with a thickness of approximately 7 nm at 3 BLs, increase in thickness to 20 nm at 10 BLs. This 
suggests that SWNT is linearly coated as the number of BLs increases. The GNP LbL thin film 
possesses a thickness of 30 nm at 3 BLs, which increases to 82 nm at 10 BLs. It also demonstrates that 
GNPs are linearly coated with increasing BLs. The SWNT LbL film is thinner than the GNP sample, 
because GNP is a 2-D platelet and SWNT is a 1-D tube [27,29]. As the number of BLs increases, the 
GNP LbL thin film becomes relatively thicker than the SWNT film, as shown in the SEM and TEM 
images in Figure 3b,c. 

 

 

 
Figure 3. (a) Ellipsometric thickness of [PDDA/SWNT-DOC]n and [PVA/GNP-PSS]n (n = 3, 5, and 10) 
thin films. Both increase uniformly as the number of BLs increases. SEM surface images and TEM 
cross-sectional images of (b) [PDDA/SWNT-DOC]20 and (c) [PVA/GNP-PSS]20 thin films. 

Figure 3. (a) Ellipsometric thickness of [PDDA/SWNT-DOC]n and [PVA/GNP-PSS]n (n = 3, 5, and 10)
thin films. Both increase uniformly as the number of BLs increases. SEM surface images and TEM
cross-sectional images of (b) [PDDA/SWNT-DOC]20 and (c) [PVA/GNP-PSS]20 thin films.
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Figure 4a,b show the light absorbance of PET[PDDA/SWNT-DOC] and PET[PVA/GNP-PSS] with
an increasing number of BLs. As shown in Figure 4c, the light absorbance increases uniformly from 1
to 10 BLs in both thin films. This indicates that SWNT and GNP layers are linearly deposited during
LbL coating. In addition, it can be confirmed that SWNT bilayers exhibit a relatively much lower
absorbance than GNP because SWNT is a 1-D material with an exceptionally small diameter and GNP
is a relatively larger 2-D platelet. Based on its characteristics, SWNT is widely used as a transparent
electrode in several studies [30–32]. Figure 4c,d show the absorbance and transmittance at 550 nm in
the two LbL systems. As can be observed from Figure 4c, the absorbance linearly increases to 0.16 for
PET[PDA/SWNT-DOC]10 and to 0.9 for PET[PVA/GNP-PSS]10. Conversely, the light transmittance
decreases to 69% for PET[PDA/SWNT-DOC]10 and 11.6% for PET[PVA/GNP-PSS]10. This can
be observed more clearly in Figure 4e, which shows 3, 5, and 10 BL PET[PDA/SWNT-DOC] and
PET[PVA/GNP-PSS] samples with a bare PET (0 BL), respectively. Both carbonaceous nanomaterials
(i.e., SWNT and GNP) demonstrate that as the number of BLs increases, the color of the LbL thin films
gradually darkens; in particular, the GNP LbL thin film is distinctly darker.
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Figure 4. (a) Visible light absorbance spectra of PET[PDDA/SWNT-DOC]n (n = 1–10) LbL thin films.
(b) Visible light absorbance spectra of PET[PVA/GNP-PSS]n (n = 1–10) LbL thin films. (c) Visible light
absorbance of PET[PDDA/SWNT-DOC]n (n = 1–10) (solid line) and PET[PVA/GNP-PSS]n (n = 1–10)
(dotted line) at 550 nm wavelength. (d) Visible light transmittance of PET[PDDA/SWNT-DOC]n

(n = 1–10) (solid line) and PET[PVA/GNP-PSS]n (n = 1–10) (dotted line) at 550 nm wavelength.
(e) Images of PET[PDDA/SWNT-DOC]n (n = 3, 5, 10) and PET[PVA/GNP-PSS]n (n = 3, 5, 10) with
control (0 BL) samples. In the LbL samples above, the silver material on each sample surface is silver
paste applied for four-point probe measurement.



Micromachines 2018, 9, 628 6 of 10

Figure 5a shows the electrical resistance of PET[PDDA/SWNT-DOC] LbL thin films at 3, 5,
and 10 BLs. As a result of the ellipsometric thickness and light absorbance, the amount of SWNT
coated on the PET increases as the number of BLs increases, so that the absorbance and thickness
also increase. Likewise, the electrical resistance decreases as the number of BLs deposited increases.
The electrical resistance of PET[PDDA/SWNT-DOC] thin films decreases from 1.3 kΩ to 0.31 kΩ at
3 to 10 BLs, respectively. Similarly, Figure 5b also shows the decrease in the electrical resistance of
PET[PVA/GNP-PSS] thin films according to the increase in the number of BLs deposited. The electrical
resistance decreases from 29.5 kΩ to 5.0 kΩ at 3 to 10 BLs, respectively. In this case, it can be confirmed
that the electrical resistance of the SWNT LbL thin film is much lower than that of the GNP LbL thin
film, because the SWNT can form a 3-D network with an increasing number of deposited BLs and can
enable considerably efficient electron transport. This can be more distinctly observed from the previous
SEM and TEM images. Further, the GNP LbL thin film exhibits a relatively higher electrical resistance
because it is stacked in a 2-D shape [3,29,33]. Figure 5c,d show the electrical conductivity obtained by
applying geometrical factors to the measured resistance values. GNP LbL thin films with a relatively
increased thickness and a 2-D network structure adversely affect the carrier transport, demonstrating a
conductivity of approximately 10 S·cm−1, but the SWNT samples demonstrated an increase of 2 orders.
In both samples, the conductivity increased with increasing number of BLs owing to the formation of
more pathways for electrical carriers. Figure 5e,f show the thermopower values of SWNT and GNP
LbL thin films, respectively. For SWNT and GNP, the values of thermopower are negative and positive,
respectively. This is because the PDDA/SWNT-DOC multilayers are n-type thermoelectric materials
with electrons being the major carrier and PVA/GNP-PSS multilayers are p-type thermoelectric
materials. SWNT LbL thin films have a constant thermopower value of approximately −14 µV·K−1,
whereas that of GNP is approximately 15 µV·K−1. This is an interesting result because a majority of
the n-type organic nanocomposites demonstrate a relatively low conductivity compared to p-type
composites due to the conversion of the major carrier from holes to electrons. Free-standing organic
nanocomposites with PEI-doped SWNT exhibit 1–10 S·cm−1 [34] and LbL multilayers of a PEI-doped
double-walled carbon nanotubes composite demonstrate up to 300 S·cm−1 of conductivity with
80 BLs [35]. In this research, an electrical conductivity of 103 S·cm−1 was achieved through only 3
to 10 BLs of SWNTs with a negative thermopower of ~15 µV·K−1. Although the doping mechanism
and carrier transportation process is beyond this research, it is valuable to report this result since a
high current output in the thermoelectric generation system is a problem in industrial applications of
organic thermoelectric materials.
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PET[PDDA/SWNT-DOC]n (n = 3, 5, 10) and PET[PVA/GNP-PSS]n (n = 3, 5, 10) LbL thin
films. (e,f) Thermopower (Seebeck coefficient) of PET[PDDA/SWNT-DOC]n (n = 3, 5, 10) and
PET[PVA/GNP-PSS]n (n = 3, 5, 10) LbL thin films.

In Figure 6, with the measured electrical conductivity and thermopower, the power factor
(P.F. = S2·σ) was calculated as a function of the number of BLs. Although the absolute values of
the thermopower of both SWNT and GNP LbL thin films are similar, the power factor of the 10 BL
SWNT sample was 28 µW·m−1K2, whereas that of the GNP sample was less than 1 µW·m−1K2. This is
comparable to other carbonaceous organic nanocomposites with an exceedingly high conductivity,
even among p-type organic thermoelectric materials [36–38].
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4. Conclusions

Carbonaceous nanomaterial-polymer multilayer composites (i.e., [PDDA/SWNT-DOC]n and
[PVA/GNP-PSS]n) were applied to fabricate cost-effective, scalable, and flexible TEGs, where high
performance and high versatility (p- and n-type TEGs) were demonstrated. Alternate exposure of
the PET substrate to two opposite aqueous solutions yielded LbL thin films with a linear trend of



Micromachines 2018, 9, 628 8 of 10

growth, evidenced by the thickness and light absorbance. [PDDA/(SWNT-DOC)]10 films possess a
conductivity, thermopower, and power factor of 1.8 × 103 S·cm−1, −14 µV·K−1 (n-type thermoelectric
material), and 28 µW·m−1K2, respectively. Compared with previous organic/inorganic composite
TEGs fabricated using conventional conductive polymers, the thermopower of the LbL thin films in
this study was very similar. The SWNT-based thin film was a flexible TEG, and is capable of replacing
conventional brittle TEGs in certain energy harvesting applications. Moreover, the carbonaceous
nanomaterial-polymer composite TEG is expected to lower the cost of TEG fabrication and enable
fabrication using a wider variety of materials. Further study of other types of LbL materials
(i.e., polymers, dispersions, etc.) would further reduce the electrical resistance and increase the
thermopower of thin-film TEGs.
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