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Abstract: The paper aims to propose a magnetic actuated capsule microrobotic system, which is
composed of a magnetically actuated microrobot with a screw jet mechanism, a driving system, and a
positioning system. The magnetically actuated microrobot embedded an O-ring magnet as an actuator
has potential for achieving a particular task, such as medical diagnose or drug delivery. The driving
system composes of a three axes Helmholtz coils to generate a rotational magnetic field for controlling
the magnetically actuated microrobot to realize the basic motion in pipe, e.g., forward/backward
motion and upward/downward motion. The positioning system is used to detect the pose of the
magnetically actuated microrobot in pipe. We will discuss the shape of the Helmholtz coils and
the magnetic field around the O-ring magnet to obtain an optimal performance of the magnetically
actuated microrobot. The experimental result indicated that the microrobot with screw jet motion has
a flexible movement in pipe by adjusting the rotational magnetic field plane and the magnetic field
changing frequency.

Keywords: magnetic actuated capsule microrobotic system; magnetically actuated hybrid microrobot;
rotational magnetic field plane; magnetic field changing frequency

1. Introduction

Wireless capsule endoscope has been widely used to achieve a medical procedure in clinical
applications, such as medical diagnoses, treatments, and noninvasive therapy [1–5]. Compared with
the tedious and cumbersome insertion traditional endoscope, it has great potential to safe, reliable,
painless techniques to achieve the task in a complex environment [6–8]. Given Imaging of Israel [9]
proposed a wireless capsule endoscopy (M2A capsule endoscopy), which move smoothly and
painlessly in the gastrointestinal (GI) tract by the natural peristalsis of the gastrointestinal tract.
However, it still has limitations, e.g., flexible motion, due to the passive movement of the capsule
endoscope. To solve these problems, many control methods were proposed for realizing the real-time
control or active movement of the capsule endoscope, e.g., shape memory alloy (SMA) actuator and
motors [10–13].

With the rapid progress of microrobot technologies, the microrobot manipulated by the external
magnetic field becomes more popular in medical applications. It has the characteristics of flexibility
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and good response. Furthermore, different kinds of control system were proposed to generate the
magnetic field to control the microrobot, such as, gradient magnetic field, uniform magnetic field and
oscillation magnetic field [14–19]. To manipulate the magnetic microrobot, Choi et al. developed an
electromagnetic actuation (EMA) system to generate gradient and uniform magnetic field by saddle
coils [20]. Guo et al. proposed a kind of microrobot fish-like microrobot which was driven by an
oscillating magnetic field generated by the solenoid coils [21]. And they controlled the microrobot to
realize the flexible motion by a MTx sensor, which mimics the natural lashing of the fish. However, the
movement path of microrobot is limited because of the shape of the solenoid coils. Qan et al. proposed
a control system composed of an electromagnet to control the magnetically actuated microrobot [22–24].
The movement path of microrobot is not limited. But the movement of the microrobot is unstable
due to asymmetric of the electromagnet. Fountain et al. proposed a magnetic helical microrobot.
It is manipulated by a single rotating permanent-magnet, which generates a non-uniform magnetic
field [25]. Sitti et al. proposed a magnetically actuated soft capsule endoscope (MASCE) as a miniature
mobile robot platform for diagnostic in medical applications [26]. Okada et al. also proposed a magnetic
microrobot with screw motion inspired by drill [27]. It realized flexible motion in pipe. But this
kind of microrobot maybe brings damage to intestinal surface due to the exposed screw structure.
Steager et al. proposed an electromagnetic actuation (EMA) system composed four electromagnetic
coils to manipulate a microrobot [28]. However, the EMA system can control the microrobot on
two-dimensional planes. According to the previous research, we proposed a magnetically actuated
capsule microrobotic system which has only three stationary pairs of Helmholtz coils (6-Helmholtz
coil). Through the control of the current value applied to each coil in our proposed microrobotic
system, a magnetic capsule microrobot with screw jet motion can be manipulated to a desire direction
on the horizontal plane and vertical plane.

This paper is structured as the following. Firstly, we introduce the configuration of the magnetic
actuated capsule microrobotic system in Section 2. Secondly, we propose a screw jet type microrobot
and discussed the screw jet mechanism in Section 3. In Section 4, we carry out the evaluation
experiments of the microrobot using our proposed microrobotic system and analyze the experimental
results. Finally, conclusions and future work are illustrated.

2. Conceptual Design of Magnetic Actuated Capsule Microrobotic System

2.1. Magnetic Actuated Capsule Microrobotic System

The magnetic actuated capsule microrobotic system provides telepresence by allowing a doctor
to remotely control a magnetic actuated capsule microrobot through a master device. This causes
less pain to the patients and there will be less tissue trauma, thus reducing hospitalization time and
enhancing recovery. The conceptual diagram illustrates a method of examining a tubular digestive
system, as shown in Figure 1. The algorithm design of the magnetic actuated capsule microrobotic
system is shown in Figure 2. On the master side, the doctor views a monitor which is produced
by a CT-scan and operates the wireless microrobot to detect or treat the disease with an unknown
and dynamic environment. The control instructions are transmitted to the slave side. On receiving
instructions, the slave mechanisms control the wireless capsule microrobot. The monitor can also show
the data calculated from the position system for obtaining the real-time position and posture of the
robot. The positioning system detects the magnetic field intensity generated by the O-ring magnet,
which is installed inside the magnetically actuated capsule microrobot. We chose 6 parameters, which
are x, y, z, roll, pitch and yaw as output of the position parameter, to calculate the position of the
microrobot. We used a least square method to solve the inverse problem. The positioning system helps
us to realize the close-loop control and ensure the robot achieves the task. Consequently, the doctor
appears to accurately control the position and posture of the wireless microrobot in human body.
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Figure 2. Algorithm design of the magnetically actuated capsule microrobotic system.

2.2. Magnetically Actuated Capsule Microrobot

Up to now, various kinds of microrobot have been developed by our group [29–31]. Especially, the
microrobot driven by a magnetic field has a potential in the biomedical applications. Based on
the research results, a magnetically actuated capsule microrobot with hybrid motion has been
proposed. It has a compact structure with a wireless power supply, characteristics of multi-functions,
controllability, and stability. The magnetically actuated capsule microrobot is composed of two
driven mechanical structures, screw head (screw structure) which generates the screw jet motion,
fin which generates the fin motion, as shown in Figure 3a, and a stop mechanism which can stop
at a point through opening the leg of the magnetically actuated capsule microrobot in the pipe as
shown in Figure 3b,c. In order to obtain the stable motion, we specially designed four legs on the
microrobot surface.
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Figure 3. (a) Magnetically actuated capsule microrobot with leg close, (b) Magnetically actuated
capsule microrobot with leg open, (c) Stop motion by the open leg in pipe.

The Figure 4 shows the movement principle of the magnetically actuated capsule microrobot
with hybrid motions. While the magnetically actuated microrobot is placed inside of the rotational
external magnetic field, the magnetically actuated microrobot with magnet materials embedded
(e.g., permanent magnet, magnet sheet) can rotate synchronously with the changing frequency of
the external magnetic field, because the pure magnetic moment is generated as a dipole of magnet
attempts to align with the local magnetic field. The screw structure generates the propulsive force
due to pushing back the fluid, as shown in Figure 4a. When an alternating magnetic field parallel
to the moving direction is applied, an impelling force to a permanent magnet rotates and vibrates
the connected fin, as shown in Figure 4b. We assume the microrobot move from an initial position
(Point A) to end position (Point D) as shown in Figure 4c, it should be moved following these steps:
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Step 1: While the microrobot with screw motion moves forwardly in the Y-direction, we control
the external magnetic field by clockwise rotating in the X-Z plane. Otherwise, we control the external
magnetic field by counter-clockwise rotating in the X-Z plane, the hybrid microrobot moves backwardly
in the Y-direction. If an alternating magnetic field is generated, the microrobot can move to forward by
the fin motion.
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Step 2: While the microrobot moves to the branch point C, the magnetic field plane is rotated to
perpendicular to the locomotion direction of the microrobot, and then the locomotion direction of the
microrobot turn to the right.

Step 3: And then, the microrobot move to point D with the screw motion or fin motion, while the
rotational magnetic field or alternating magnetic field is generated in the plane of perpendicular to the
moving direction.

Following the procedure noted above, by adjusting the direction of the magnetic field in any
plane, the microrobot can realize the forward motion and backward motion in the perpendicular to the
rotational magnetic field.

2.3. Control Method

For medical application of the clinical examination, the coil should have enough inner space
to accommodate a human subject and reduce exposed radiation. In general, circular and square
Helmholtz coils are used to produce a uniform magnetic field. Therefore, it is important to analyze the
performance of the shape of the Helmholtz coil. Based on the Biot-Savart Law, a stationary electric
current (I) through the polygonal coil, the magnetic field (B) at position (r) in three-dimensional space
is defined by Equations (1) and (2).

→
B = µ0H =

µ0 I
4π

∫
L

dl ×→e r

r2 (1)

Lim
n→∞

B =
µ0nI
4πr

× sin
2π
n

(2)

where, n is the number of sides of the polygonal Helmholtz coil. L is the current flow the path. is the
unit vector.

Furthermore, based on the finite element method (FEM), the magnetic flux density of the circular
Helmholtz coils compared with the square Helmholtz coils is simulated by PHOTO-Series software. We
designed two types of Helmholtz coils, circular Helmholtz coils and square Helmholtz coils with the
same parameters electric current I. Here, we assumed the electric current I = 1 A and µ0 = 4π × 10−7

respectively. The radius of the coils is changed from 0.1 m to 1 m. The magnetic flux density shows the
change slowly from 0.4 m to 1 m. The relationship between the radius of the Helmholtz coil and the
magnetic flux density is shown in Figure 5. As a result, under conditions of the same radius, produced
magnetic flux density of the circular Helmholtz is larger than square Helmholtz coil.
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Figure 5. Simulation results of the magnetic flux density.

When n tends to infinity, the magnetic flux density in the center of the polygonal Helmholtz coil
is maximum value. In other words, magnetic flux density generated by the circular Helmholtz coils is
greater than magnetic flux density generated by the polygonal Helmholtz coils with the same R.
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Based on the results of this modeling analysis, it is better to choose circular Helmholtz coil rather
than polygonal Helmholtz coils for the external electromagnetic system due to the requirement for
higher magnetic field intensity. Therefore, in our research, the circular Helmholtz is used to control the
magnetically actuated microrobot. The basic premise of a Helmholtz coil is that it produces a uniform
magnetic field in its center plane, as shown in Figure 6. Magnetic flux density is directly proportional
to the number of turns in the coils and the current applied to them. The relationship of Helmholtz
coils between magnetic flux density and current is given by the Equation (3) [29].

B =
INµ0R2

2


1[

R2 + ( d
2 − x)

2] 3
2
+

1[
R2 + ( d

2 + x)
2] 3

2

 (3)

where, B is the magnetic flux density, at any point on the axis of the Helmholtz coils. µ0 is
4π × 10−7 N/A2. I is the current of coil in amperes. N is the number of turns of coil. R is the
radius of the coil. d is the distance between pair coils. x is the arbitrary position from the center
position of the pair coils.
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2.4. Performance Evaluation

We measured the magnetic field in the region of interest of the Helmholtz coils using our proposed
measurement system [32]. The Gauss meter (TM701, KANETEC, Nagano, Japan) was used to measure
the magnetic field between each Helmholtz coil, as shown in Figure 7a. The magnetic field can be
measured between the range of 0 to 2 A with step 0.2 A. The measurement results are shown in
Figure 7b. The experimental results indicated that our design Helmholtz coils can generate a stable
magnetic field, while the magnetic field direction is changing. And also, the relationship between the
current and magnetic field is the linear, which is very close to our simulated results [29]. It generated
the maximum magnetic field in 2 mT with 2 A.

It is very important that how to generate the rotational magnetic field inside three axes Helmholtz
coils. We assumed the microrobot move along the Z direction. Three axes Helmholtz coils should
generate a rotational magnetic field in the X-Y plane. While the system outputting the driving signals,
as shown in Figure 8a, a rotational magnetic field generates. Through changing the frequency of input
square wave signals, we can get a rotational magnetic field and the magnetic changing frequency is
adjusted to realize the speed control of the microrobot, as shown in Figure 8b. In order to obtain a
stable motion, a sine wave is chosen as input signal for our proposed microrobotic system, as shown in
Figure 8c.



Micromachines 2018, 9, 641 7 of 16

Micromachines 2018, 9, x FOR PEER REVIEW  6 of 16 

 

requirement for higher magnetic field intensity. Therefore, in our research, the circular Helmholtz is 
used to control the magnetically actuated microrobot. The basic premise of a Helmholtz coil is that it 
produces a uniform magnetic field in its center plane, as shown in Figure 6. Magnetic flux density is 
directly proportional to the number of turns in the coils and the current applied to them. The 
relationship of Helmholtz coils between magnetic flux density and current is given by the Equation 
(3) [29]. 

2
0

3 3
2 22 2 2 2

1 1
2

( ) ( )
2 2

IN RB
d dR x R x

μ

 
 
 = + 
    + − + +        

 (3) 

where, B is the magnetic flux density, at any point on the axis of the Helmholtz coils. μ0 is 4π × 10−7 
N/A2. I is the current of coil in amperes. N is the number of turns of coil. R is the radius of the coil. d 
is the distance between pair coils. x is the arbitrary position from the center position of the pair 
coils. 

 
Figure 6. Single Helmholtz coils. 

2.4. Performance Evaluation 

We measured the magnetic field in the region of interest of the Helmholtz coils using our 
proposed measurement system [32]. The Gauss meter (TM701, KANETEC, Nagano, Japan) was used 
to measure the magnetic field between each Helmholtz coil, as shown in Figure 7a. The magnetic 
field can be measured between the range of 0 to 2 A with step 0.2 A. The measurement results are 
shown in Figure 7b. The experimental results indicated that our design Helmholtz coils can generate 
a stable magnetic field, while the magnetic field direction is changing. And also, the relationship 
between the current and magnetic field is the linear, which is very close to our simulated results [29]. 
It generated the maximum magnetic field in 2 mT with 2 A. 

  
(a) (b) 

Figure 7. Measurement results (a) Measurement system; (b) Relationship between the current and
magnetic field.
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3. Screw Jet Motion Mechanism

3.1. Magnetically Actuated Capsule Microrobot with Screw Jet Motion

Based on previous researches, we have evaluated the performance of the magnetically actuated
capsule microrobot with fin motion and padding motion in different conditions. It realized the basic
motion. But it is not enough, because the fin motion only realized the forward motion. The screw
jet motion is very important in the medical application. Therefore, we made a microrobot with
screw jet motion to evaluate the performance of the microrobot, as shown in Figure 9. The magnetic
actuated microrobot is composed of an O-ring magnet as the actuator and a bare propeller fitted with
a non-rotating nozzle, which can improve the efficiency of the microrobot with a limited diameter.
When the microrobot rotates in the fluid, the propeller pushes the fluid backward while generating a
reaction force, therefore the microrobot can move forward. The O-ring magnet is fitted inside the screw
structure by a strong adhesive. We designed the body of the microrobot by 3D printer Specification of
the microrobot is shown in the Table 1.
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Table 1. Specifications of the microrobot.

Microrobot Parameter

Length of microrobot (mm) 35
Radial of microrobot (mm) 16
Weight of microrobot (g) 4.248

Magnetization on direction Radial
Radial of magnet (mm) 5
Weight of magnet (g) 1.036

Material of body Polythene Plastic
Material of screw structure Polythene Plastic

A model is built to analyze the magnetic field distribution of O-ring magnet. The magnetic field
of the O-ring magnet is calculated by Equations (4) and (5).∮

L

B · dl = µ0∑ I (4)

dB =
Idl × r0

4πr2 (5)

The magnetic field of the magnet in the center (Bo) is given by Equation (6)

Bo = µ0Ho =
µ0 I
2R

(6)
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The magnetic field of the magnet in the radius direction (BR) is given by Equation (7).

BR = µ0HR =
µ0 IS

2π(R2 + x2)
3/2 (7)

The magnetic density is any position (x, y, z) is defined by Equations (8) and (9). Hx

Hy

Hz

 =

 a11 a12 a13

a21 a22 a23

a31 a32 a33


−1 HX

HY
HZ

 (8)



a11 = cos α cos β

a12 = − sin α cos γ + cos α sin β sin γ

a13 = sin α sin γ + cos α sin β cos γ

a21 = sin α cos β

a22 = cos α cos γ + sin α sin β sin γ

a23 = − cos α sin γ + sin α sin β cos γ

a31 = − sin β

a32 = cos β sin γ

a33 = cos β cos γ

(9)

where, HX, HY and HZ are the unit vector of the magnetic density. α, β, and γ are the angle with the
x-axis, y-axis and z-axis.

The double curl equation of static magnetic field is given by Equation (10).

∇× (
1
µ
∇×A) = J (10)

Here, we assumed the direction of current is parallel with z-axis, we can obtain the magnetic
vector potential given by Equation (11)

A =
(

0 0 A
)

J =
(

0 0 J
) (11)

where, A is the magnetic vector potential, J is the current density.
We can obtain the magnetic field distribution of O-ring magnet, as shown in Figure 10.

The simulation result indicated that the O-ring magnet including multi-magnetic potentials is higher
magnetic field area than one magnetic potential type [15]. Therefore, the O-ring magnet as the actuator
is used to obtain optimal performance in our research.
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3.2. Principle of the Screw Jet Motion Mechanism

While the magnetically actuated microrobot is moving inside of the rotational magnetic field, the
rotational magnetic field generated a magnetic torque and magnetic force acting on the microrobot.
Meanwhile, the microrobot rotates synchronously with the changing frequency of rotational magnetic
field, due to a pure magnetic moment is generated as a dipole of magnet attempts to align with the
local magnetic field. The magnetic force and magnetic torque is defined by Equations (12) and (13) [32].

T = VM× B (12)

F = V(M · ∇)B (13)

where, V and M represent the volume and average magnetization of the magnetically microrobot,
respectively. ∇ represents a gradient operator.

According to the Newton second law, the behavior of microrobots moves in the fluid was
analyzed, the equation of the motion of the microrobot in indicated in Equations (13) and (14) [29]. The
distribution of force on the magnetically actuated microrobot is simplified including propulsive force,
hydraulic resistance, buoyancy and gravity force, as shown in Figure 11. And the relationship between
the propulsive force and flow and cross-section of the screw jet mechanism is shown in Figure 12.

FP − FD ± FB sin θ ∓ G sin θ + m
dv
dt

= 0 (14)
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Propulsive force is given by Equation (15).

FP = ρ · A · v2 − 1
2
· CD · ρ · A · v2 (15)

The hydraulic resistance is calculated by Equation (16).

FD = CD A
ρv2

2
(16)

Flow of the screw jet mechanism (Q) is given by Equation (17) [8].

Q = a · b ·
√

p2 + (2πr)2 ·Ω (17)

where, FB is buoyancy, resistance, G is gravity force, m is the mass of microrobot, v is moving speed of
the microrobot. FP is the propulsive force, FD is hydraulic resistance.

4. Experimental Results

An Electromagnetic Actuation (EMA) System was used to evaluate the performance of the
magnetically actuated microrobot with screw jet motion, as shown in Figure 13. The magnetically
microrobot is placed in a region of interest of the rotational magnetic field generated by the three axes
Helmholtz coils. While the signal of the rotational magnetic field is input to the driving system which
by an interface developed with Visual Studio 2010, a rotational magnetic field generates. The interface
includes control unit, monitor, and an oscilloscope. We can adjust the magnetic changing frequency
from 0 Hz to 30 Hz and adjust the direction of the rotational magnetic field to control the position of
the microrobot in pipe. Meanwhile, the operator can view the image by a monitor.
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During the experiments, we adjusted the magnetic changing frequency with one frequency each
step. The maximum moving speed of the microrobot is 2.4 mm/s. The experimental results show a
linear relationship between magnetic changing frequency and moving speed before 15 Hz, as shown
in Figure 14. Because, when the magnetic changing frequency over 15 Hz, the magnetically actuated
microrobot cannot rotate continuously, synchronized with the rotating magnetic fields, and it cannot
generate enough propulsion to overcome the resistance of fluids [29]. The phenomenon is explained by
our previous research. In other word, to obtain the stable movement of the microrobot, we just control
the magnetic actuated microrobot move in a controlled area in the medical application. Using our
proposed magnetic actuated capsule microrobotic system, the magnetically actuated microrobot with
screw jet motion realized the reciprocating motion in the horizontal plane locomotion. Based on the
movement principle in the Section 2, we controlled the rotational magnetic field by clockwise rotation in
X-Z plane, the microrobot moves forwardly from point A to point B with 20 s, and then the microrobot
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stop at the point B with 5 s. And then the microrobot continues move. At last, adjusting the rotational
magnetic field by counter-clockwise rotation, the microrobot moves to point A at 39 s. The experimental
results are shown in Figure 15. And then, we designed a multiple reciprocating motion to simulate
the process of clinical diagnosis. For example, the microrobot should stop or backward at an area to
diagnose. The experimental results are shown in Figure 16. Firstly, the microrobot stop at a point and
the microrobot move forward with a uniform motion in the diagnose area (70–90 mm). When the
microrobot reach to the diagnose area, the microrobot makes a reciprocating motion to obtain the
results (T = 120–320 s), and then microrobot move to another diagnose. The magnetically actuated
microrobot also realized the movement in any direction in the horizontal plane by our proposed
control method in Section 2, which generates any rotational magnetic field of perpendicular to moving
direction. The Figure 17 shows one of movements that the locomotion direction is 45◦ direction with
x-axis in horizontal plane.
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Figure 17. Locomotion direction is 45◦ direction with x-axis (a) Phase 1; (b) Phase 2; (c) Phase 3;
(d) Phase.

In addition, we carried out the movement of the microrobot on the vertical plane, as shown in
Figure 18. Firstly, the microrobot free falls under the action of gravity and resistance, it means that
the microrobot moves without the rotational magnetic field. And then, we adjusted the rotational
magnetic field frequency to obtain the propulsive force. There are three kinds of phenomenon during
the experiments. When the propulsive force is larger than the gravity and resistance, the microrobot
can move upward. When the propulsive force is equal the gravity and resistance, the microrobot can
stop at a point. And when the When the propulsive force is less than the gravity and resistance, the
microrobot can move downward.
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5. Conclusions 
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Figure 18. Experimental setup (a) Phase 1; (b) Phase 1; (c) Phase 1; (d) Phase 1.

5. Conclusions

In this paper, we focused on the performance evaluation of a magnetically actuated capsule
microrobotic system which consists of only three stationary pairs of Helmholtz coils. We compared
two kinds shape of the Helmholtz coils, circular Helmholtz coils, and square Helmholtz coils.
The Helmholtz coils produced magnetic flux density of the circular Helmholtz is 1.11 times larger
than the square Helmholtz coil under conditions of the same radius. And we proposed a magnetically
actuated microrobot with screw jet motion. We analyzed the magnetic field of the O-ring magnet by
the Finite Element Method to obtain optimal performance of the microrobot. We confirmed that the
magnetically actuated microrobot realized the basic motion using our proposed microrobotic system,
such as forward motion and backward motion in horizontal plane and vertical plane. Meanwhile,
by changing the frequency of rotational magnetic field, the moving speed of the microrobot was
adjusted. In the future, we will focus on how to scale down the size of the microrobot and design some
experiments to realize the movement in a confined tube. In addition, we develop a positing system for
the microrobot, such as, using a vision module to detect the positing for the microrobot.
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