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Abstract: Designed micro/nanomotors are micro/nanoscale machines capable of autonomous motion
in fluids, which have been emerging in recent decades owing to their great potential for biomedical
and environmental applications. Among them, light-powered micro/nanomotors, in which motion
is driven by light, exhibit various advantages in their precise motion manipulation and thereby
a superior scope for application. This review summarizes recent advances in the design, manufacture
and motion manipulation of different types of light-powered micro/nanomotors. Their structural
features and motion performance are reviewed and compared. The challenges and opportunities of
light-powered micro/nanomotors are also discussed. With rapidly increasing innovation, advanced,
intelligent and multifunctional light-powered micro/nanomachines will certainly bring profound
impacts and changes for human life in the future.
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1. Introduction

The homeostasis of biological systems and locomotion of organisms in nature have long been
an inspiring topic of research [1]. Inspired by natural microorganisms, considerable efforts have been
devoted to achieving artificial self-propelled micro/nanomotors (MNMs) [2–12], which bring about
different areas of influential applications, such as environmental remediation [13–18], target drug
delivery [19–24], and cell manipulation and isolation [25–31].

MNMs are micro/nanoscale machines capable of converting different energies into mechanical
energy that drives machinery movement. The energy sources can be chemical energy, derived from
chemical reactions [32–35], or various sources of external stimuli (such as, light, magnetic, ultrasonic or
electric field) [31,36–49]. Chemically-powered MNMs can act as reactants and/or catalysts to trigger
in situ chemical reactions, subsequently generating chemical gradients or bubbles to autonomously
propel themselves in a fluid. Typical ones are propelled by the decomposition of hydrogen peroxide
(H2O2) [50–60]. The HCl, N2H4, I2 and other fuels have been also reported in succession for MNM
propulsion [61,62]. The variety of fuels for propelling chemically-powered MNMs effectively increases
their scope of applications, which has been reviewed by Samuel Sánchez et al. [63]. MNMs driven
by external physical stimuli have been also widely investigated, of which several reviews have
highlighted the advances of different systems, such as light-driven MNMs [64], ultrasound-driven
MNMs [65], magnetic-driven MNMs (powered by a rotating magnetic field and an oscillating magnetic
field), and electric-driven MNMs (in a direct-current electric field or an alternating-current field) [66].
In addition, recent advances regarding the motion manipulation of these externally-stimulated MNMs
by different approaches have also been reviewed [67]. Since these externally stimulated MNMs with
preset motion behaviors, long lifetimes, and excellent biocompatibility have shown great promise in
various fields of technology, with the design and development of MNMs enabling quick responses to
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stimuli and precise motion manipulation, which are of great significance and attracting broad interest
in research.

Light is one of the most versatile power sources that is renewable and easy to control. With these
unique features, light is an excellent candidate for the energy source to drive MNM movement, since
the motion of elaborately-designed light-powered MNMs can be non-invasively controlled at highly
precise spatial and temporal resolutions. Light-powered MNMs are propelled through converting
light energy into mechanical energy, which is initiated from the development of molecular motors on
the basis of light-responsive molecules. Significant milestones for the development of light-powered
MNMs are summarized in Figure 1. Azobenzene-based artificial molecular machines were reported in
the 1980s, propelled by the photoisomerization of chemical structures of azobenzene, were the first
prototype of the initial light-powered MNMs. Inspired by kinesin, researchers have developed artificial
walkers from DNA, and the molecules can take a step forward based on DNA cleavage and ligation.
By using light as an energy source, DNA walkers can mimic the function of biological motors in cargo
transport and biosynthesis [68–71]. Since then, various types of light-powered molecular motors were
developed gradually. In the 1990s, researchers found that light can propel liquid droplet motion,
which engendered a new research field named optofluidics, where the motion of a liquid is driven by
optical forces, light-induced capillary forces or a combination of optical and electrical effects [72,73].
In 2004, an Au-Pt bimetal nanomotor reported by the Sen and Mallouk research group differentiated
a new branch, namely solid state motors, which were inspired by the self-propelling plates reported by
Whitesides et al. in 2002 [74,75]. The premise of the motion of solid state motors is the formation of
an asymmetrical gradient field around the motors initiated by light. As the gradient field is unstable,
a certain force around the motors is required to stabilize the gradient field to maintain its steady state
in a fluid. In the end, this force drives the motors movement. Solid state light-powered MNMs offer the
possibility to develop novel light-powered micro/nano robots with advanced properties and functions,
making them an emerging topic in both the academic and industrial fields.
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Figure 1. The milestones for the development process of light-powered MNMs: Molecular motors.
Reproduced with permission [72]. Copyright 2012, Royal Society of Chemistry. Optofluidics.
Reproduced with permission [73]. Copyright 2009, WILEY-VCH. Solid state motors. Reproduced with
permission [74]. Copyright 2004, American Chemical Society.

The objective of this review is to highlight various light-powered strategies to drive MNMs.
In order to provide the reader with a general overview of the light-powered MNMs discussed in
this review, we summarize some typical geometries, light sources, driving mechanisms and motion
behaviors of light-driven MNMs, as shown in Table 1. By focusing on the fabrication of light-powered
MNMs based on photoactive materials and structural design, we intend to discuss the importance
of motion manipulation with regard to different light sources (e.g., ultraviolet (UV), visible and
Near-Infrared (NIR) light) and motion behaviors. After briefly introducing the potential applications,
we finally review the opportunities and challenges of the field.
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Table 1. Typical geometries, light sources, driving mechanisms and motion behaviors of
light-powered MNMs.

Geometries of
MNMs Light Source Driving Mechanism Motion Behavior References

1 Hydrogel ribbon Near-Infrared light Photothermal effect Translational motion [76]

2 Wheel and
spring-like ribbon Ultraviolet light

Photoisomerization of
azobenzene and strain

energy

Controlled direction
and speed [77]

3 Tubular liquid
crystal polymer Blue light Capillary forces arising

from photodeformation
Controllable velocity

and direction [78]

4 TiO2-Au Janus
micromotor Ultraviolet light Self-electrophoresis 25 body length/s [79]

5 BiOI-metal Janus
motor Visible light Self-electrophoresis 1.62 µm/s in pure water [80]

6 Polymer multilayer
rockets Near-Infrared light Thermophoretic force High speed of 160 µm/s [81]

7 Au/B-TiO2 Janus
micromotor

Multiple light
wavelengths Self-electrophoresis Maximus speed in H2O2:

30.1 µm/s [82]

8 Nanotree Ultraviolet light Self-electrophoresis Positive and negative
phototaxis behaviors [83]

9 Peanut-shaped
colloid Blue light Diffusion-osmotic flow Phototactic behavior [84]

2. Fabrication of Light-Powered MNMs

Light-powered MNMs are micro/nanodevices that can convert light energy into mechanical
energy. The key to propelling the motion of light-powered MNMs is the formation of an asymmetrical
gradient field around the motors initiated by light. To serve this purpose, light-powered MNMs
are normally built either by employing photoactive materials (e.g., photothermal materials and
photoisomerized materials) or by constructing asymmetrical structures/geometries (e.g., nanowires,
Janus spheres, micro/nanotubes, microcapsules, etc.). In the following section, we will introduce the
fabrication of light-powered MNMs based on photoactive materials and structural design, respectively.

2.1. Fabrication of Light-Powered MNMs Based on Photoactive Materials

Photoactive materials can absorb energy from the incident light and convert it into mechanical
energy. Among them, photothermal materials, those that generate thermal effects under light
irradiation, have been widely studied, by which many light-responsive actuators have been
fabricated [85]. Furthermore, a series of tunable photo responsive actuators consisting of photothermal
materials was demonstrated by Peng et al., which achieved an integration of complex movements
triggered by light [86]. By adjusting the pre-programmed nanostructures, a light-manipulated
mechanical arm was assembled and an energy harvesting system was used to execute complex but
well-controlled motions. This mechanical arm was able to conduct movements of grasping/releasing
and elongation/contraction manipulated by light illuminated areas. The four-step movements of
the mechanical arm are shown in Figure 2A. The real-time response, remote controllability and light
sensitivity of the mechanical arm offer high competency, as the arm can be adapted to perform
different functions and be involved in different activities. Recently, the Martin Möller research group
designed a new actuation mechanism for morphing a microswimmer with fast cyclic sequences of
shape configurations, subsequently leading to translational motion, as shown in Figure 2B [76]. Light
irradiation effectuated a thermal response for a purposefully designed hydrogel ribbon. Then the
out-of-equilibrium response yielded precise and fast shape deformation with a rigorous and versatile
control of complex motility modes, as needed for mobile microscale robots. They demonstrated
the simple hydrogel ribbon motion in water. The ribbon not only followed a purposeful spatial
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configuration, but also underwent cyclic variations in its spatial configuration that followed a different
forward and backward path in space and thus created a thrust to propel the hydrogel ribbon in water.Micromachines 2018, 9, x FOR PEER REVIEW  4 of 18 
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Figure 2. (A) Schematic illustration of helical Strip B (a). Photographs of helical Strip B before and
after light irradiation (b). Schematic illustration of a mechanical arm completing a catching (releasing)
movement (c). (d) Photographs of an object being lifted up by the mechanical arm. Scale bars, 1 cm in
(b,d). Reproduced with permission [86]. Copyright 2016, American Chemical Society; (B) Illustration
of the locomotion generated by non-reciprocal deformations of the helix (left); Directing the rotational
motion to a linear translocation when the oscillating helix is confined close to a flat wall that impedes
the rotation around the axis normal to the helix direction (right). Reproduced with permission [76].
Copyright 2016, WILEY-VCH.

As an alternative photoactive material, liquid crystalline elastomer (LCE) has been attracting
broad and growing interest in recent years because of their versatility in creating moving devices.
Liquid-crystalline networks are smart materials that combine the anisotropic properties of liquid
crystals with the good mechanical behavior of polymeric networks. They exhibit a shape change
depending on the local alignment of the liquid-crystal director field inside the network by light
illumination, inducing the mobility of LCEs. For example, Zhao et al. demonstrated the tunable
photo-controlled motions of malleable azobenzene liquid crystalline polymer actuators [77], of which
motion was driven by the UV light-triggered transformation of energy from stored mechanical
strain energy in the polymer into mechanical force. This results in a variety of robust, tunable,
and continuous motions at the macroscopic scale, as shown in Figure 3A,B. In another example,
a photonic liquid-crystalline network microhand was reported by Wiersma et al., which was able to be
remotely controlled by optical illumination, act autonomously and grab small particles resulting from
their optical properties [87]. As shown in Figure 3C, the elastic reshaping properties of liquid-crystalline
networks played a finger-like grasping action under light irradiation. Different deformations and
motions could be also achieved by programming the alignment of liquid crystalline, which allow the
polymer to perform a wider range of humanized actions in order to complete more delicate tasks.

Early studies of light-powered MNMs mainly focused on molecular machines based on molecular
photoisomerization. Apart from the above-mentioned photo-controlled motions of liquid crystalline
polymers, optofluidics enables more complex photo-powered motions. For example, Yu et al.
reported a strategy to manipulate fluid slugs by photo-induced asymmetric deformation of tubular
liquid crystal polymer microactuators, which induces capillary forces for liquid propulsion [78].
These microactuators are able to control a wide diversity of liquids over a long distance with



Micromachines 2018, 9, 41 5 of 19

controllable velocities and directions by light, as shown in Figure 4. The development of sophisticated
light-powered MNMs by optofluidic approaches will be of great significance in the future.Micromachines 2018, 9, x FOR PEER REVIEW  5 of 18 
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Figure 3. Light-controlled motion of liquid crystalline polymer. (A) Schematic showing (a) leftward
and (b) rightward shift of the center of gravity in the wheel due to the UV-light-induced asymmetric
deformation. Reproduced with permission [77]. Copyright 2017, WILEY-VCH; (B) Schematic of
light-pushing forward rolling (a) and light-pulling backward rolling (b) of the helical ribbons due
to UV-light-induced torque. Reproduced with permission [77]. Copyright 2017, WILEY-VCH;
(C) Schematic of photonic microhand design (a) Illustration of a microhand and related mesogen
alignment. (b) Illustration of the closed microfingers in response to an optical stimulus and the related
change in molecular alignment. Reproduced with permission [87]. Copyright 2017, WILEY-VCH.
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Figure 4. Design of tubular microactuators. (a) Schematics showing the motion of a slug of fully wetting
liquid confined in a tubular microactuator (TMA) driven by photodeformation; (b) Lateral photographs
of the light-induced motion of a silicone oil slug in a TMA fixed on a substrate; (c) Schematic illustration
of the structure of artery walls; (d) Molecular structure of a novel linear liquid crystal polymer (LLCP).
Reproduced with permission [78]. Copyright 2016, Nature Publishing Group.
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2.2. Fabrication of Light-Powered MNMs with Different Geometries

Popular geometries of light-powered MNMs include nanowires, Janus spheres, micro/nanotubes,
microcapsules, etc. The template method is a common method for fabricating light-powered MNMs
with asymmetrical structures/geometries. Anodic alumina (AAO) membranes and polycarbonate
(PC) containing cylindrical or conical pores have been used as preferred templates for the growth of
nanowires or nanorockets by electrodeposition. The structure of nanowires or nanorockets could be
controlled by the diameter of the membrane pores, deposition time and charges passed during its
plating process. Different metals were used to form metallic nanowires or striped nanostructures with
heterogenous composition and asymmetrical geometries by sequential deposition. Monodispersed
metallic nanowires or nanorockets could be obtained by subsequently dissolving the membrane in
the solvent (Figure 5A,B) [58,88]. Apart from nanowires, Janus spheres with distinct properties in
the two faces of particles also favor the generation of gradient fields, thereby becoming interesting
structures for fabricating light-powered MNMs. In order to obtain the half-coated particles, Janus
spherical light-powered MNMs were fabricated by using monodisperse polystyrene (PS) or silica (SiO2)
microspheres as the templates, followed by the deposition of metallic thin films on the microspheres
(Figure 5C) [81]. To be specific, a suspension of PS or SiO2 microspheres was dropped onto a cleaned
substrate to form a monolayer of the microspheres. The density of the monolayer covering the
substrate could be controlled by varying the concentration of microsphere suspension, and the size
of the microspheres could be adjusted as needed. Metal layers were then coated onto the monolayer
of the microspheres by electron-beam evaporation or sputtering to obtain multi-metallic half-coated
particles, which were finally released from the substrate to form Janus MNMs.
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Figure 5. Fabrication schemes of template-assisted MNMs. (A) Schematic illustration of AAO
template-assisted fabrication of the metal nanowires. Reproduced with permission [88]. Copyright 2011,
American Chemical Society; (B) The fabrication process of PC template-assisted electrodeposition of
micro/nanorockets. Reproduced with permission [58]. Copyright 2016, WILEY-VCH; (C) Fabrication
scheme of spherical Janus MNMs. Reproduced with permission [81]. Copyright 2016, American
Chemical Society.

The layer-by-layer (LbL) assembly technique, involving alternate deposition of positively and
negatively charged polyelectrolytes, has been proven to be a versatile and convenient way to construct
micro-/nanodevices with a precise structure and composition. He et al. have presented recent
progress on the fabrication of MNMs [12]. By LbL assembly, polymers, nanoparticles, proteins
and even anonymous assemblies can be conveniently integrated into or onto the LbL-assembled
capsules or nanotubes through multiple weak interactions, including electrostatic interactions,
hydrogen-bonds, coordination bonds, charge-transfer interactions, biologically specific interactions,
and the combined interaction of the above forces, etc. He et al. fabricated the MNMs by LbL
assembly of polyelectrolytes [89,90]. The negatively charged poly (styrenesulfonic acid) (PSS) and
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positively charged poly (allylamine hyhrochloride) (PAH) polyelectrolyte multilayers were adsorbed
on the microspheres. Metal was subsequently deposited onto the (PSS/PAH)5-coated microspheres.
The hollow Janus capsules partially covered by the Au layer could be obtained by removing the
silica templates, as shown in Figure 6A [90]. Apart from Janus spheres, polymeric multilayer
tubular rockets could be also prepared by the LbL method [91–93], as shown in Figure 6B. Briefly,
the framework of the rockets was prepared by alternatively assembling PSS and PAH onto the
inner walls of nanoporous polycarbonate membranes by LbL technique. Then negatively charged
gold nanoparticles (AuNPs) were assembled into the (PSS/PAH)20-modified porous membranes
via electrostatic interactions. The gold nanoshells (AuNSs) inside the rockets were formed through
a seeding-growth procedure and finally the tubular rockets were released by dissolving the templates.
The resulting rockets could perform NIR-triggered “on/off” motions in a remotely-controlled manner.
However, the movement behavior of such a rocket is not stable. To solve this problem, He’s
group fabricated a near-infrared-light-powered torpedo micromotor by the layer-by-layer sol-gel
method, which performs stable movement in a straight line in various media [94]. In consideration
of the manufacturing of light-powered MNMs, the LbL assembly method has the advantages
of mass production and a convenient operation process. More ingeniously, some new methods
such as colloidal lithography have recently emerged for fabricating light-powered MNMs with
heterogeneous compositions and/or asymmetrical structures/geometries, which has proven to be
a simple, inexpensive and versatile technique enabling rapid and large area patterning, as well
as the formation of different conic materials with ordered structures [95,96]. The exploration of
new manufacturing methods creates more possibilities for better control over the structures and
geometries of light-powered MNMs, widening the functions of light-powered MNMs with more
advanced properties.
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Figure 6. Schematic illustration of MNMs fabricated by the LbL method. (A) Scheme of light-triggered
Janus capsule motors. Reproduced with permission [90]. Copyright 2014, American Chemical
Society; (B) Illustration of the fabrication of tubular rockets: (i) LbL assembly of (PAH/PSS)20 films,
and subsequent deposition of AuNPs into the pores of templates; (ii) Formation of AuNSs though
surface-seeding growth method; (iii) Removal of the templates to release the rockets. Reproduced with
permission [92]. Copyright 2015, Wiley-VCH.

3. Motion Manipulation of Light-Powered MNMs

For all types of MNMs, motion mode and motion manipulation are critical topics. Recently, many
researchers reported the motion behavior of state-of-the-art light-powered MNMs together with their
major propulsion mechanisms, including light-induced phoresis propulsion, bubble recoil, interfacial
tension gradient, deformation propulsion, self-thermophoresis, and combination force [64,97–99].
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For practical applications of light-powered MNMs, the stimulating light at a specific wavelength range
(i.e., UV light, visible light and infrared light) is usually required to be in accordance with the nature of
the MNMs. Hence, the effect of different light sources on the motion of light-powered MNMs is of
high significance and will be reviewed in the following section. To achieve a higher level of motion
manipulation for more sophisticated tasks, the controllability of the motion direction of the MNMs is
another key aspect. Recent progress has demonstrated some novel light-powered MNMs enabling
directional motion in remotely-controlled manners, which will also be summarized in this section.

3.1. Motion of MNMs Manipulated by Different Light Sources

3.1.1. UV Light

For the first time, Guan et al. demonstrated a bubble-propelled photo-activated single component
metal oxide tubular microengine by utilizing the photocatalytic H2O2 decomposition over TiO2 under
UV irradiation [100]. Upon UV light irradiation, the photogenerated O2 molecules on the inner surface
nucleate and grow into bubbles. Then the generated O2 bubbles are ejected from a one-end large
opening to propel the TiO2 tubular microengine (Figure 7A). More importantly, the motion state
and speed of the microengines can be reversibly, wirelessly, and remotely controlled by turning the
“on/off” switch and regulating the intensity of the UV source. Figure 7B shows a highly efficient UV
light-driven photocatalytic TiO2-Au Janus micromotor with wireless steering and velocity control.
This Janus micromotor can be powered in pure water under an extremely low UV light intensity
(2.5 × 10−3 W/cm2), and can reach a high speed of 25 body length/s at UV light intensity of 40 × 10−3

W/cm2 [79]. The propulsion of the TiO2-Au micromotors dominantly originates from the light-induced
self-electrophoresis. Upon UV irradiation, charge separation occurs within the TiO2 and electrons
are injected from the TiO2 conduction band into the Au hemisphere. Protons are produced from the
oxidation of water at TiO2 and the resultant electrons are consumed during the reduction of protons at
Au. The flux of H+ generates a fluid flow toward the Au hemisphere, generating a slip velocity and
propelling the micromotors with the TiO2 hemisphere forward. In addition, Guan and Zhang et al.
demonstrated a disruptive strategy to design micromotors by using isotropic structures. As shown in
Figure 7C, the micromotors can continuously move, which induces a net concentration gradient of
photocatalyzed products, independent of the random rotation of themselves. Both motion direction
and speed were precisely controlled by UV irradiation. In this work, by taking advantage of the limited
penetration depth of light in semiconductor materials, the asymmetrical surface chemical reactions
on the isotropic semiconductor particles can take place, which induces concentration gradients of
photocatalytic products to propel the micro/nanomotors. Due to their isotropic structures, the motion
directionality of the as-developed micro/nanomotors is not interfered by their rotational Brownian
diffusion or local flows, but always along the irradiated light direction [101].

3.1.2. Visible Light

To the best of our knowledge, most of the existing light-powered MNMs are propelled
autonomously by either UV or NIR light. In comparison with that, visible light may serve as an ideal
external stimulus for propelling MNMs, as it is more easily available and convenient for operation.
Recently, Li et al. reported visible-light-powered Si-Au micromotors, which could move in either
deionized water or organic solvents without the addition of chemical fuels [102]. As shown in
Figure 8a, the propulsion mechanism is the self-electrophoresis modulated by the photoconductivity
of the amorphous silicon segment. Cai et al. presented visible-light-powered Janus micromotors
based on BiOI microspheres with one hemisphere coated with a metal layer [80], propelled by the
self-electrophoresis mechanism (Figure 8b). Although visible-light-powered MNMs possess many
valuable properties for future biomedical and environmental applications, they still confront many
challenges and further investigation may be required.



Micromachines 2018, 9, 41 9 of 19
Micromachines 2018, 9, x FOR PEER REVIEW  9 of 18 

 

 
Figure 7. UV light-powered MNMs. (A) The UV-induced bubble propulsion mechanism of the TiO2 
tubular microengine in H2O2 fuel, the generated O2 bubbles are ejected from a one-end large 
opening to propel the TiO2 tubular microengine. Reproduced with permission [100]. Copyright 2015,  
WILEY-VCH; (B) The mechanism schematic of TiO2−Au Janus micromotors powered by UV light in 
water. Reproduced with permission [79]. Copyright 2016, American Chemical Society; (C) The 
mechanism illustration of the phototaxis of a spherical TiO2 micromotor based on the limited 
penetration depth of light (graph on the left). Time-lapse images and the motion trajectory of a TiO2 
micromotor in an aqueous solution containing 0.001 wt % H2O2 as fuel. The predesigned pathway 
for the micromotor is represented as dashed–dotted lines (graph on the right). Reproduced with 
permission [101]. Copyright 2017, WILEY-VCH. 

 
Figure 8. Visible-light-powered MNMs. (a) Trajectories of the Si–Au micromotors in water, from left 
to right, without illumination and with illumination at a light intensity of 13.6 mW mm−2 (top 
figures). Propulsion mechanism of the Si–Au micromotors activated by visible light in deionized (DI) 
water (down figure). Reproduced with permission [102]. Copyright 2017, Royal Society of 
Chemistry; (b) Mechanism illustration of visible-light-driven BiOI-metal Janus micromotors (A) and 
the movement trajectories of BiOI-metal Janus micromotors with and without light irradiation (B,C). 
Reproduced with permission [80]. Copyright 2017, American Chemical Society. 

3.1.3. NIR Light 

In comparison with UV and visible lights, NIR light is of special interest in the consideration of 
biomedical applications since light absorption by biological tissues is minimal in this region and 
NIR light is safe for living organisms. He’s research group has focused on the construction of the 
NIR-driven MNMs, which pave the way to apply self-propelled synthetic MNMs in biomedical 
fields. In 2014, they demonstrated a new strategy for photothermally triggering the “on-demand” 

Figure 7. UV light-powered MNMs. (A) The UV-induced bubble propulsion mechanism of the
TiO2 tubular microengine in H2O2 fuel, the generated O2 bubbles are ejected from a one-end large
opening to propel the TiO2 tubular microengine. Reproduced with permission [100]. Copyright
2015, WILEY-VCH; (B) The mechanism schematic of TiO2-Au Janus micromotors powered by UV
light in water. Reproduced with permission [79]. Copyright 2016, American Chemical Society;
(C) The mechanism illustration of the phototaxis of a spherical TiO2 micromotor based on the limited
penetration depth of light (graph on the left). Time-lapse images and the motion trajectory of a TiO2

micromotor in an aqueous solution containing 0.001 wt % H2O2 as fuel. The predesigned pathway
for the micromotor is represented as dashed–dotted lines (graph on the right). Reproduced with
permission [101]. Copyright 2017, WILEY-VCH.
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Figure 8. Visible-light-powered MNMs. (a) Trajectories of the Si-Au micromotors in water, from left to
right, without illumination and with illumination at a light intensity of 13.6 mW mm−2 (top figures).
Propulsion mechanism of the Si-Au micromotors activated by visible light in deionized (DI) water
(down figure). Reproduced with permission [102]. Copyright 2017, Royal Society of Chemistry;
(b) Mechanism illustration of visible-light-driven BiOI-metal Janus micromotors (A) and the movement
trajectories of BiOI-metal Janus micromotors with and without light irradiation (B,C). Reproduced with
permission [80]. Copyright 2017, American Chemical Society.



Micromachines 2018, 9, 41 10 of 19

3.1.3. NIR Light

In comparison with UV and visible lights, NIR light is of special interest in the consideration
of biomedical applications since light absorption by biological tissues is minimal in this region and
NIR light is safe for living organisms. He’s research group has focused on the construction of the
NIR-driven MNMs, which pave the way to apply self-propelled synthetic MNMs in biomedical
fields. In 2014, they demonstrated a new strategy for photothermally triggering the “on-demand”
launch of gold-shell-functionalized polymer multilayer micromotors using a NIR laser at the critical
concentration of peroxide fuel (Figure 9A). The process was based on the fact that the NIR illumination
of the micromotors caused a spontaneous photothermal effect and thus a localized sharp increase in
temperature around the micromotors. Accordingly, the increase in temperature induced the accelerated
kinetics of the catalytic decomposition, the increased rates of mass transport, and the enhanced release
frequency of oxygen bubbles [91]. Further, they presented a polymeric tubular rocket functionalized
with AuNSs, which can move at a speed of up to 160 µm s−1 [92]. The strong plasma resonance
absorption of AuNSs in the NIR region created localized temperature gradients on the inner and outer
surfaces of asymmetric AuNSs (Figure 9B). The higher thermal gradient on the inner surface and
the asymmetric structure of the rockets resulted in the difference in thermophoretic forces along the
elongated axis of rockets, which in turn drove the rockets to move toward the direction of the front
small-opening. Similarly, they constructed fuel-free, NIR-driven Janus mesoporous silica nanoparticle
motors in 2016 [81]. As shown in Figure 9C, a localized photothermal effect on the Au half-shells
resulted in the formation of thermal gradients across the Janus mesoporous silica nanoparticle motors.
Thus, the generated self-thermophoresis could actively drive the nanomotors to move at an ultrafast
speed upon exposure to an NIR laser. These NIR-powered MNMs demonstrate a novel strategy for
overcoming the necessity of chemical fuels and exhibit significant improvement in the maneuverability
of MNMs, which provide competent candidates for loading transportation in an eco-friendly manner.
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Figure 9. NIR light-driven MNMs. (A) NIR-induced launch of a microengine in 0.1% (v/v) H2O2

solution. Reproduced with permission [91]. Copyright 2014, American Chemical Society; (B) Schematic
mechanism of NIR-driven rockets (Small arrows represent the inner and outer thermophoretic forces,
and the large arrow indicates the direction of the resultant force) and time-lapse images of NIR
controllable launch, stop, and restarted movement of the rocket. Reproduced with permission [92].
Copyright 2015, Wiley-VCH; (C) Schematic of NIR-driven Janus mesoporous silica nanoparticle motors.
Reproduced with permission [81]. Copyright 2016, American Chemical Society.
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3.1.4. Multi-Wavelength Light

The above-mentioned light-powered MNMs are limited to the use of light at a specific
wavelength. The narrow light absorption spectrum limits narrow ranges of wavelengths for locomotion.
Multi-wavelength-light-powered MNMs were therefore gradually developed. For example, Nelson
and Pane et al. reported multiwavelength light-responsive Au/B-TiO2 Janus micromotors [82].
As shown in Figure 10, the Janus micromotors showed directional motion under multiple light
wavelengths including UV, blue, cyan, green, and red light not only in H2O2 solution but also
in pure water. Because of their good photocatalytic activity at the entire spectrum of UV and
visible light, their applications are considerably broad. In addition, Tang et al. have also
successfully demonstrated a light-powered silicon nanowire-based nanomotor enabling response
to multi-wavelength light (i.e., ultralow-intensity visible light and NIR light) [103]. The research
into the multi-wavelength-light-powered MNMs is now just at the primary stage. With advances in
materials and manufacturing technologies, novel smart light-powered MNMs, for which the motion
behavior (e.g., motion speed, motion direction, etc.) can be manipulated and tuned by the light with
different wavelengths, will be developed to perform complicated and multiple tasks intelligently in
a controllable way.
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Figure 10. Full visible light (>400 nm) driven Au/B-TiO2 Janus micromotors. (A) Schematic of the
propulsion mechanism of Au/B-TiO2 Janus micromotors; (B) Trajectories of (i) Au/B-TiO2 Janus
micromotors over 18 s and (ii) Au/TiO2 Janus micromotors (control sample) over 33 s. Reproduced
with permission [82]. Copyright 2017, American Chemical Society.

3.2. Manipulation of Motion Behaviors

One important goal of MNMs is to manipulate their motion behaviors, mimicking those of
live organisms. Organisms in nature can create highly complex collective behaviors through local
interactions. The collective behaviors of flocking and schooling make organisms perform cooperative
tasks. For example, motile bacteria exhibit organizational behaviors ranging from simple pairwise
alignment and aggregation into swarms, to complex transport of other nonmotile species by symbiosis
to detoxify their environment. Therefore, it is of great importance to control the collective motion
behaviors of MNMs to biomimetic modes. Currently, most MNMs can only make curves or random
movements unless an external magnetic field is applied [104,105]. The most challenging point is to
control the movement speed and the movement direction of MNMs, which limits their applications.
Compared to magnetic navigation, light navigation is an emerging method to manipulate MNMs.

Tang et al. presented a light-controlled programmable artificial phototactic microswimmer [83].
This microswimmer was Janus-nanotree-structured, containing a nanostructured photocathode and
a photoanode at the opposite ends where cations and anions were released, respectively, subsequently
propelling the microswimmer by self-electrophoresis. These microswimmers self-aligned at the
direction of light propagation and mimicked the collective phototactic behavior of green algae in
a solution (Figure 11A). By controlling the head and overall surface charges independently via chemical
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modification, the positive and negative phototaxis behaviors of microswimmers could be successfully
programmed. Recently, the self-organization of a self-propelled peanut-shaped hematite colloid
triggered by blue light was investigated by Qiang He [84]. Figure 11B shows the dynamic self-assembly
of active colloid ribbons perpendicular to their long axis and the positive phototactic behavior of motile
colloid ribbons in a solution of hydrogen peroxide fuel. The motion of colloid motors is ascribed to
the diffusion-osmotic flow in a chemical gradient by the photocatalytic decomposition of hydrogen
peroxide fuel. The phototactic behavior of colloid ribbons stems from the fact that the Gaussian beam
distribution of light intensity leads to a higher rate of photocatalytic reaction in the center of the light
spot and causes a larger hydrogen peroxide concentration gradient accordingly.
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Figure 11. (A) Schematic of a Janus artificial microswimmer. Superimposed images of sequential
frames show the migration of individual Janus nanotrees under global illumination in 0.1% H2O2 (a)
and a mixture solution of 1,4-benzoquinone and hydroquinone (b). Reproduced with permission [83].
Copyright 2016, Nature Publishing Group; (B) Time-lapse optical images of collective behavior of
peanut-shaped colloid motors under illumination of blue light. Reproduced with permission [84].
Copyright 2017, Wiley-VCH; (C) (a,b) Under UV illumination, an active particle adopts a tilted
orientation, and moves with its TiO2 face leading. (c,d) Once trapped, passive particles preferentially
attach to the TiO2 half (black region), and the active particle’s direction of propulsion reverses so that
it moves toward its SiO2 face. (e–h) When more passive particles attach, the active particle usually
reorients into a symmetric configuration with the active TiO2 surface facing up or down. Reproduced
with permission [106]. Copyright 2017, WILEY-VCH.



Micromachines 2018, 9, 41 13 of 19

In addition to the aforementioned methods for achieving the programmed assemblies and
collective motion manipulation of individual MNMs, a new method was developed and studied for the
precise collective motion manipulation of light-powered MNMs [106]. It was found that self-propelled
active colloids could induce the crystallization of passive silica colloids into well-controlled 2D
assemblies when illuminated by UV light. The strength of the attractive interaction between the active
colloids and the passive colloids, as well as the extent of the assembled clusters are modulated by the
diffusiophoretic effects arising from a local chemical gradient activated by UV illumination, as shown
in Figure 11C. Using this method, the collective motion of individual MNMs could be controlled,
resulting in different assembly modes, e.g., isolated square, pentagonal, hexagonal, heptagonal clusters
and some large assemblies with ordered and disordered translating symmetries, which offered a novel
platform technology for making rationally designed colloidal clusters and crystals with controllable
sizes, shapes, and symmetries.

4. Application Prospects

With their various excellent properties, light-powered MNMs have shown superior application
prospects in environmental remediation and biomedicine. In terms of environmental remediation,
light-powered MNMs have many advantages including remote operation, adjustable velocity and
reutilization. For instance, specifically-designed light-powered MNMs modified by different active
layers are able to adsorb certain metallic ions or remove specific oil pollutants, and are thereby
promising for wastewater purification [13,14,16]. As for biomedical applications, soft infrared-powered
MNMs are supposed to have significant potentials and merits. On the one hand, these soft
infrared-powered MNMs can be fabricated by using polymers with proper mechanical properties
and specific biological properties (e.g., biostability, biocompatibility, biodegradability and bioactivity),
making them reliable and excellent candidates for implantation and clinical applications [31]. On the
other hand, because of the deep penetration of infrared across live tissues, soft NIR-powered MNMs
can be traced and triggered upon implantation in a noninvasive and remote way [21,64,89]. These
advantages lay solid foundations for the preparation of advanced light-powered MNMs with novel
properties and functions for diagnostic and therapeutic applications.

5. Conclusions and Outlook

In conclusion, research into light-powered MNMs has facilitated great progress in design and
manufacture, showing different possibilities in various application fields. However, there are still many
challenges for light-powered MNMs, including the limits of the operation environment, the adaptability
of light wavelength, and the difficulty of motion direction control. Specifically, at present, the majority
of light-powered MNMs are propelled in the fluids of H2O2 and H2O [80,82]. However, the toxicity of
H2O2 severely restricts their scope of application and the speed of light-powered MNMs in pure water
still needs to improve even though H2O is an ideal environment [80]. Besides, existing light-powered
MNMs are mostly driven by UV and NIR irradiation [79,81], which may respectively cause damage to
live organisms or unexpected thermal effects to the motor. The exploration of visible-light-powered
MNMs, particularly enabling responses to visible light with different colors/wavelengths and desired
driving efficiency, which remains a major challenge, is necessary but now relatively insufficient in the
current investigations. Moreover, the precise control and manipulation of the directional motion of
light-powered MNMs is a significant and challenging goal. The use of an external magnetic field is
by far the most common and visible approach reported to realize the directional motion of MNMs to
an intended direction or location. For light-powered MNMs, extensive efforts will still be made to
achieve the precise regulation of their movement direction in innovative ways.

In the future, we believe that the exploration of highly efficient light response materials and
the design of well-defined micro/nanostructures shall be of great importance, particularly for
the development of advanced light-powered MNMs with excellent performance with low-cost,
environmentally friendly and facile approaches. Furthermore, the research and development (R&D) of



Micromachines 2018, 9, 41 14 of 19

intelligent light-powered MNMs is an important direction via a combination of bio-inspired design and
bio-inspired smart materials [64,107–109]. With intelligent abilities, these novel light-powered MNMs
can perform complex tasks autonomously, and/or perform specific tasks in special environments,
therefore hugely improving their scope of application.
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