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Abstract: A three-dimensional topography simulation of deep reactive ion etching (DRIE) is
developed based on the narrow band level set method for surface evolution and Monte Carlo method
for flux distribution. The advanced level set method is implemented to simulate the time-related
movements of etched surface. In the meanwhile, accelerated by ray tracing algorithm, the Monte Carlo
method incorporates all dominant physical and chemical mechanisms such as ion-enhanced etching,
ballistic transport, ion scattering, and sidewall passivation. The modified models of charged particles
and neutral particles are epitomized to determine the contributions of etching rate. The effects
such as scalloping effect and lag effect are investigated in simulations and experiments. Besides,
the quantitative analyses are conducted to measure the simulation error. Finally, this simulator will
be served as an accurate prediction tool for some MEMS fabrications.

Keywords: deep reactive ion etching; level set method; Monte Carlo simulation; ray tracing algorithm;
surface evolution

1. Introduction

For the fabrication of high aspect ratio MEMS structures, chemical etching, and plasma sputtering
are not chosen due to the isotropic characterization and bad selectivity. As the only recognized
production deep reactive ion etching (DRIE) process, the Bosch process is introduced to enable a high
aspect ratio by plasma etching and passivation alternation in multiple cycles [1,2]. The etchants like SF6

and NF3 generate the free radicals of fluorine which will react with the silicon substrate. Then, a thin
layer of fluorocarbon polymer is deposited to protect the lateral sidewalls.

On account of the complicated behaviors of particles such as sticking, scattering, diffusion,
recombination, and redeposition in DRIE process, a synthetic and topographical model is adopted to
sketch the complex mechanism. For example, the simulation surface profiles are described by narrow
band level set method [3,4]. The Monte Carlo method depicts the physical mechanism such as sticking
and re-emission. The simulation domain contains 300 × 300 × 300 grids. The balance between runtime
and accuracy is fully considered.

Since DRIE is the key procedure to fabricate the structures with high aspect ratio, several
simulators have already been developed. A two-dimensional simulator was developed by Zhou et al.
using string-cell hybrid method to track the evolving surface [5]. However, the extension to 3-D is
difficult. Later Li et al. presented a simplified geometric model which used visible angles to calculate
the flux [6]. This simulator is fast, but not so accurate. Based on Li’s framework, the advanced simulator
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which adds a Monte Carlo particle simulation has three advantages. On the one hand, the simulation
results are not identical compared with the geometric level set model, which corresponds to the
subtleties in the manufacture. On the other hand, the selective etching ratio, such as the substrate-mask
etching ratio, can be simulated by extracting the parameters in different materials. Finally, it can
also simulate the Silicon-on-Insulator (SOI) DRIE process, which can be applied to fabricate the
comb actuators, accelerometer, and piezoelectric structures. Table 1 shows the characteristics of
different simulators.

Table 1. Comparisons among the different simulators for the Bosch process.

R. Zhou X. Li O. Ertl and S. Selberherr This Simulator

Dimension 2D 3D 3D 3D

Meshing - 100 × 100 500 × 140 300 × 300

Methods String-cell hybrid Narrow band level set Sparse field level set and
ray tracing with disks

Narrow band level set and
ray tracing with spheres

Runtime Not Presented Half a hour About two days 19.6 h

2. Models of Three-Dimensional DRIE Process

2.1. Theoretical Model of DRIE Process

As mentioned above, DRIE process is composed of multiple cycles of etching/passivation process.
The basic principles of DRIE are shown in the Figure 1. In the radio frequency (RF) glow discharge,
sulfur hexafluoride (SF6) is dissociated and ionized into massive species. The dominant neutral
particles (SF6, SF4, F2, F), positive ions (SF+

5 , SF+
3 ) and negative ions (F−) are determined in the

previous work [7,8]. While in our simulator, there are neutral and ionized type of particles with
different angular and velocity distribution. The differences of particles in the same type are neglected
because it is unclear to obtain the contribution of etching rate.
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Figure 1. Schematics of the principle of the DRIE process. (a) The initial state. (b) The first etching 
process. (c) The upcoming passivation. (d) The second etching process. 

The silicon substrate is isotropically etched by these active particles shown in Figure 1b. Ar gas 
stabilizes the glow discharge in ICP-RIE system. Ten percent O2 as an assistant gas prohibits the 
combinations of active radical sites SFx and F in plasma chamber. Additionally, O2 can also provide 
oxygen in the passivation layer. At the same time, physical sputtering of neutral particles also exists 
[9]. Then, during the passivation step, a type of fluorocarbon gas like C4F8 is used to grow a thin 
protection film of nearly 10 nm. This fluoride polymer impedes the reaction between F radical sites 
and Si substrate shown in Figure 1c. During the next etching cycle, the lateral polymer persists due 

Figure 1. Schematics of the principle of the DRIE process. (a) The initial state. (b) The first etching
process. (c) The upcoming passivation. (d) The second etching process.

The silicon substrate is isotropically etched by these active particles shown in Figure 1b. Ar gas
stabilizes the glow discharge in ICP-RIE system. Ten percent O2 as an assistant gas prohibits the
combinations of active radical sites SFx and F in plasma chamber. Additionally, O2 can also provide
oxygen in the passivation layer. At the same time, physical sputtering of neutral particles also exists [9].
Then, during the passivation step, a type of fluorocarbon gas like C4F8 is used to grow a thin protection
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film of nearly 10 nm. This fluoride polymer impedes the reaction between F radical sites and Si
substrate shown in Figure 1c. During the next etching cycle, the lateral polymer persists due to the
low impact probability of directional ions while the bottom polymer is removed. By alternating the
etching and passivation period in Figure 2, the direction of etching will only occur along the vertical
side shown in Figure 1d.
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Due to the complexity of building the model of the plasma sheath, an empirical formula is 
introduced to describe the quasi-static plane P. Equation (1) contains the flux distribution, incident 
angles and energy distribution [10]: 
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Figure 2. Schematic of alternating etching/passivation flow.

2.2. The Main Steps of Simulation

The total process of DRIE process incorporates three main parts shown in Figure 3. The first
phase is to simulate the generation of plasma including the physical phenomena like dissociation,
movements in potentials and molecular collision. The distributions of velocity, energy, and direction of
different particles should be obtained from stage one. The second phase is the ballistic transport from
the bottom of sheath plane P to surface S. The etching/passivation rate is assumedly determined in
phases one and two. Phase three is to solve the level set equation according to the etching/passivation
rate mapping. Finally, with the information stored in material matrix of every grid, and the profiles
including photoresist pattern are illustrated in the simulator.
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Due to the complexity of building the model of the plasma sheath, an empirical formula is
introduced to describe the quasi-static plane P. Equation (1) contains the flux distribution, incident
angles and energy distribution [10]:

Γsource(t, E) = Γsource α + 1
2π

(
t·np

)α f (E) (1)
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where the neutral and ionic reactants are introduced in source plane P. The angle distribution is
distinguished by parameter α in Equation (1). In terms of ions, α is about 100, which presents the
Gaussian-like distribution. The neutral particles correspond to cosine-like distribution since α = 1 [11].
Additional, here Γsource is total fluxes of ions and neutrals, t denotes incident direction and np is the
vertical vector pointing to surface S, f (E) is the distribution function of energy.

After generating plenty of particles in the random model, the coordinates and directional
vectors are stored in the memory. All of these particles should be traced until they interact with
surface S. The Monte Carlo probabilistic approach is used to describing the trajectory of all particles,
which generates a relatively large sample to predict the system. Due to the low pressure in the
system, the mean free path will be larger than the feature dimension of system. The collision between
two particles can be neglected. In addition, the surface charging effect is also negligible. Thus, the flux
function on the surface S is connected with the flux in the plane P by Equation (2):

Γsur f ace(x, t, E) =
−t·n(x)
|x− x′|2

Γsource +
−t·n(x)
|x− x′|2

Γre f lection (2)

where vector t, n(x) are incident direction and normal vector of the surface. |x − x′|2 is the distance.
Considering the re-emission, the surface flux includes the flux from source plane P and reflective flux
with sticking factor η. The velocity function Equation (3) on the surface is derived by the surface flux
and yield function Y:

F(x) =
∫

Γsur f ace·Y(n(x); t)dΩ (3)

3. Simulation Methods

3.1. Narrow Band Level Set Method

Firstly, in order to describe the shapes of fronts in each time step, multiple profile evolution
algorithms are developed. In etching and deposition process, string algorithm, cell-based method,
and the level set method are used frequently [12,13]. Multiples advantages and disadvantages are
weighed in the publications before. In this paper, the level set techniques and its advanced version
inspired by Sethian will be applied to this simulator [14,15]. Level set method can provide gradients of
local surface, signed distance function and Courant–Friedrichs–Lewy (CFL) condition which avoids
the instability. Moreover, level set technique facilitates the topographical changes with less memory
and computation.

Considering a moving hypersurface Γ(t), embedded in a one-dimensional higher time dependent
level set function ϕ(x, t). And the boundaries are always determined as the zero level set ϕ(x, t = 0)
in Equation (4) shown in the Figure 4:

Γ(t) = {x|ϕ(x, t) = 0} (4)

The evolving level set function Equation (5) is deduced by chain rules with the initial signed
distance function Equation (6):

ϕ(x(t), t) = 0

ϕt +∇ϕ·x′(t) = 0 with xt·∇ϕ = F(k)·|∇ϕ|

ϕt + F·|∇ϕ| = 0 (5)

ϕ(x, t = 0) = ±d(x) (6)
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We can solve Equation (6) of each grid nodes by differential scheme Equation (7) with
“entropy-satisfying” approximation to the gradient Equation (8). The zero level set surface can
be extracted within ϕ < 0.5:

ϕn+1
ijk = ϕn

ijk −
[
max

(
Fijk, 0

)
∇+ + min

(
Fijk, 0

)
∇−
]
·h (7)

∇+ = [max(D−x
ijk , 0)2

+ min(D+x
ijk , 0)2

+ max(D−y
ijk , 0)

2
+ min(D+y

ijk , 0)
2
+ max(D−z

ijk , 0)2
+ min(D+z

ijk , 0)2
]

1
2

∇− = [max(D+x
ijk , 0)2

+ min(D−x
ijk , 0)2

+ max(D+y
ijk , 0)

2
+ min(D−y

ijk , 0)
2
+ max(D+z

ijk , 0)2
+ min(D−z

ijk , 0)2
]

1
2

(8)
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Figure 4. Illustrations of 2-D propagation of 𝛤𝛤(𝑡𝑡) with the moving level set function 𝜑𝜑. 

Originally the level set method should store φ all grid spacing. However, this simulator uses the 
narrow band level set method to decrease storage requirements [3,16] shown in the Figure 5. Since 
the level set values of points far away zero level set will not be considered to upgrade or reinitialize. 
Namely, at every time step the level set values of points inside the narrow band will be upgraded 
according to the surface velocity. The procedure called re-initialization is operated after upgrading 
all values in narrow band. Additionally, the narrow band is reconstructed according to the latest level 
set values. However, this simplification should guarantee that the propulsion of surface avoids 
exceeding the γ narrow bands. 
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Figure 4. Illustrations of 2-D propagation of Γ(t) with the moving level set function ϕ.

Originally the level set method should store ϕ all grid spacing. However, this simulator uses the
narrow band level set method to decrease storage requirements [3,16] shown in the Figure 5. Since the
level set values of points far away zero level set will not be considered to upgrade or reinitialize.
Namely, at every time step the level set values of points inside the narrow band will be upgraded
according to the surface velocity. The procedure called re-initialization is operated after upgrading all
values in narrow band. Additionally, the narrow band is reconstructed according to the latest level set
values. However, this simplification should guarantee that the propulsion of surface avoids exceeding
the γ narrow bands.
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The computation complexity of this straightforward level set method is O(N3). N is the number of
grid points in one dimension. While the narrow band method reduces to O(kN2) where k is the width
of narrow band. The three-layer narrow band confines the boundaries well, which alerts whether the
narrow band should be reconstructed. A significant reduction of memory usage and calculation has
been seen as fewer grids participate in the calculation.

3.2. Monte Carlo Method Accelerated by Ray Tracing

From Equations (6) and (8), the velocity Fijk should be determined. Sethian et al. utilize the velocity
function to simulate the isotropic and anisotropic etching (deposition) such as F(θ) = 1, F(θ) = cos θ

or F(θ) = cos10 θ· sin θ [17]. Additionally, Li et al. find the local flux by geometric visibility. However,
in this simulator, the physical particle transport and surface kinetics are involved to calculate the local
flux. Based on the local flux function Equation (3) and velocity integral Equation (4), the direct solution
is to discretize the surface integral, which leads to a dense system matrix.

Hence, a ray tracing algorithm is applied to realize the realistic picture for one particle [18–20].
Additionally, the Monte Carlo statistical method allows millions of rays to represent the behaviors
of up to 1018 particles in the real situation. Therefore, the second phase is simplified by a ray tracing
technique, like rendering in in three dimensions. Millions of particles per second are computed
analogously to determine the contributions of velocities in each grid when these particles hit the
surface. To enable the calculation of local flux, the first intersections between rays and narrow band
surface are found. Since the source plane P and level set surface are meshed into grids, it is difficult to
detect the intersections between rays and grids. The bounding box is then presented. As sphere is the
most popular and least complicated primitive bounding volume, the level set surface is approximated
with multiple spherical surface in this simulator. As we know, the information of active grids like level
set function ϕ, coordinates and material matrix are stored in computer memory. The real surface is
described by these active grids. Thus, the average distances between the grids and the real surface
should be the radius of sphere. The radius is set as the half grid length r = 0.5 accordingly. The local
flux is mapped to intersection impacts on millions of particles.

With the spheres bounding the active points, the first intersections are determined in Figure 6.
The basic steps of ray tracing algorithm are presented [20]:

• Step 1: Calculate the distance d1 between origin x′ and center x.
• Step 2: Calculate the closest distance d2 between ray and center x.
• Step 3: Find square of half chord intersection distance d3.
• Step 4: Test if square is negative (no intersection).
• Step 5: Compare the distance d1 and choose the minimum (first intersection).
• Step 6: Find the normal vector.
• Step 7: Calculate the reflective direction.
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The bridge between the level set method and the Monte Carlo method is the local velocity
calculation. As the Monte Carlo method is utilized, the integral Equation (4) is discretized automatically.
In order to save the calculation time without losing accuracy, the etching part is decomposed to isotropic
rate mainly caused by neutral particles and anisotropic rate assisted by ion particles. The etching rate
is depicted as a linear combination of neutral and ion flux. Therein the parameters Cuni and Cion in
Equation (9) are dependent on different materials exposed in the etching gas. However, the etching
rate Equation (9) is invalid when there are only ions or neutrals. The next passivation rate can be
simplified as a constant Cd. Thus, the rates of etching and deposition in DRIE process can be denoted
as ER and DR in Equations (9) and (10):

ER = CuniΓn + CionΓi (9)

DR = Cd (10)

The ER and DR are solved by Equations (9) and (10) and substituted in a differential scheme
Equation (7). Thus, the coupling LS-MC method of DRIE is completed.

4. Simulation and Experimental Results

The flowchart which couples LS-MC are demonstrated in the Figure 7. The time step is not
a constant restrained by CFL condition Equation (11). In other words, the time steps are dependent on
the maximum velocity in all active grids. And in each step, the maximum velocity is varied owing to
the randomicity of Monte Carlo:

∆t
max{∆x}max{F} ≤ 1 (11)
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calculation and surface evolution is started after reading the layout. Until the time is greater than
the final etching time, one cycle of etching is stopped. The number of cycles can be set to obtain the
repetitive simulation. After finishing all cycles, the marching cube algorithm [20,21] is applied to
extract the material matrix. The matrices of air, silicon, mask, passivation polymer, and insulator in
SOI are read to visualize the profiles of interface level set.

4.1. Qualitative Analysis

A simulation of Bosch process etching a 5 µm wide trench has been conducted. The alternating
cycle of etching and passivation is 7s/7s. Figure 8a shows the deep vertical holes in SEM photography
while Figure 8b illustrates the simulation results. The scalloping effects are clearly seen in the simulation
Figure 8b. In practice, to reduce the roughness (nearly 100 nm), the sample is processed in the potassium
hydroxide (KOH) and isopropyl alcohol (IPA) by chemical wet polishing etching. Thus, the sidewall
of SEM diagram is relatively smooth. In the simulation domain 300 × 300 × 300 grids, each grid
represents 0.1 µm. The thickness of the mask is 0.5 µm. Finally, the typical CPU runtime of 20 cycles is
nearly 20 h on Intel (R) E5-2630 @2.2GHz (Gentai, Shanghai, China) and the usage of memory is about
560 MB. Since the material and level set values for each grid should be stored.
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Furthermore, the loading effect should be considered in this simulator [22]. Usually the aspect
ratio dependent etching or RIE lag influence the depth of the trench due to its own sizes exposed to the
plasma. To put it another way, the larger holes will have deeper length in the same ambience. Figure 9
illustrates the SEM photography and simulation profiles simultaneously. The simulation domain is
still resolved on the 300 × 300 × 300 grids. Compared with the SEM picture of two trenches (2.5 µm
and 5 µm), the lag effect is clearly seen. And the etching rate decreases with the increment of aspect
ratio. Since there is no charge accumulation at the side bottom in simulation model, we can see the
different bottom profiles compared to the experiments.
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4.2. Quantitative Analysis

After extracting the parameters from the fabrication, the number of particles of each grid is
80, so the total number of particles in source plane P is 0.8 million per second in the same domain
(300 × 300 × 300) for Monte Carlo method. Figure 10 shows that the mask of replicated domain is
chosen to reduce the calculation without simulating the whole die. Table 2 shows the experimental
and simulation parameters and the errors are computed.
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Table 2. Typical results of deep holes in different locations.

Locations and Items Sizes in Experiments Sizes in Simulation Errors (%)
|(Ee − ES)/Ee|

Location 1 33.505 µm 35.608 µm 6.277%
Location 2 7.1160 µm 7.0000 µm 1.630%
Location 3 7.2160 µm 7.2511 µm 0.4864%
Location 4 6.3230 µm 6.2049 µm 1.868%

Aspect Ratio 4.7084 5.0869 8.050%

The second experiment is to etch the deep trenches on a specified wafer [23,24]. SOI wafer (silicon
on insulator) is composed of two silicon layers with one silicon dioxide layer inside. The top layer
called device layer will be etched to establish the complex structures. Due to the isolation of silicon
dioxide, the reactive ion etching stops at the interface. The experimental and simulation results are
shown in the Figure 11. From the 3-D simulation result Figure 11b, the interface is rough because of the
particles sputtering. And the typical sizes of trenches and aspect ratio are given in Table 3. The average
error of simulation compared with the experiments is 2.419%.

Table 3. Typical results of deeps trenches in different locations.

Locations and Items Sizes in Experiments Sizes in Simulation Errors (%)
|(Ee − ES)/Ee|

Location 1 19.114 µm 18.504 µm 3.191%
Location 2 19.132 µm 19.200 µm 0.355%
Location 3 19.132 µm 18.527 µm 3.162%
Location 4 52.844 µm 52.026 µm 1.548%
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Table 3. Cont.

Locations and Items Sizes in Experiments Sizes in Simulation Errors (%)
|(Ee − ES)/Ee|

Location 5 8.056 µm 8.000 µm 0.695%
Location 6 8.254 µm 8.287 µm 0.400%
Location 7 8.452 µm 7.926 µm 6.223%
Location 8 51.495 µm 49.548 µm 3.781%

Aspect Ratio 6.392 6.194 3.098%
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4.3. Accuracy and Runtime

The simulation accuracy and runtime are strongly dependent on meshing. In this simulator,
we can implement the same simulation with different resolution. Usually the grids range from
50 to 500 in each direction. Based on the layout of porous structure in Figure 10, the dimension is
50 µm × 50 µm × 50 µm. The 100, 200, 300, and 400 grids are chosen to simulate at the same physical
parameters. Figure 12 shows that the aspect ratio errors and time consumption changes in different
resolution. As a result, we choose 300 × 300 × 300 as the final simulation domain with high-precision
and acceptable runtime.
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5. Conclusions

This paper presents a coupling LS-MC model for the DRIE process. The agreement between the
simulation results and experimental profiles verifies the correctness of the coupling algorithm. Within
the proper simulation domain, the error is less than 15%. At the expense of accuracy, the computation
complexity will dramatically drop by reducing the grids. Thus, Monte Carlo method is extremely
useful to detect the variations of physical parameters. The developed simulator can serve as an
accurate prediction tool for some MEMS fabrications.
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