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Abstract: Monostable vibration can eliminate dynamic bifurcation and improve system stability,
which is required in many microelectromechanical systems (MEMS) applications, such as
microbeam-based and comb-driven resonators. This article aims to theoretically investigate the
monostable vibration in size-effected MEMS via a low dimensional model. An improved single
degree of freedom model to describe electrically actuated microbeam-based resonators is obtained by
using modified couple stress theory and Nonlinear Galerkin method. Static displacement, pull-in
voltage, resonant frequency and especially the monostable dynamic behaviors of the resonators are
investigated in detail. Through perturbation analysis, an approximate average equation is derived by
the application of the method of Multiple Scales. Theoretical expressions about parameter space and
maximum amplitude of monostable vibration are then deduced. Results show that this improved
model can describe the static behavior more accurately than that of single degree of freedom model
via traditional Galerkin Method. This desired monostable large amplitude vibration is significantly
affected by the ratio of the gap width to mircobeam thickness. The optimization design results show
that reasonable decrease of this ratio can be beneficial to monostable vibration. All these analytical
results are verified by numerical results via Differential Quadrature method, which show excellent
agreement with each other. This analysis has the potential of improving dynamic performance
in MEMS.
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1. Introduction

Microbeam-based structures are widely applied in MEMS, such as microactuator/sensor [1–3],
energy harvester [4], microresonator [5–7], gyroscope [8], microgripper [9,10] and so on. Their light
weight, small size, low-energy consumption and durability make them even more attractive. MEMS
pressure sensors and accelerometers are widely used in the automotive industry. Some microsensors
and actuators are also adopted for various biomedical applications. In general, the operation of
these electrostatically actuated resonant devices is based on linear resonance [11]. However, these
dynamic systems are nonlinear and the output energy is very small in the case of linear resonance,
which is undesirable in MEMS. Therefore, monostable large amplitude vibration is required in MEMS
sensing application. It can eliminate dynamic bifurcation phenomenon and improve system stability.
Zhang et al. [12] studied the dynamic behavior of comb-driven resonators with inclination of the
fingers and edge effect on the capacitance and obtain parameters for linear resonance operation.
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The inclination of the fingers can be beneficial to restrain electrostatic nonlinearity and make the system
realize linear vibration. Han et al. [13] studied dynamic behaviors of a doubly clamped microresonator
and presented some design considerations to realize large amplitude vibration. Masri et al. [14] studied
the stability of MEMS resonators when undergoing large amplitude motion with a delayed feedback
velocity controller.

With the reduction of the scale of the MEMS, classic continuum mechanics theories are unable to
describe the size effects [15], thus higher-order continuum theories or non-classic theories are inevitably
needed to describe scale effect and corresponding relations in continuum mechanics [16]. The couple
stress theory is considered as one of the higher-order continuum theories [17]. It involves parameters
for expressing the effect of material length scale which possess the capability to describe the size
effect of microstructures [18]. This theory includes two extra material length scale parameters besides
the two classic material constants for elastic isotropic materials. Anthoine [19] and Yang et al. [20]
presented the modified couple stress theory in which the two material length scale parameters are
decreased to only one parameter. This feature facilitates the use of the modified couple stress theory
for the study of micro- and nano-scale structures.

Static/dynamic behaviors of electrically actuated microbeams have been studied a lot by using
different models and approaches. These investigations can be divided into two groups. The first group
focuses on lumped-mass model and establishes single degree of freedom equation. Then, perturbation
method is introduced to study dynamic behaviors of microbeam, which provides theoretical guidance for
engineering [21–24]. However, lumped-mass model cannot accurately describe dynamic characteristics
of mircobeam as the increase of amplitude. The other group focuses on continuum model and
establishes partial differential equations which are then solved with a variety of numerical methods,
such as Galerkin discretization and Differential Quadrature method. These results can describe
dynamic characteristics of mircobeam more accurately [11,25–27]. Although the continuum model
has high accuracy, it is not conducive to theoretical analysis in depth. Based on the continuum model,
Younis et al. [28–34] studied static pull-in behavior and dynamic pull-in behavior of electrically actuated
microbeams by using the Galerkin method, the Differential Quadrature method and the Shooting
method. Results showed that the single degree of freedom model cannot accurately describe static
displacement, pull-in voltage, resonant frequency or vibration amplitude. Specially, when amplitude
exceeds half of the gap, the error between single degree of freedom model and continuum model
increases significantly. Besides, Nayfeh et al. [23] analyzed the vibration behaviors of a Euler-Bernoulli
beam with direct application of the method of multiple scales to the governing partial-differential
equation. However, high-order vibration items were not considered in their study. In fact, high-order
vibration items have important influence on dynamic behavior [25]. Fortunately, the Nonlinear Galerkin
method can solve it with introducing higher modes into the single degree of freedom model [35].

The Nonlinear Galerkin method and the well-known Galerkin method can be used to obtain the
low dimensional manifold by some projection onto a sub manifold [35,36]. However, the well-known
Galerkin method restrict the sub-manifold at being a flat sub-manifold; the Nonlinear Galerkin method
tries to improve on this by not restricting the sub-manifold to an affine sub-space. Kang et al. [37]
studied dynamic behaviors of low-dimensional modeling of the fluid dynamic system with the
Nonlinear Galerkin method. Considering the effect of higher modes, the Nonlinear Galerkin method
can give an accurate description for the dynamic behaviors of the system. With the Nonlinear
Galerkin method, partial differential equations can be discretized into a finite-degree-of-freedom
system consisting of ordinary-differential equations and then, a low-dimensional model containing
higher modes information can be generated.

It can be concluded from the above analysis that monostable vibration can eliminate dynamic
bifurcation, improve system stability and increase the output of energy, which is desired in many
MEMS applications. However, to the best of our knowledge, there are fewer effective methods to study
monostable large amplitude vibration behaviors via the low dimensional model. This paper aims
to obtain an improved single degree of freedom model by using modified couple stress theory and
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Nonlinear Galerkin method and deduce theoretical expressions about parameter space and maximum
amplitude of monostable vibration.

The rest of this paper is organized as follows. In Section 2, a novel single degree of freedom model
to describe electrically actuated microbeam-based resonators is obtained by using modified couple
stress theory and Nonlinear Galerkin method. In Section 3, the method of Multiple Scales is used to
derive an approximate average equation. In Section 4, static and dynamic properties of these devices
are then investigated in detail. Parameter space and maximum amplitude of the monostable vibration
are theoretically derived and numerically verified. Concluding remarks are given in the last section.

2. Mathematical Model

2.1. Governing Equation

Here, we consider a clamped-clamped microbeam-based resonator, as shown in Figure 1.
The actuation of the microbeam is realized by means of a bias voltage and an AC voltage component.
The microbeam and the electrode are made from silicon material. Based on the modified couple stress
theory, the equation of motion that governs the transverse deflection ŵ(x, t) is written as [17].

ρA
..
ŵ + (EI + µAl2)ŵiv + c

.
ŵ = (N̂ +

EA
2L

∫ L

0
ŵ′2dx̂)ŵ′′ +

ε0b[Vdc + Vac cos(Ω̂t)]2

2(d− ŵ)2 (1)

with the following boundary conditions

ŵ(0, t̂) = ŵ′(0, t̂) = ŵ(L, t̂) = ŵ′(L, t̂) = 0 (2)

where
.

ŵ = ∂ŵ
∂t̂ and ŵ′ = ∂ŵ

∂x̂ .
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Figure 1. Schematic of an electrically actuated microbeam.

The first term on the right hand of Equation (1) represents the axial force and mid-plane stretching
effects. Here, x̂ is the position along the microbeam length; A and I are the area and moment of inertia
of the cross section; d is the gap width; ε0 is the dielectric constant of the gap medium. The parameter
N corresponds to a tensile or compressive axial load, depending on whether it is positive or negative.
l is introduced into Equation (1) as the material length scale parameter that has the capability to
physically model properties of the couple stress effect. The last term in Equation (1) represents the
parallel-plate electric actuation which is composed of DC and AC components. Here, DC voltage can
cause a static deflection in the microbeam. There is a limit for the applied DC voltage called the static
pull-in voltage [38]. AC voltage, which is small compared to DC voltage, causes the dynamic response
of microbeam. Part of system parameters are defined as stated in Table 1.
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Table 1. Part of design parameters for a microbeam-based resonator.

Parameter Value Units

Mass density ρ 2300 kg/m3

Young’s modulus E 169 Gpa
Beam length L 365 µm
Beam width b 10 µm

Beam thickness h 1 µm
Axial load N̂ variable N

Viscous damping c 3.42 × 10−5 Ns/m2

In the relations above, µ is Lame’s constant that is defined by Young’s modulus E and Poisson’s
ratio ν as

µ =
E

2(1 + υ)
(3)

For convenience, the following non-dimensional variables are introduced

w =
ŵ
d

, x =
x̂
L

, t = t̂

√
EI

ρAL4 (4)

Substituting the non-dimensional variables into Equations (1) and (2), yields the following
non-dimensional equation of motion of the micro-resonator

..
w + (1 + η)wiv + cn

.
w− (N + α1

1∫
0

w′2dx)w′′ = α2
(Vdc + Vac cos Ωt)2

(1− w)2 (5)

with boundary conditions

w(0, t) = w′(0, t) = w(1, t) = w′(1, t) = 0 (6)

The parameters appearing in Equation (5) are

α1 = 6× (
d
h
)

2
, α2 =

6ε0L4

Ed3h3 , η =
µAl2

EI
, N =

N̂L2

EI
(7)

where α1 represents ratio coefficient of the gap width to the mircobeam thickness, α2 represents
electrostatic force coefficient and η represents scale effect.

2.2. The Nonlinear Galerkin Method

Compared with the Linear Galerkin method, the Nonlinear Galerkin method can describe the
dynamic behaviors of the system more accurately. In this section, we introduce the Nonlinear Galerkin
method to deal with Equation (5) and obtain an improved one degree of freedom model [36].

Firstly, considering the Galerkin procedure, we discretize Equation (5) into a finite-degree-of-
freedom system consisting of ordinary differential equations. This technique and its application to
nonlinear systems were discussed by Abdel-Rahman et al. [39].

The solution of Equation (5) can be expressed as

w(x, t) =
∞

∑
i=1

ui(t)φi(x) (8)
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where φi is the i-th linear undamped mode shape of the straight microbeam, normalized such that∫ 1
0 φiφjdx = δij and governed by

(1 + η)φiv
i = Nφi

′′ + ω2
i φi (9)

with
φi(0) = φi(1) = φi

′(0) = φi
′(1) = 0 (10)

where ωi is the i-th natural frequency of the microbeam. Equations (9) and (10) represent a
boundary-value problem that can be solved by using a combination of Shooting method and a
bisection procedure for each pair of mode shape and natural frequency [39].

Then, Equation (5) is multiplied by (1− w)2 [25], so that the electric-force term is represented
exactly. Substituting Equation (8) into the resulting equation, multiplying by φi and integrating the
outcome from x = 0–1, yield

..
un + ω2

nun + cn
.
un − 2

M
∑

i,j=1
ui

..
uj
∫ 1

0 φiφjφndx +
M
∑

i,j,k=1
uiuj

..
uk
∫ 1

0 φiφjφkφndx

= 2
M
∑

i,j=1
ω2

i uiuj
∫ 1

0 φiφjφndx−
M
∑

i,j,k=1
ω2

i uiujuk
∫ 1

0 φiφjφkφndx + 2cn
M
∑

i,j=1
ui

.
uj
∫ 1

0 φiφjφndx

−cn
M
∑

i,j,k=1
uiuj

.
uk
∫ 1

0 φiφjφkφndx + α1
M
∑

i,j,k=1
uiujukΓ(φi, φj)

∫ 1
0 φ

′′
k φndx

−2α1
M
∑

i,j,k,l=1
uiujukulΓ(φi, φj)

∫ 1
0 φkφ

′′
l φndx + α1

M
∑

i,j,k,l,m=1
uiujukulumΓ(φi, φj)

∫ 1
0 φkφlφ

′′
mφndx

+α2(Vdc + Vac cos Ωt)2∫ 1
0 φndx

(11)

where Γ(φi, φj) =
∫ 1

0 φiφjdx. Due to Vdc >> Vac [34], (Vdc + Vac cos Ωt)2 ≈ V2
dc + 2VdcVac cos Ωt

is obtained.
Equation (11) represents a discretized system consisting of ordinary-differential equations,

which contain all nonlinearities up to fifth order. The above is the Linear Galerkin method for
dimensionality reduction. Most researchers utilized the derived reduced-order models to simulate the
static behavior and dynamic response of microbeam-based MEMS devices. However, the way is not
conducive to theoretical analysis. Here, the Nonlinear Galerkin method is introduced to deal with the
above equations.

Starting with an abstract setting, a nonlinear dynamical system is separated into the linear and
the higher order nonlinear part

.
x + g(x, t) =

.
x + Ax + h(x, t) = 0, x ∈ R2×M (12)

with Ax as linear part and h(x, t) as nonlinear part of the system g(x, t). Here we take 2M spatial
dimension corresponding with Equation (11).

Here, we assume the solution x as

x = Ymξ + Zmη (13)

where the columns of the matrix Ym = [y1, · · · , ym] span the m-dimensional sub-space span
{y1, · · · , ym} and the columns of the matrix Zm = [ym+1, · · · , y2×M] span complementary sub-space
span {ym+1, · · · , y2×M} .

Substituting Equation (13) into Equation (12), multiplying by Ỹ
T
m and Z̃

T
m from the left, yield

.
ξ + Ỹ

T
AYξ + Ỹ

T
h(Yξ + Zη, t) = 0

.
η+ Z̃

T
AZη+ Z̃

T
h(Yξ + Zη, t) = 0

(14)
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where Ỹ
T
mYm = I, Z̃

T
mZm = I and I is unit matrix.

Combination with the dynamic response of microbeam, ξ represents low-frequency part and
η represents high-frequency part. To describe dynamic response of system accurately with the
low-frequency part, the following relation is introduced

η = φ(ξ) (15)

Substituting Equation (15) into Equation (14), we can obtain

.
ξ + Ỹ

T
AYξ + Ỹ

T
h(Yξ + Zφ(ξ), t) = 0 (16)

Both low-frequency part and high-frequency part are introduced in Equation (16). It is considered
that the high-frequency vibration has little impact on system dynamics under primary resonance
condition. So, we set

.
η = 0. Then, we can obtain the reduced order model that contains the information

of high order modes.
To obtain dynamic equation of single degree of freedom, we set subspace dimension equal to 2.
In order to simplify the calculation, we set M equal to 3 and only keep linear part of the high

dimensional space variables. The relationship between the high-frequency part and low-frequency
part is obtained, as shown below

u3 = 1
ω2

3
[2
∫ 1

0 φ2
1φ3dx(u1

..
u1 + cnu1

.
u1 + ω2

1u2
1)− u2

1
..
u1
∫ 1

0 φ3
1φ3dx−ω2

1u3
1
∫ 1

0 φ3
1φ3dx− cnu2

1
.
u1
∫ 1

0 φ3
1φ3dx

+ α1u3
1
∫ 1

0 φ′1
2dx

∫ 1
0 φ1

′′ φ3dx− 2α1u4
1
∫ 1

0 φ′1
2dx

∫ 1
0 φ1

′′ φ3φ1dx + α2Vdc
∫ 1

0 φ3dx]
(17)

Substituting Equation (17) into Equation (11) and keeping all nonlinearities up to fifth order, yield
the following novel single degree of freedom equation

(
..
u1 + ω2

1u1 + cn
.
u1)(n0 + n1u1 + n2u2

1 + n3u3
1 + n4u4

1)

= m1u3
1 + m2(u2

1
..
u1 + cnu2

1
.
u1) + m3u1 + m4 + 2m5VdcVac cos Ωt

+ m6u2
1 + m7u4

1 + m8(u3
1

..
u1 + cnu3

1
.
u1) + m9u5

1

(18)

where coefficients are expressed as Equations (A1)–(A15) in Appendix A.
The above is the Nonlinear Galerkin method for dimensionality reduction. The previous single

degree of freedom model obtained by the Linear Galerkin method only contains the first mode. In this
paper, the Nonlinear Galerkin method is introduced to obtain the improved single degree of freedom
model that contains the first mode and the third mode, which improves the accuracy of the model.

This paper aims to study monostable large amplitude vibration. With the increase of amplitude,
the advantage of the improved model becomes more and more obvious.

3. Perturbation Analysis

Static analysis is significant in the MEMS. Through it, equilibrium position, pull-in voltage and pull-in
location of the system can be obtained. Each of the DC voltage corresponds to a static displacement and the
perturbation method is used to obtain an approximate solution near the equilibrium position. We assume
u1 = u1d + u1s, where u1d and u1s represent dynamic behavior and static behavior, respectively. Then,
we can obtain the static equation by making the u1 independent of time

ω2
1u1s(n0 + n1u1s + n2u2

1s + n3u3
1s + n4u4

1s) = m1u3
1s + m3u1s + m4 + m6u2

1s + m7u4
1s + m9u5

1s (19)

and the dynamic equation by ignoring high order damping terms

..
u1d + ω2

1du1d + cn
.
u1d = q1u1d

..
u1d + q2u2

1d
..
u1d + q3u3

1d
..
u1d + q4u4

1d
..
u1d + q5u2

1d
+q6u3

1d + q7u4
1d + q8u5

1d + q9Vac cos Ωt
(20)

where coefficients are expressed as Equations (A16)–(A25) in Appendix A.
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To indicate the significance of each term in the equation of motion, ε is introduced as a small
non-dimensional bookkeeping parameter. Considering the electrostatic force term q9 = O(ε5), scaling
the dissipative terms, we obtain

..
u1d + ω2

1du1d + ε4cn
.
u1d = q1u1d

..
u1d + q2u2

1d
..
u1d + q3u3

1d
..
u1d + q4u4

1d
..
u1d + q5u2

1d
+q6u3

1d + q7u4
1d + q8u5

1d + ε5q9Vac cos Ωt
(21)

To express the relationship between the excitation frequency and the natural frequency, we
introduce a detuning parameter σ defined by Ω = ω1d + ε4σ. Here, σ is the tuning parameter. Then,
to determine a fifth-order uniform expansion of the solution of Equation (21) by using the method
of Multiple Scales, we introduce three time scales T0 = t, T2 = ε2t and T4 = ε4t [23] and expand the
time-dependent variable u1d in powers of ε as

u1d = εv1(T0, T2, T4) + ε2v2(T0, T2, T4) + ε3v3(T0, T2, T4) + ε4v4(T0, T2, T4) + ε5v5(T0, T2, T4) (22)

Substituting Equation (22) into Equation (21) and equating coefficients of like powers of ε, yields
order ε:

∂2v1

∂T2
0
+ ω2

1dv1 = 0 (23)

order ε2:
∂2v2

∂T2
0
+ ω2

1dv2 = q1v1
∂2v1

∂T2
0
+ q5v2

1 (24)

order ε3:

∂2v3

∂T2
0
+ ω2

1dv3 = −2
∂2v1

∂T0∂T2
+ q1v2

∂2v1

∂T2
0
+ q1v1

∂2v2

∂T2
0
+ 2q5v2v1 + q2v2

1
∂2v1

∂T2
0
+ q6v3

1 (25)

order ε4:

∂2v4
∂T2

0
+ ω2

1dv4 = −2D0D2v2 + q1(v1
∂2v3
∂T2

0
+ v3

∂2v1
∂T2

0
+ v2

∂2v2
∂T2

0
+ 2v1

∂2v1
∂T0∂T2

)

+q2(2v2v1
∂2v1
∂T2

0
+ v2

1
∂2v2
∂T2

0
) + q3v3

1
∂2v1
∂T2

0
+ q5(2v1v3 + v2

2) + 3q6v2
1v2 + q7v4

1

(26)

order ε5:

∂2v5
∂T2

0
+ ω2

1dv5 = −2D0D4v1 − 2D0D2v3 − D2D2v1 − cn
∂v1
∂T0

+ q1(v1
∂2v4
∂T2

0
+ v4

∂2v1
∂T2

0

+v3
∂2v2
∂T2

0
+ v2

∂2v3
∂T2

0
+ 2v1

∂2v2
∂T0∂T2

+ 2v2
∂2v1

∂T0∂T2
) + 4q7v3

1v2 + q8v5
1 + q2(2v3v1

∂2v1
∂T2

0

+v2
1

∂2v3
∂T2

0
+ 2v2v1

∂2v2
∂T2

0
+ v2

2
∂2v1
∂T2

0
) + q3(v3

1
∂2v2
∂T2

0
+ 3v2v2

1
∂2v1
∂T2

0
) + q4v4

1
∂2v1
∂T2

0

+q5(2v1v4 + 2v2v3) + 3q6(v2
2v1 + v2

1v3) + q9Vac cos Ωt

(27)

where Dn = ∂/∂Tn.
The solution of Equation (23) can be expressed as

v1 = A(T2, T4) exp(iω1dT0) + A(T2, T4) exp(−iω1dT0) (28)

where the overbar indicates the complex conjugate. The function A(T2, T4) can be determined by
eliminating the secular terms from Equations (24)–(27).

Expressing the amplitude A in the polar form A(T2, T4) =
1
2 aeiθ , where a and θ are real functions

of T2 and T4 and separating secular terms into its real and imaginary parts, we can obtain the following
average equation

a′ = −1
2

cna +
1
2

q9Vac

ω1d
sin ϕ (29)
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aϕ′ = σa +
1
8

κ1a3

ω1d
+

1
32

κ2a5

ω1d
+

1
2

q9Vac

ω1d
cos ϕ (30)

where ϕ = σT4 − θ, a′ = ∂a/∂T2 + ∂a/∂T4, ϕ′ = ∂ϕ/∂T2 + ∂ϕ/∂T4, κ1 = (q5 − q1ω2
1d)(

10q5
3ω2

1d
− 1

3 q1) +

3(q6 − q2ω2
1d) and κ2 is expressed as Equations (A26)–(A29) in Appendix A.

Then, the steady-state frequency response can be obtained by solving the following frequency
response equation

[(
1
2

cn)
2
+ (σ +

1
8

κ1a2

ω1d
+

1
32

κ2a4

ω1d
)

2

]a2 =
q2

9V2
ac

4ω2
1d

(31)

The relationship between the resonance frequency shift and the maximum amplitude of oscillation
is derived as

σ = −1
8

κ1a2
max

ω1d
− 1

32
κ2a4

max
ω1d

(32)

where amax = q9Vac/ω1dcn.
By inspection, when the κ1a2/8 + κ2a4/32 monotonically changes with the increase of amplitude,

it is clear that the device will experience hardening if κ1a2/8 + κ2a4/32 < 0 and will experience
softening if κ1a2/8 + κ2a4/32 > 0. If the change of the value of κ1a2/8 + κ2a4/32 is not monotonous,
the system will experience hardening and softening simultaneously. For small amplitude oscillation,
the hardening and softening of the system are decided by κ1. However, with the increase of amplitude,
the influence of high-order nonlinear terms on the system becomes more and more important.
So, hardening and softening properties become very complex under the large amplitude vibration.
Zhang et al. [22] and Nayfeh et al. [23] studied spring softening and hardening based on the traditional
single degree of freedom model. However, with the increase of amplitude, it cannot describe dynamic
behaviors of the system. Here, the monostable large amplitude vibration is studied with the improved
single degree of freedom model. Following, taking σ as the bifurcation parameter and taking Vdc and
Vac as the unfolding parameters, we calculate unfolding of Equation (31). The traditional calculation
method of the transition set of the system will lead to nonlinear equations containing high-order terms.
Here, we only need to obtain parameter space of the monostable vibration. So, a new way is given.

The amplitude frequency curve can be decomposed into two parts, as the following

σ = f1(a) = −1
8

κ1a2

ω1d
− 1

32
κ2a4

ω1d
+

√
q2

9V2
ac

4ω2
1da2
− (

1
2

cn)
2

(33)

σ = f2(a) = −1
8

κ1a2

ω1d
− 1

32
κ2a4

ω1d
−

√
q2

9V2
ac

4ω2
1da2
− (

1
2

cn)
2

(34)

The monostable vibration appears when the frequency σ of the left amplitude frequency
curve f2 monotonically increases with the increase of amplitude and the frequency σ of the right
amplitude frequency curve f1 monotonically decreases with the increase of amplitude. If the curve
f1 monotonically decreases and the curve f2 cannot monotonically change, the softening appears.
On the contrary, if the curve f2 monotonically increases and the curve f1 cannot monotonically change,
the hardening appears. If both the curve f2 and the curve f1 cannot monotonically change, the system
will experience hardening and softening simultaneously. Here, the dynamic curve is in contact with
mathematical function, which simplifies the calculation. Now, the necessary and sufficient conditions
of the existence of the monostable vibration are obtained.

d f1(a)
da

< 0 and
d f2(a)

da
> 0 for a ∈ [0, amax] (35)
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4. Results and Discussion

In this section, Differential Quadrature method and Finite Element method are introduced to
verify the accuracy of the model. Meanwhile, with unfolding analysis and optimization theory,
parameter space and maximum amplitude of the monostable vibration are obtained.

4.1. Convergence Analysis

Convergence is a key problem. With the traditional single degree of freedom model, static
displacement curve cannot be obtained accurately. To solve the problem, higher dimensional model was
introduced in previous studies [39]. Here, the novel single degree of freedom model is used to handle
this convergence problem. To validate accuracy of our model, finite element results are obtained from
the Multiphysics simulation software. Meanwhile, compared with single degree of freedom model
results obtained by using Linear Galerkin method, the ascendency of the Nonlinear Galerkin method
appears. Here, we consider a microbeam without scale effect and axial stress.

In Figure 2, the calculated static deflections of the microbeam obtained by using the Nonlinear
Galerkin method are compared with those obtained by using Linear Galerkin method and Finite
Element method. Results are presented from 0 V to pull-in voltage. It is noted from Figure 2 that
the pull-in voltage predicted by the Nonlinear Galerkin method is more accurate than that predicted
by Linear Galerkin method. The midpoint deflections predicted by those three methods are very
close away from pull-in voltage but the midpoint deflections predicted by Linear Galerkin method
deviate increasingly as pull-in is approached. The ascendency of the Nonlinear Galerkin method
appears. Then, natural frequency under different DC voltage is obtained by using those three methods.
As shown in Table 2, the error of results obtained by the Nonlinear Galerkin method is less than that
obtained by the Linear Galerkin method. As pull-in is approached, the error of results obtained by
Linear Galerkin method reaches to 9.0%. However, the error of results obtained by the Nonlinear
Galerkin method is about 2.3%. When DC voltage is away from pull-in. the error caused by the
Nonlinear Galerkin method is less than 1%. It is worth noting that the error is obtained by comparing
the result of the theory and that of the simulation.
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Besides, pull-in voltage is obtained by using those three methods under different gap width.
As shown in Table 3, it can be seen that the result obtained by the Nonlinear Galerkin method agrees
well with that obtained by Finite Element method, which demonstrates that the present analytical
method is effective. However, the error of results obtained by Linear Galerkin method reaches to 7.1%.
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Thus, our model is superior to the traditional single degree of freedom model. It can predict static
displacement, natural frequency and pull-in voltage more accurately and convergence problem is also
solved by our model.

Table 2. Natural frequency under different DC voltage when d = 1µm .

Case DC Voltage
(V)

Linear Galerkin
Method Results (kHz)

Nonlinear Galerkin
Method Results (kHz)

Finite Element
Results (kHz) Error

1 2 62.44 62.77 62.82 0.6%; 0.1%
2 2.5 59.85 60.42 60.54 1.1%; 0.2%
3 3 55.53 56.55 56.87 2.4%; 0.6%
4 3.5 44.33 47.59 48.71 9.0%; 2.3%

Table 3. Pull-in voltages under different gap width.

Case Gap Width
(µm)

Linear Galerkin
Method Results (V)

Nonlinear Galerkin
Method Results (V)

Finite Element
Results (V) Error

1 0.5 1.25 1.27 1.27 1.6%; 0%
2 1 3.66 3.74 3.76 2.7%; 0.5%
3 1.5 7.16 7.39 7.50 4.5%; 1.5%
4 2 11.94 12.47 12.85 7.1%; 3.0%

4.2. Static Analysis

In this section, scale effect and axial stress are considered. The static deflection and static pull-in
voltage of microbeam are calculated with our model. Meanwhile, Differential Quadrature method is
introduced to handle Equation (5) for numerical verification. The calculated static deflections of the
microbeam with η = 0.25, d = 1µm and subject to a stretched axial stress N = 6 are shown in Figure 3.
It can be noted from this figure that the pull-in voltage predicted by the Nonlinear Galerkin method is
accurate while that predicted by the Linear Galerkin method has significant error. The lower branches
predicted by those three methods are very close away from pull-in voltage but the branch predicted
by the Linear Galerkin method deviates increasingly as pull-in is approached. Generally, the results
obtained by using the Nonlinear Galerkin method are in excellent agreement with those obtained with
the Differential Quadrature method. However, the static deflections of microbeam obtained by using
the Linear Galerkin method are in poor agreement with them. Specially, when DC voltage approaches
zero, the upper branch predicted by Linear Galerkin method is non-convergent. The upper branch
represents potential barrier of the system. When the vibration amplitude approaches potential barrier,
the results predicted by Linear Galerkin method have serious errors. With the Nonlinear Galerkin
method, the misconvergence of potential barrier is solved.

What’s more, the calculation formula of the pull-in voltage can be obtained easily.
From Equation (19), the relationship between static displacement u1s and DC voltage Vdc is obtained

u1s = f (Vdc) (36)

When pull-in occurs, both branches collide and destroy each other with one eigenvalue tending
to zero. Thus, the pull-in voltage corresponds to a saddle-node bifurcation. So, the pull-in occurs
when dV/du1s = 0. As shown in Figure 4, the pull-in voltages under different size parameters and
axial stress are given. To describe qualitatively the change of pull-in voltages, the electrostatic force
coefficient α2 should remain constant with the increase of the ratio coefficient α1. It is noted from
Figure 4 that the pull-in voltage increases with the increase of the ratio coefficient of the gap width to
the mircobeam thickness. Meanwhile, a stretched axial stress can increase pull-in voltage. Driven by
the same DC voltage, increasing the ratio of the gap width to the mircobeam thickness and positive
axial stress is useful to prevent pull-in.
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4.3. Dynamic Analysis

The monostable vibration is desired for many applications, such as microbeam resonator [40].
Here, parameter space and maximum amplitude about the monostable vibration are obtained.

4.3.1. Small Vibration

In Figure 5, we study the influence of the ratio of the gap width to the mircobeam thickness
and DC voltage on the hardening and softening properties of the system under the small amplitude
oscillation. It is noted that the increase of the DC voltage and the decrease of the gap width can lead to
softening phenomenon with κ1 > 0. On the contrary, the decrease of the voltage and the increase of
the gap width can lead to hardening phenomenon with κ1 < 0. It is found that the mechanical spring
is responsible for the hardening behavior and the electrostatic force is responsible for the softening
behavior. From Figure 5, the curve represents the boundary between the softening area and hardening
area. Near the boundary, there is no softening phenomenon or hardening phenomenon and the system
will experience monostable vibration.
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Three types of parameters (point A, point B and point C) are taken from softening area, hardening
area and boundary as shown in Figure 5. And the amplitude frequency response curves of them are
given as shown in Figure 6.
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Figure 6a shows a representative frequency response to our problem when κ1 > 0 in the case
of Vdc = 2.5, Vac = 0.015, α1 = 1. Here, appropriate excitation voltages are needed to introduce
softening nonlinearity and prevent pull-in. And their stability is studied by using Routh Criterion.
Figure 6b shows monostable vibration when κ1 = 0 in the case of Vdc = 1.86, Vac = 0.022, α1 = 1.
At this time, the DC voltage and gap width should satisfy certain relations as shown in Figure 5.
Figure 6c shows hardening nonlinearity when κ1 < 0 in the case of Vdc = 2, Vac = 0.02, α1 = 6.
Meanwhile, the results obtained by the Nonlinear Galerkin method are compared with them obtained
by Differential Quadrature method. Here, we apply the way of frequency sweep into the Differential
Quadrature method and they are in excellent agreement with each other.
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4.3.2. Monostable Large Amplitude Vibration

Due to the existence of nonlinear electrostatic force and geometric nonlinearity, it is hard to realize
the monostable large amplitude vibration. The traditional single degree of freedom model is not
enough to characterize the frequency response under the large amplitude vibration. In this section,
we try to qualitatively study the monostable large amplitude vibration with the improved single
degree of freedom model. To verify the validity of the results, the Differential Quadrature method is
used to compare with the Nonlinear Galerkin method.

Section 4.3.1 shows that the nonlinear electrostatic force will make the device experience softening
and the geometric nonlinearity will make device experience hardening. Under the small amplitude
oscillation, to realize the monostable vibration, parameters should be selected near the boundary in
Figure 5. And, from Equation (5), it is found that the growth rate of nonlinear electrostatic force is
faster than that of geometric nonlinearity with the increase of amplitude of oscillation. The softening
becomes dominant when the gap width decreases. So, under the large amplitude oscillation, the device
tends to experience softening. In order to realize the monostable large amplitude vibration, we need
select parameters near the boundary in Figure 5 and control softening with the increase of amplitude.
Besides, as the AC voltage increases, the amplitude increases. More solutions will appear only when
amplitude increases to a critical value.

Then, from Equation (35), parameter space of the monostable vibration with the different
specification will be studied. As shown in Figure 7, the boundary between monostable vibration and
multistable vibration in the case of η = 0.25 and η = 0.5 is given. When AC voltage is less than that of
the boundary, monostable vibration appears. It is found that there is only one solution when the DC
voltage or AC voltage is very small, which can be proved with Equation (31). With a small vibration
force, the system is equivalent to linear vibration. It is impossible for the system to generate more than
one solution. With the increase of vibration force, to obtain the monostable vibration, strict parameter
conditions are given. It is noted that there is one peak under the different specification, where the
exciting force is put to the maximum. Under the monostable vibration, the system becomes almost
linear. And the amplitude of linear vibration is proportional to the exciting force. Then, the maximum
amplitude is obtained near the peak in the Figure 7a. What’s more, Figure 7 shows the parameter
space of the monostable vibration increases with the increase of the scale effect.

Besides, the AC voltage of the peak decreases as the ratio of the gap width to the mircobeam
thickness increases, which can be explained with Figure 5. With the increase of the ratio of the gap
width to the thickness of the mircobeam, a relatively large DC voltage is required to counteract
hardening of the system. However, as the amplitude increases, the softening is more and more obvious.
So, a relatively small AC voltage is needed to prevent bifurcation. On the contrary, if the ratio of the
gap width to the mircobeam thickness is too small, a small enough DC voltage is required to counteract
hardening. Meanwhile, a relatively large AC voltage is required to produce large amplitude. However,
the condition Vdc >> Vac is false. The second-order item of the AC voltage cannot be ignored, which
can lead to multiple frequency vibration.

The ratio of the gap width to the mircobeam thickness is the key to realize monostable large
amplitude vibration and it decides the maximum amplitude that can be realized with appropriate
DC and AC voltage. Reasonable decreasing the ratio of the gap width to the mircobeam thickness,
the system can realize monostable large amplitude vibration. As we know, monostable large amplitude
vibration is desired for many applications, such as microbeam resonator, which can eliminate the
dynamic bifurcation phenomenon and increase the vibration energy.

To verify the validity of the results, the Differential Quadrature method is proposed to compare
with the Nonlinear Galerkin method. Figure 8a–f show the frequency response corresponding to A–F
shown in Figure 7.



Micromachines 2018, 9, 89 14 of 19

Micromachines 2018, 9, x FOR PEER REVIEW  14 of 20 

 

Then, from Equation (35), parameter space of the monostable vibration with the different 
specification will be studied. As shown in Figure 7, the boundary between monostable vibration and 
multistable vibration in the case of 0.25η =  and 0.5η =  is given. When AC voltage is less than that 
of the boundary, monostable vibration appears. It is found that there is only one solution when the 
DC voltage or AC voltage is very small, which can be proved with Equation (31). With a small 
vibration force, the system is equivalent to linear vibration. It is impossible for the system to generate 
more than one solution. With the increase of vibration force, to obtain the monostable vibration, strict 
parameter conditions are given. It is noted that there is one peak under the different specification, 
where the exciting force is put to the maximum. Under the monostable vibration, the system becomes 
almost linear. And the amplitude of linear vibration is proportional to the exciting force. Then, the 
maximum amplitude is obtained near the peak in the Figure 7a. What’s more, Figure 7 shows the 
parameter space of the monostable vibration increases with the increase of the scale effect. 

Besides, the AC voltage of the peak decreases as the ratio of the gap width to the mircobeam 
thickness increases, which can be explained with Figure 5. With the increase of the ratio of the gap 
width to the thickness of the mircobeam, a relatively large DC voltage is required to counteract 
hardening of the system. However, as the amplitude increases, the softening is more and more 
obvious. So, a relatively small AC voltage is needed to prevent bifurcation. On the contrary, if the 
ratio of the gap width to the mircobeam thickness is too small, a small enough DC voltage is required 
to counteract hardening. Meanwhile, a relatively large AC voltage is required to produce large 
amplitude. However, the condition 

dc acV V>>  is false. The second-order item of the AC voltage cannot 
be ignored, which can lead to multiple frequency vibration.  

The ratio of the gap width to the mircobeam thickness is the key to realize monostable large 
amplitude vibration and it decides the maximum amplitude that can be realized with appropriate 
DC and AC voltage. Reasonable decreasing the ratio of the gap width to the mircobeam thickness, 
the system can realize monostable large amplitude vibration. As we know, monostable large 
amplitude vibration is desired for many applications, such as microbeam resonator, which can 
eliminate the dynamic bifurcation phenomenon and increase the vibration energy. 

To verify the validity of the results, the Differential Quadrature method is proposed to compare 
with the Nonlinear Galerkin method. Figures 8a–f show the frequency response corresponding to A–
F shown in Figure 7. 

  
(a) (b) 

Figure 7. The -ac dcV V  parameter space under different ratio of the gap width and the thickness of 
the mircobeam in the case of 0.25η =  (a) and 0.5η =  (b) (The parameter area below the curve 

is monostable parameter space). 

Figure 7. The Vac −Vdc parameter space under different ratio of the gap width and the thickness of
the mircobeam in the case of η = 0.25 (a) and η = 0.5 (b) (The parameter area below the curve is
monostable parameter space).

Micromachines 2018, 9, x FOR PEER REVIEW  15 of 20 

 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 8. Comparison of the frequency response curve obtained by Nonlinear Galerkin method (solid 
line) and Differential Quadrature method: (a)–(f) corresponding to A–F in Figure 7a (dotted line 
represents result obtained by sweeping up the frequency; rectangle represents result obtained by 
sweeping down the frequency). 

Here, the frequency response is calculated with sweeping up the frequency and sweeping down 
the frequency by Differential Quadrature method. As shown in Figures 8a–c, f, the results obtained 
by sweep-up case and sweep-down case are consistent, which conforms to the monostable vibration 
shown in Figure 7. From Figure 7, the voltage of point D exceeds parameter space of monostable 
vibration, which leads to spring softening dominance as shown in Figure 8d. Meanwhile, the DC 
voltage of point E is relatively small, which leads to spring hardening dominance as shown in Figure 
8e. From Figure 8, with the increase of the amplitude, the deviation between the results obtained by 
the Nonlinear Galerkin method and those obtained by Differential Quadrature method becomes 
more and more obvious. But the error cannot affect our conclusion that the improved single degree 

Figure 8. Comparison of the frequency response curve obtained by Nonlinear Galerkin method
(solid line) and Differential Quadrature method: (a–f) corresponding to A–F in Figure 7a (dotted
line represents result obtained by sweeping up the frequency; rectangle represents result obtained by
sweeping down the frequency).



Micromachines 2018, 9, 89 15 of 19

Here, the frequency response is calculated with sweeping up the frequency and sweeping down
the frequency by Differential Quadrature method. As shown in Figure 8a–c, f, the results obtained
by sweep-up case and sweep-down case are consistent, which conforms to the monostable vibration
shown in Figure 7. From Figure 7, the voltage of point D exceeds parameter space of monostable
vibration, which leads to spring softening dominance as shown in Figure 8d. Meanwhile, the DC
voltage of point E is relatively small, which leads to spring hardening dominance as shown in Figure 8e.
From Figure 8, with the increase of the amplitude, the deviation between the results obtained by the
Nonlinear Galerkin method and those obtained by Differential Quadrature method becomes more
and more obvious. But the error cannot affect our conclusion that the improved single degree of
freedom model can study qualitatively monostable large amplitude vibration. To quantitatively study
monostable large amplitude vibration, an optimization theory is proposed.

The formula of maximum amplitude q9Vac/ω1dcnd is used near the peak shown in Figure 7.
Then, the maximum amplitude of monostable vibration under different ratio of the gap width to the
mircobeam thickness and size effect is predicted. And, an optimization theory, which is based on the
following three points, is proposed to verify theoretical prediction results.

(a) Under monostable vibration, κ1 and κ2 approximate to zero. The system is equivalent to
approximate linear vibration.

(b) The maximum amplitude of approximate linear vibration is proportional to exciting force that is
decided with the product of DC voltage and AC voltage.

(c) Optimization parameters, which can realize the maximum amplitude of monostable vibration,
are taken near the peak regions in Figure 7 (for example, the red frame with α1 = 1).

We take a rectangular area near the peak region and discretize it into many points as shown in
Figure 7. As serial number increases, exciting force decreases. Differential Quadrature method is
used to calculate the frequency response according to the order. When results obtained by sweeping
up the frequency and sweeping down the frequency are consistent, the calculation stops and the
maximum amplitude of monostable vibration is obtained as shown in Figure 9. It is found that the
maximum amplitude increases with the decrease of the ratio of the gap width to the mircobeam
thickness. Meanwhile, as size effect increases, the maximum amplitude increases. The results obtained
by theoretical prediction are qualitative agreement with them obtained by Differential Quadrature
method. However, theoretical results are larger than numerical ones. With the decrease of the ratio
of gap width to thickness of mircobeam, the deviation between theoretical prediction and numerical
result becomes more and more obvious. In the next study, in order to improve the calculation accuracy,
more space dimensions should be taken in the Nonlinear Galerkin method.
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In this section, the improved single degree of freedom model can describe monostable large
amplitude vibration qualitatively. Although, when amplitude exceeds half of the gap, the error between
reduced-order model and continuum model becomes obvious, our proposed model is significant to
study the relationship between maximum amplitude and physical parameter.

5. Conclusions

With the Nonlinear Galerkin method, we propose a novel approach to generate an improved
single degree of freedom model for electrically actuated microbeam-based MEMS and use it to
study the static and dynamic behaviors of these devices. Specially, the monostable vibration is
theoretically investigated in size effected MEMS via the low dimensional model. The proposed
theoretical results maintain a good situation consistency with the results obtained by Differential
Quadrature method. Besides, the Finite element results of case studies are used to verify the accuracy
of the model. Compared with the results obtained by the Linear Galerkin method, the model has
obvious superiority.

What’s more, the monostable large amplitude vibration eliminates dynamic bifurcation
phenomenon, improves the stability of the system and increases the vibration energy, which is desired
for many applications. Parameter space and maximum amplitude of the monostable vibration are
obtained by using unfolding analysis and optimization theory for the first time. It is found that
reasonable decreasing the ratio of the gap width to the thickness of the mircobeam is the key to realize
monostable large amplitude vibration. Besides, the Nonlinear Galerkin method gives a way to convert
partial differential equation into ordinary differential equation.
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Appendix A

Equations (A1)–(A15) represent the coefficients produced in the Nonlinear Galerkin process;
Equations (A16)–(A25) represent the coefficients that are obtained by eliminating static displacement;
Equations (A26)–(A29) represent the coefficients produced in the perturbation process.
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