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Abstract: This paper presents an optimization-based design method of passive micromixers
for immiscible fluids, which means that the Peclet number infinitely large. Based on topology
optimization method, an optimization model is constructed to find the optimal layout of the passive
micromixers. Being different from the topology optimization methods with Eulerian description
of the convection-diffusion dynamics, this proposed method considers the extreme case, where
the mixing is dominated completely by the convection with negligible diffusion. In this method,
the mixing dynamics is modeled by the mapping method, a Lagrangian description that can deal
with the case with convection-dominance. Several numerical examples have been presented to
demonstrate the validity of the proposed method.

Keywords: passive micromixer; topology optimization; Lagrangian description; mapping method

1. Introduction

Lab-on-a-chip devices have been widely used in the area of the analysis, synthesis, and separations
due to the advantages of high efficiency, portability, and low reagent consumption [1]. Injection,
mixing, reaction, cleaning, separation, and detection, which are the functions of conventional analytical
laboratory, can be achieved on a centimeter-level chip [2]. Various microfluidic devices have been
integrated in lab-on-a-chip, such as micropumps, microvalves, micromixers, and microchannel. Rapid
and complete mixing can influence the efficiency of a microfluidic system [3]. Therefore, micromixer
plays a significant role in the lab-on-a-chip devices. Based on actuation methods, micromixers can
be classified into two categories: active micromixers and passive micromixers [4]. Active mixers
use external energy to create chaotic convection, such as pressure [5], magnetohydrodynamics [6],
electrokinetics [7] and acoustics [8–10]. Active mixers have short mixing times and distances and can be
controlled to be on and off, according to the needs of the users. Because of the requirement of external
energy, however, the fabrication and integration of active mixers is complicated and expensive [11].
Comparatively, passive mixers can achieve fluid mixing solely by the geometries of channels and
be integrated in a complex microfluidic system simply and directly. The inconsistent cross sections
of a microchannel can cause the fluid to be stretched and folded in the transversal direction [12–15].
A reasonable layout of passive micromixer can strengthen the chaotic convection to enhance the
mixing performance. Immiscible fluids are widely used in chemical industry, where the particle
flow can be considered as the immiscible fluids [16]. The mixture of immiscible fluids appears in
biochemical experiments, which is usually not discussed compare to the mixers with phenomenon of
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convection-diffusion. With the trend of miniaturization in recent years, the micromixers of immiscible
fluids with efficient mixing performance are also desired in a microfluidic system.

Topology optimization of fluid flows has been proposed by Borrvall and Petersson for Stokes
flow [17] and the Navier-Stokes flow [18–21]. When compared to shape optimization method,
the detail topology and shape of the microchannels can be obtained simultaneously by topology
optimization. This method has been used to design the microchannel networks, micropumps,
no-moving part microvalves, and micromixers [22–25]. In the topology optimization of micromixers,
the convection-diffusion equation is usually used to describe the mixing process of the fluids,
and objective function is the variance between the actual obtained concentration at the outlet and the
expected concentration. All of the topological optimization methods that are mentioned above used to
design the mixers of miscible fluids are based on the Eulerian description of the convection-diffusion
dynamics and can not be directly applied to the design of immiscible fluid mixers. The mixture of
immiscible fluids is a convective problem in physics and should be described by the Navier–Stokes (NS)
equations and convection equation in numerical calculation. However, when using the standard
Galerkin finite element method to solve the above equation, the numerical instability will occur.
For an optimization process, the numerical instability of solving forward problems is a big challenge.
To avoid this problem, the mapping method is used in this paper to describe the convection problem in
numerical calculation. The mapping method proposed by Singh et al. [26,27] can describe the mixing
performance by calculating the mapping matrix and be integrated into the topology optimization
method. For the topology optimization problem, the measure of the mixing in the mapping method
needs to be discussed. The coarse grained concentration [28] can change the value of the objective
function by replacing the concentration in the objective function with the coarse grained concentration
defined in discrete areas. In order to shorten the optimization time, the mixing performance of entire
periodic structure is obtained by analyzing only one cycle structure in this paper.

In passive mixers, the mixing efficiency is mainly determined by the layout of mixers. The chaotic
convection can be promoted by the various cross-sectional structures along the flow direction. Based on
the topology optimization method of fluidic flows and Lagrangian description, this paper is focused on
the layout design method of the passive micromixers of immiscible fluid, where the mapping method
is used to describe the mixing process of the immiscible fluid. A new mixing measurement is applied
in this paper, based on the change of position of the mixed fluids. This paper is organized as follows:
the choice of mixing measurement and the mapping method are stated in Section 2; the topology
optimization model of the passive micromixers and the corresponding adjoint equations and derivative
are derived in Section 3; several numerical results are presented in Section 4; and, the discussion and
conclusion are stated in Section 5.

2. Measure of Mixing and Lagrangian Mapping Description

2.1. Measure of Mixing

In the topology optimization method of micromixers based on Eulerian description of the
convection-diffusion dynamics, we define the concentration as the volume fraction of a fluid in
a mixture of two fluids at a point. To quantify and compare mixing performance, the least squares
variance between the actual obtained concentration at the outlet and the expected concentration can be
expressed as [29]:

J(c) =

∫
Γout

(c− c)2dΓ∫
Γin

(c0 − c)2dΓ
(1)

where Гin and Гout are the inlet and outlet of the mixer, respectively; c0 is the reference concentration,
which is usually the designer specified concentration at the inlet. Ideally, the two fluids are sufficiently
mixed in the mixer. Therefore, the expected concentration c is chosen as the ideal concentration after
sufficient mixing at the outlet, which is the average concentration. The concentrations of two fluids are
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set to be dimensionless value 0 and 1. When the two fluids are miscible, J(c) = 0 means that the two
fluids can be considered to be completely mixed and J(c) = 1 means that the two fluids can be considered
to be completely separated. However, when the two liquids are immiscible, the concentration c of a
fluid is always be 0 or 1, due to the absence of diffusion and J(c) remains constant. The expression in
Equation (1) is not suitable to quantify the mixing performance. The coarse grain concentration method
that was proposed by Welander et al. [28] can avoid this situation. The coarse grain concentration Ci
defined on a finite cell Гi is:

Ci =
∫

Γi

c(X)dΓ (2)

where Гi is the i-th cell obtained discretely on the cross section perpendicular to the flow direction;
Ci can vary in interval [0,1]. Therefore, Equation (1) can be rewrite as

JC(C) =
1

AΓ

N

∑
i=1

(Ci − C)2

(C0
i − C)2 AΓi , C =

1
AΓ

N

∑
i=1

Ci AΓi (3)

where AΓ and AΓi is the area of cross section and the i-th cell, respectively; C is the average coarse
grain concentration; C0

i is the coarse grain concentration of the i-th cell on the cross section of inlet;
and N is the number of cells divided in cross section.

Since the mixed fluids are immiscible, the coarse grain concentration changes only at the contact
cells of the two fluids. Due to the low Reynolds numbers of fluid and the limited mixing length of
micromixer used in the topology optimization model, the change of the value of mixing performance in
Equation (3) is not large enough. When the number of discrete cells increases at the same time, the value
of Equation (3) is not sensitive to the change of coarse grain concentration. A new measurement mixing
is proposed to amplify the value modification in the mixing performance by using the change of the
positions of two fluids at the cross section of outlet. The least squares variance between the actual
obtained coarse grain concentration Ci at the outlet and the initial coarse grain concentration C0

i at the
inlet is used:

JC0(C) =
1

1 + 1
AΓ

N
∑

i=1
(Ci − C0

i )
2 AΓi

(4)

When JC0(C) = 1, the two immiscible fluids can be considered to be completely separated;
when JC0(C) < 1, the two immiscible fluids can be considered to be mixing.

2.2. Mapping Method

A distribution matrix is used in the mapping method to store the information, which describes
the changes of fluidic distribution between two specified cross sections [30,31]. To obtain the each
coefficient of mapping matrix, the initial cross section is divided into a large number of discrete cells
with specified size. The material of fluid transferred to several recipient cells from a donor cell along
the fluidic flow. The fraction of material in the recipient cell Ωj in section at X = X0 + ∆X, which is
found in the donor cell Ωi in section at X = X0 is the coefficient of mapping matrix. The cross section
with N cells can construct a distribution matrix of the order N × N:

ϕij =

∫
Ωj |x=x0+∆x∩Ωi |x=x0

dA∫
Ωj |x=x0

dA
(5)

To describe the detail of flow, a lot of sections are traced which are set along the flow direction.
Tracing all cells in all sections during a flow over a distance ∆X, the detail of flow can be described by
the complex deformation of cells. Although this tracking method is feasible, it is too time-consuming
to apply into topology optimization. Singh et al. proposed a convenient method for calculating
the coefficients of the mapping matrix [26,27]. To approximate the coefficients of mapping matrix,
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K markers are filled into each cell uniformly in donor section at X = X0, and then, tracing these markers
can obtain the information about the distribution in recipient section at X = X0 + ∆X. When the number
of markers in the cell Ωj in donor section is Mj and Mij markers are traced in the cell Ωi in recipient
section, the coefficient of mapping matrix can be calculated as

Φij =
Mij

Mj
(6)

The convection dynamics of fluids can be analyzed the following procedure. Using the same cell
to describe the coarse grain concentration, the coarse grain concentration distribution of cross-section
can construct a vector C ∈ RN×1 (N is the number of cells). After passing through the structure that is
described by the mapping method, the coarse grain concentration distribution of recipient section Cr

can be calculated from the coarse grain concentration distribution of donor section Cd as:

Cr = ΦCd (7)

The coarse grain concentration distribution at outlet can be obtained as:

Co = ΦallCi (8)

where Ci and Co are the coarse grain concentration distribution of inlet and outlet cross-section,
respectively; and Φall is the mapping matrix of whole mixer.

Since the construction of the mapping matrix has no correlation with the initial cross-section
concentration distribution, the mixer of periodic layout, with a known initial mapping matrix Φ1 of a
single cycle, has the following relation:

Ci+1 = Φ1Ci, Cn = (Φ1(Φ1(. . . (Φ1︸ ︷︷ ︸
n times

C0)))) (9)

where Ci is the coarse grain concentration distribution after the i-th mixing. Therefore, for the periodic
mixers in any cycle, the computational cost is saved that the concentration distribution. Cn can be
obtained by simply multiplying the single cycle matrix in corresponding times.

Assuming that the length direction of mixing channel is the x-axis, the cross section that is shown
in Figure 1 is the y-z section. The trajectories of markers are tracked based on the coordinate axis.
Tracing can be realized by the axial velocity component ux and the transversal velocity components uy

and uz, respectively:
dy
dx

=
uy

ux
,

dz
dx

=
uz

ux
(10)

Since the particles become disordered at any downstream position in forward tracing method,
there is no guarantee that an equal number of traced markers can be found in each cell at the outlet.
Using the backward particle tracing (BTP) to construct the distribution matrix, the markers initially
fill the recipient cell in the cross section of outlet, and they are traced backward against the flow
direction [26,27],

Xi = X0 +
n

∑
i=1

(
∫ xi

xi+∆x

u
uTIu

dX) (11)

where Xi = (xi, yi, zi) and X0 = (x0, y0, z0) are the coordinates of the markers at the cross section of inlet
and outlet, respectively; Iu = [1 0 0]T; n = nall − 1, nall is the number of cross section in the mapping
method. Due to the integration of axial spatial increment rather than time, the error that is caused by
the different time distribution can be eliminated. However, this approach is not effective when the
fluid is reflowing.
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and 155,031 nodes. Figure 3a–c show the mixing evolutions in a SHM consisting of one groove type, 
whose mapping matrix is represented by Φ1. In the mapping computations of Figure 3a,b, the 
tracing cross section is covered with 50 × 50 and 100 × 100 cells, respectively, and each cell is filled 
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Figure 2. Schematic representation of the grooves in a staggered herringbone mixer (SHM). The 
mapping matrix Φ1 covers a single groove applying a fully developed velocity field. 

Figure 1. The calculation of the mapping coefficient Φij in the mapping matrix is the ratio of the number
of markers received by the recipient cell Ωi at X = X0 + ∆X to the initial number of markers in Ωj at
X = X0 (in this example Φij = 3 /16) [26,27].

Figure 2 shows a top view of the grooves on the bottom in a staggered herringbone mixer (SHM).
We apply the geometry of SHM and the material properties used in the study of Singh et al. [26].
The length ratio of two arms of every groove is 2:1, and all arms are at 45◦ to the axial direction;
the channel height h = 77 µm, the channel width w = 200 µm, the depth of grooves gd = 17.7 µm,
the width of grooves gw = 70.7 µm and the distance between two grooves also equals 70.7 µm;
the viscosity and density of the fluid in the micromixers are 0.067 kg·m/s and 1.2 × 103 kg/m3.
The average inlet velocity u = 0.2 cm/s. The velocity field is obtained by 144,000 hexahedral elements
and 155,031 nodes. Figure 3a–c show the mixing evolutions in a SHM consisting of one groove type,
whose mapping matrix is represented by Φ1. In the mapping computations of Figure 3a,b, the tracing
cross section is covered with 50 × 50 and 100 × 100 cells, respectively, and each cell is filled with
100 uniformly distributed markers. Figure 3c shows the results in the study of Singh et al. [26] using
the above parameters. Figure 3d shows the coarse grain concentration distribution at outlet of SHM
with ten grooves. The results in Figure 3 demonstrated the validity of the mapping method that is
used in this paper. These parameters of mapping method will be used in the optimization process.
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The mapping matrix Φ1 covers a single groove applying a fully developed velocity field.
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Figure 3. The evolution of coarse grain concentration distribution Ci in a SHM with one groove
type: (a) The result of mapping method which the tracing cross section is covered with 50 × 50 cells,
and each cell is filled with 100 uniformly distributed markers; (b) The result of mapping method which
the tracing cross section is covered with 100 × 100 cells, and each cell is filled with 100 uniformly
distributed markers; (c) The results in the study of Singh et al. which the tracing cross section is covered
with 200 × 200 cells, and each cell is filled with 256 uniformly distributed markers [26]; (d) The coarse
grain concentration distribution at outlet of SHM with ten grooves.

3. Topology Optimization Model of Mixers

When the area of each cell divided by the mapping method is the same, the Equation (4) can be
simplified to

JC0(C) =
N

N +
N
∑

i=1
(Ci − C0

i )
2

(12)

where N is the number of cells divided in cross section. This discrete equation is used as quantitative
criterion to measure the mixing performance of the immiscible fluids. In this paper, the key point is how
to find a reasonable layout of a micromixer in a designer specified design domain, which minimizes
the quantitative criterion and mixing can be obtained using the topology optimization method. Based
on the continuity assumption, the fluidic field will be described by the Navier-Stokes equations:

ρ(u·∇)u− η∆u +∇p = f
−∇·u = 0

(13)

where u, p, ρ, and η are the velocity, pressure, density, and viscosity of the fluid, respectively; f is
the body forces acting on the fluid. In the topology optimization method, an artificial friction
force is introduced into the Navier-Stokes equations, which was proposed for the Stokes flow by
Borrvall and Petersson [17] and generalized to the Navier-Stokes flow by Gersborg et al. [20] and
Olesen et al. [21]. Initially, an artificial porous material is uniformly distributed in the design domain;
and then, the artificial porous material forms solid and liquid phases gradually; at last, the high and
low impermeability characterize the solid phase and the fluid phase, respectively. The artificial friction
force is f = −α(γ)u, and α is the impermeability of the artificial porous material, and γ is the design
variable. The design variable γ varies in interval [0,1], where 0 and 1 denote the solid and fluid
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phases, respectively. The impermeability of porous material α is the interpolation function of design
variable γ [17–22]:

α(γ) = αmin + (αmax − αmin)
q(1− γ)

(q + γ)
(14)

where αmax and αmin are the impermeability of the solid phase and the fluid phase, respectively; q is a
positive value used to adjust the convexity of the interpolation function; αmin is chosen 0 in the fluidic
topology optimization. To obtain the perfect impermeability of solid no-slip boundary, αmax should
be infinite, but a finite number has to be chosen to ensure the numerical stability. The layout of the
passive micromixer of immiscible fluid can be determined by seeking the distribution of the design
variable γ. The topology optimization model based on mapping method is:

min : JC0(C) = N

N+
N
∑

i=1
(Ci−C0

i )
2

s.t.ρ(u·∇)u− η∆u +∇p = −αu in Ω

−∇·u = 0 in Ω
u = u0 on Γin[
−pI + η(∇u + (∇u)T)

]
·n = 0 on Γout

0 ≤ γ ≤ 1

X = X0 +
n
∑

i=0
(
∫ xi

xi+∆x
u

uTIu
dX) on Γin

X = X0 on Γout

C = C0 on Γin
C = Φ(yi, zi)C0 on Γout

Φij =
Mij
Mj

(15)

where Ω = ΩD ∪ΩC is the computational domain; ΩD is the design domain; ΩC is the channels
connected to the inlet, outlet, and design domain.

The constraint optimization model in Equation (15) can be transferred into unconstrained one by
Lagrangian multiplier method:

L = J + a(u, λu)Ω + ρ((u·∇)u, λu)Ω + (∇p, λu)Ω + (αu, λu)Ω

−(g, λu)ΓN
+ (u− u0, λu)ΓD

+ (−∇·u, λp)Ω + (C−Φ(y, z)C0, λC)ΓN

+(C− C0, λC)ΓD
+ (X− X0, λX)ΓD

+ (Xi − X0 −
n
∑

i=0
(
∫ xi

xi+∆x
u

uTIu
dX), λX)

ΓN

(16)

where a(u, λu)Ω =
∫

Ω η∇u : ∇λudΩ; (∗, ∗)Ω and (∗, ∗)Γ is the inner product on the computational
domain and boundary; λu, λp, λC and λX are the adjoint variable of the velocity field, the pressure field,
the coarse grain density on the cross outlet section and the coordinate after particle tracing, respectively.

The variation of the Equation (16) is

δL =
∂L
∂u

δu +
∂L
∂p

δp +
∂L
∂X

δX +
∂L
∂C

δC +
∂L
∂γ

δγ (17)

According to the Karush-Kuhn-Tucker conditions for the partial differential equation constrained
optimization problem, the optimization problem in Equation (15) can be obtained by solving the
following adjoint equations [19] (see the Appendix A for the detailed derivation):
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−η∆λu − ρ(u·∇)λu + ρ(∇u)·λu +∇λp = −αλu in Ω
−∇·λu = 0 in Ω
λu = 0 on ΓD

[η(∇λu + (∇λu)
T)− λpI]·n = −ρ(u·n)λu +

n
∑

i=0
(
∫ x0

x0+∆x (
1

uTIu
I− u

(uTIu)
2 IT

u)dX)λX on ΓN

λX = ∂Φ
∂Xi

λC on ΓN

λX = 0 on ΓD
λC = 0 on ΓD

λC = − −2N(C − C0)

[N+
N
∑

i=1
(Ci − C0

i )
2
]
2 on ΓN

(18)

The adjoint sensitivity of the optimization model in Equation (15) is:

DL
Dγ
|Ω =

∂α

∂γ
u·λu (19)

When considering the manufacturability, the micromixer is designed to be a single layer structure,
like the SHM [12–14,32,33]. In the optimization model, an additional constraint is added to ensure that
the design variable in the depth direction have a consistent value. The design variable is defined on
the plane x0y (Figure 4), and the adjoint derivative of the optimization model (19) is changed to [22]:

DL
Dγ

=
1

zt − zb

∫ zt

zb

∂α

∂γ
u·λudz (20)

where zt and zb are the coordinates in z direction of top and bottom surface of the design domain,
and zt > zb.
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The adjoint sensitivity of the optimization model in Equation (15) is: 

α λ
γ γΩ
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∂
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When considering the manufacturability, the micromixer is designed to be a single layer 
structure, like the SHM [12–14,32,33]. In the optimization model, an additional constraint is added 
to ensure that the design variable in the depth direction have a consistent value. The design 
variable is defined on the plane x0y (Figure 4), and the adjoint derivative of the optimization model 
(19) is changed to [22]: 
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where zt and zb are the coordinates in z direction of top and bottom surface of the design domain, 
and zt > zb. 
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Figure 4. (a) Design domain ΩD of the micromixers at the bottom layer of the straight channel. ΩC is 
the channels connected to the inlet, outlet and design domain ΩD. The length of design domain ΩD is 
n times of L; (b) the distribution of coarse grain concentration on the outlet. 

The topology optimization problem is solved by using the gradient-based iterative approach. 
In the optimization iterations, the Navier-Stokes equations, the backward particles tracing equation, 
and the corresponding adjoint equations in the weak form are solved by the finite element method 
using the commercial software COMSOL Multiphysics (version 3.5, COMSOL Inc., Stockholm, 
Sweden). The method of moving asymptotes (MMA) is used to update the design variable. The 
optimization iterations are stopped, when the maximal change of the objective value in three 
consecutive iterations less than 1 × 10−3. The procedure of solving the topology optimization 
problem for the layout design of passive micromixers is listed in Table 1. 

Figure 4. (a) Design domain ΩD of the micromixers at the bottom layer of the straight channel. ΩC is
the channels connected to the inlet, outlet and design domain ΩD. The length of design domain ΩD is
n times of L; (b) the distribution of coarse grain concentration on the outlet.

The topology optimization problem is solved by using the gradient-based iterative approach.
In the optimization iterations, the Navier-Stokes equations, the backward particles tracing equation,
and the corresponding adjoint equations in the weak form are solved by the finite element method
using the commercial software COMSOL Multiphysics (version 3.5, COMSOL Inc., Stockholm,
Sweden). The method of moving asymptotes (MMA) is used to update the design variable.
The optimization iterations are stopped, when the maximal change of the objective value in three
consecutive iterations less than 1 × 10−3. The procedure of solving the topology optimization problem
for the layout design of passive micromixers is listed below.
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1. Give the initial value of the design variable γ;
2. Solve the Navier-Stokes equations and backward particle tracing equation by the finite

element method;
3. Solve the adjoint equation;
4. Compute the adjoint derivative and the corresponding objective and constraint values;
5. Update the design variable by method of moving asymptotes (MMA);
6. Check for convergence; if the stopping conditions are not satisfied, go to 2; and
7. Post-processing

4. Results and Discussion

To demonstrate the validity of the proposed method, passive micromixers of immiscible fluid in
a straight microchannel with external driven flow (constant flow rate at inlet) is investigated in the
following. The design domain is shown in Figure 4a, and each cubic space with an edge size equals to
L is discretized by 20 × 20 × 20 hexahedral elements. The width of micromixer L is 400 µm and the
height of design domain H is 240 µm. The viscosity and density of the fluid in the micromixers are
1 × 10−3 Pa·s and 1 × 103 kg/m3. The value of αmax and q in the topology method are chosen 1 × 107

and 0.1. The initial value of the design variable γ is 0.4, which should be between [0,1], as shown in
Equation (15). Since the backward particle tracing method is applied, the number of cell in the cross
section of outlet is 50 × 50 and 100 markers are traced in each cell. The coarse grain concentrations of
two immiscible fluids are set to be dimensionless value 1 and 0 (Figure 4b), respectively. All of the
computations are performed on a DELL workstation (DELL Optiplex 7040, Intel Core i7-6700 CPU,
16 gigabyte memory, Round Rock, TX, USA).

Based on the topology optimization model in Section 3, the optimal layouts of the passive
micromixers of immiscible fluid with different Reynolds number and length of the design domain
are obtained, as shown in Figures 5–7. The optimized results strongly depend on the parameters,
such as the size of design domain and the Re number. From the comparison between the results in
Figures 5 and 6, the obtained layouts of micromixers depend on the selection of Reynolds number.
Different values of n are chosen to compare the mixing performance of the micromixers obtained by
the topology optimization method (Figures 6 and 7). A larger value of n means a longer mixing length
and a more reasonable layout in the micromixers. When the length of the mixer is relatively short,
the herringbone type structure is not necessary; when the length of single-periodic becomes longer,
the herringbone type structure promotes the mixing effect obviously. By comparing the optimal results,
the herringbone type structure is a reasonable topology, which could be used further for detailed shape
or size optimization when the mixer has an appropriate length.Micromachines 2018, 9, x FOR PEER REVIEW 10 of 16 
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Figure 6. (a) Layout of the micromixer for the design domain as shown in Figure 4, where n = 2, Re = 
5, and projected velocity vector distribution in the cross sections (S1, S2, S3, S4, S5); the mixing 
measurement 
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Figure 5. (a) Layout of the micromixer for the design domain as shown in Figure 4, where n = 2,
Re = 2.5, and projected velocity vector distribution in the cross sections (S1, S2, S3, S4, S5); the mixing
measurement JC0 (C) = 0.9141; (b) the distribution of coarse grain concentration on the outlet.



Micromachines 2018, 9, 137 10 of 15

Micromachines 2018, 9, x FOR PEER REVIEW 10 of 16 

 

S1 S2 S3 S4 S5

Top view

S1 S2 S3 S4 S5  
(a) (b) 

Figure 5. (a) Layout of the micromixer for the design domain as shown in Figure 4, where n = 2, Re = 
2.5, and projected velocity vector distribution in the cross sections (S1, S2, S3, S4, S5); the mixing 
measurement 

0
( )

C
J C  = 0.9141; (b) the distribution of coarse grain concentration on the outlet. 

S1 S2 S3 S4 S5

Top view

S1 S2 S3 S4 S5  
(a) (b) 

Figure 6. (a) Layout of the micromixer for the design domain as shown in Figure 4, where n = 2, Re = 
5, and projected velocity vector distribution in the cross sections (S1, S2, S3, S4, S5); the mixing 
measurement 

0
( )

C
J C  = 0.9147; (b) the distribution of coarse grain concentration on the outlet. 

S1 S2 S3 S4 S5 S6 S7 S8 S9

Top view

S1 S2 S3 

S4 S5 S6 

S7 S8 S9 

(a)

Figure 6. (a) Layout of the micromixer for the design domain as shown in Figure 4, where n = 2,
Re = 5, and projected velocity vector distribution in the cross sections (S1, S2, S3, S4, S5); the mixing
measurement JC0 (C) = 0.9147; (b) the distribution of coarse grain concentration on the outlet.
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The CPU time in one optimization iteration step is 500 s for the case that design domain is 
shown in Figure 4, with n = 2 and Re = 5. Therefore, designing a multi-period structure directly 
means having a longer computational domain and more CPU time. In contrast, the mapping 
method can obtain multi-period mixing performance easily by simply multiplying the single cycle 
matrix in corresponding times (Figure 8). Figure 9 shows the mixing performance of the micromixer 
that is shown in Figure 5 and SHM shown in Figure 10, which has only one groove and same 
volume as the micromixer shown in Figure 5. Therefore, there are full of room to adjust the 
expression of objective in the optimization model (Equation (15)) proposed in this paper. Whereas, 
the derivation of adjoint sensitivity is unchanged in the case that the chosen objective function is 
differentiable for the design variable. The whole optimization procedure is valid for immiscible 
mixer design, as illustrated in this paper. 

Figure 7. (a) Layout of the micromixer for the design domain as shown in Figure 4, where n = 4, Re = 5,
and projected velocity vector distribution in the cross sections (S1, S2, S3, S4, S5, S6, S7, S8, S9); the mixing
measurement JC0 (C) = 0.8382; (b) the distribution of coarse grain concentration on the outlet.

Mapping method provides an approximate way to obtain the mixing performance of mixer
with spatial periodic layout by multiplying the single cycle mapping matrix in corresponding times.
Figure 8 shows the evolution of mixing performance of micromixers with different cycles where the
single cycle is the layout in Figure 5. Due to the Equation (4) is only valid for situations where fluid
agitation is not obvious, we used Equation (3) to measure the mixing performance. One can see that the
mixing effect is enhanced as the number of cycle increases. The effect of numerical diffusion becomes
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apparent, when the multiplying times of mapping matrix increase. However, a mutual comparison is
still possible and valuable.
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Figure 8. The evolution of mixing performance of micromixers with different cycles which the single
cycle is the layout in Figure 5: (a–d) are the distribution of coarse grain concentration on the outlet with
1, 2, 5, and 10 cycles, and JC(C) are 0.9882, 0.9779, 0.9404 and 0.8413, respectively.

The CPU time in one optimization iteration step is 500 s for the case that design domain is shown
in Figure 4, with n = 2 and Re = 5. Therefore, designing a multi-period structure directly means having
a longer computational domain and more CPU time. In contrast, the mapping method can obtain
multi-period mixing performance easily by simply multiplying the single cycle matrix in corresponding
times (Figure 8). Figure 9 shows the mixing performance of the micromixer that is shown in Figure 5
and SHM shown in Figure 10, which has only one groove and same volume as the micromixer shown in
Figure 5. Therefore, there are full of room to adjust the expression of objective in the optimization model
(Equation (15)) proposed in this paper. Whereas, the derivation of adjoint sensitivity is unchanged in the
case that the chosen objective function is differentiable for the design variable. The whole optimization
procedure is valid for immiscible mixer design, as illustrated in this paper.Micromachines 2018, 9, x FOR PEER REVIEW 12 of 16 
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Figure 9. (a,c) are the distribution of coarse grain concentration on the outlet with 1 and 10 cycles
shown in Figure 8a and d, and JC(C) are 0.9882 and 0.8413; (b,d) are the distribution of coarse grain
concentration on the outlet of SHM (Figure 10) with 1 and 10 cycles, and JC(C) are 0.9883 and 0.8446.
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Figure 10. (a) Layout of the SHM in the design domain as shown in Figure 4, where n = 2, Re = 2.5,
and the mixing measurement JC(C) = 0.9883; (b) the distribution of coarse grain concentration on the
outlet. (the SHM has only one groove and is same volume as the micromixer shown in Figure 5).

5. Conclusions

In this paper, a novel method is used to design the layout of the passive micromixers of immiscible
fluid has been proposed based on the topology optimization of fluidic flows. The layout of the passive
micromixers is determined by solving a topology optimization problem to minimize the mixing
measurement. Additionally, the detailed mixing performance is obtained by using mapping method
in Lagrangian description without consideration of the diffusion. The mapping method used in this
paper is a rough approximated method. However, it can produce results that are in good agreement
with the conventional numerical simulation method of up to 10 cycles. The discrepancies may increase
with the using of more cycles. The design variable is set to represent the impermeability distribution
of the artificial porous medium in the design domain. Based on the adjoint analysis of the topology
optimization problem, the design variable is evolved to derive impermeability distribution of the
artificial porous medium with low and high levels, which, respectively, correspond to the solid and
fluid phases in the micromixer. The manufacturability of the obtained layout is ensured by the
manufacturing constraint. Numerical results demonstrated the validity of the proposed method.
In addition, this method can be extended to design micromixers with multi-layer structure and active
micromixers. These will be investigated in our future work.
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Appendix

Transfer the constraint model in Equation (15) into unconstrained format by Lagrangian
multiplier method:

L = J + a(u, λu)Ω + ρ((u·∇)u, λu)Ω + (∇p, λu)Ω + (αu, λu)Ω

−(g, λu)ΓN
+ (u− u0, λu)ΓD

+ (−∇·u, λp)Ω + (C−Φ(y, z)C0, λC)ΓN

+(C− C0, λC)ΓD
+ (X− X0, λX)ΓD

+ (Xi − X0 −
n
∑

i=0
(
∫ xi

xi+∆x
u

uTIu
dX), λX)

ΓN

(A1)

where a(u, λu)Ω =
∫

Ω η∇u : ∇λudΩ; (∗, ∗)Ω and (∗, ∗)Γ is the inner product on the computational
domain and boundary; λu, λp, λC, and λX are the adjoint variables of the velocity field, the pressure
field, the coarse grain density on the cross outlet section and the coordinate after particle tracing,
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respectively. λu and λC are vectors as well as λp is scalar. λX = (λx λy λz)T. The variation of the main
function Equation (A1) is:

δL =
∂L
∂u

δu +
∂L
∂p

δp +
∂L
∂Xi

δXi +
∂L
∂C

δC +
∂L
∂γ

δγ (A2)

According to the Karush-Kuhn-Tucker conditions for the partial differential equation constrained
optimization problem, the optimization model in Equation (15) can be solved by solving the following
adjoint equations:

∂L
∂u

δu = 0 (A3)

∂L
∂p

δp = 0 (A4)

∂L
∂Xi

δXi = 0 (A5)

∂L
∂Xi

δXi = 0 (A6)

For the Equation (A3):

∂L
∂u δu = a(ηδu, λu)Ω + ρδ((u·∇)u, λu)Ω + (αδu, λu)Ω − (∇·δu, λp)Ω

+(δu, λu)ΓD
− (

∫ x0
x0+∆x (

1
uTIu

I− u
(uTIu)

2 IT
u)dx, λX)

ΓN

(A7)

where:
a(ηδu, λu)Ω = −(η∆λu, δu)Ω + (η(∇λu + (∇λu)

T)·n, δu)ΓN
(A8)

δ((u·∇)u, λu)Ω = −((u·∇)λu, δu)Ω + (∇u·λu, δu)Ω + ((u·n)λu, δu)ΓN
(A9)

(∇·δu, λp)Ω = −(∇λp, δu)Ω + (λpn, δu)ΓN
(A10)

By inserting Equations (A8)–(A10) into Equation (A7), one can obtain:

∂L
∂u δu =

∫
Ω [−η∆λu − ρ(u·∇)λu + ρ(∇u)·λu +∇λp + αλu]·δudΩ +

∫
ΓD

[λu]·δudΓ

+
∫

ΓN
[(η(∇λu + (∇λu)

T − λpI)·n + ρ(u·n)λu −
n
∑

i=0
(
∫ x0

x0+∆x (
1

uTIu
I− u

(uTIu)
2 IT

u)dX)λX ]·δudΓ

= 0

(A11)

For the Equation (A4):
∂L
∂p

δp =
∫

Ω
[−∇·λu]·δpdΩ = 0 (A12)

For the Equation (A5):

∂L
∂Xi

δXi =
∫

ΓN

[λX −
∂Φ
∂Xi

λC]·δXidΓ +
∫

ΓD

[λX ]·δXidΓ = 0 (A13)

For the Equation (A6):

∂L
∂C

δC =
∫

ΓN

 −2N(C− C0)

[N +
N
∑

i=1
(Ci − C0

i )
2
]
2 + λC

·δCdΓ +
∫

ΓD

[λC]·δCdΓ = 0 (A14)
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Finally, the adjoint equation can be obtained as:



−η∆λu − ρ(u·∇)λu + ρ(∇u)·λu +∇λp = −αλu in Ω

−∇·λu = 0 in Ω

λu = 0 on ΓD

[η(∇λu + (∇λu)
T)− λpI]·n = −ρ(u·n)λu +

n
∑

i=0
(
∫ x0

x0+∆x (
1

uTIu
I− u

(uTIu)
2 IT

u)dX)λX on ΓN

λX = ∂Φ
∂Xi

λC on ΓN

λX = 0 on ΓD

λC = 0 on ΓD

λc = − −2N(C−C0)

[N+
N
∑

i=1
(Ci−C0

i )
2
]
2 on ΓN

(A15)

According to the Equations (A3)–(A6) into the variation Equation (A2) of main function,
one can obtain:

δL =
∂L
∂γ

δγ =
∫

Ω
[
∂α

∂γ
u·λu]δγdΩ (A16)

Then the adjoint derivative of the optimization model in Equation (15) is:

DL
Dγ
|Ω =

∂α

∂γ
u·λu (A17)
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