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Abstract: Micro-electromechanical system (MEMS) suspended inductors have excellent
radio-frequency (RF) performance, but poor mechanical properties. To improve their reliability,
auxiliary pillars have been used. However, few studies have been carried out on the response of a
suspended inductor with auxiliary pillars under high mechanical shock. In this paper, a theoretical
method is proposed that combines a single-degree-of-freedom (SDOF) model and a method for
solving statically indeterminate structures. The calculated results obtained by this proposed method
were verified by finite-element analysis (ANSYS). The calculated results obtained by the proposed
method were found to agree well with the results of ANSYS simulation. Finally, this method was
extended to a suspended inductor with double auxiliary pillars. The method proposed in this paper
provides a theoretical reference for mechanical performance evaluation and reliability optimization
design for MEMS suspended inductors with auxiliary pillars.
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1. Introduction

Micro-electromechanical system (MEMS) suspended inductors show excellent radio-frequency
(RF) performance because they lift the inductor coil several micrometers above the substrate [1–3].
However, MEMS suspended inductors have poor mechanical properties. They tend to fail under
mechanical shock during fabrication, shipping, storage, and operation. In particular, in military
applications, the suspended inductor must withstand high mechanical shocks of amplitudes in the
order of 104–105 g [4]. Such a high mechanical shock will cause deformation or even failure of the
MEMS suspended inductor. To improve the reliability of MEMS suspended inductors, several studies
have been carried out. Hsieh et al. [5] used a Si3N4/SiO2 X-beam to increase the mechanical strength
of the suspended inductor coil. Lin et al. [6] and Ribas et al. [7] designed two kinds of suspended
inductors with a sandwich dielectric membrane support to suspend the inductor coil. Wang et al. [8]
designed a suspended inductor with auxiliary pillars. Compared with an inductor with dielectric
membrane, the inductor with auxiliary pillars can achieve a higher suspension height to reduce
substrate loss and achieve a higher quality factor.

Many theoretical studies have been carried out on the dynamic response of MEMS devices
under mechanical shock. However, most of these studies were focused on devices with simple
structures, such as micro-beams, MEMS switches, etc. [9–12]. As for MEMS with complex structures
such as suspended inductors and accelerometers, it is difficult to model them and to solve for their
dynamic responses under mechanical shock. Srikar et al. [13] analyzed the mechanical responses
of a large class of shock-loaded MEMS and modeled their microstructures using an undamped
single-degree-of-freedom (SDOF) model attached to an accelerating base. Li et al. [14] studied the
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motion of MEMS accelerometers during drop tests. They used an SDOF model and a continuous
beam model to take the flexibility of the microstructures into account and to calculate their maximum
deflection. Sundaram et al. [15] developed a combined experimental–analytical approach to predict
the failure of MEMS devices. They used an SDOF model to solve for the displacement of the moving
structures under mechanical shock and then obtained the critical acceleration for failure. However, few
investigations have been carried out on the response of MEMS suspended inductors with auxiliary
pillars under mechanical shock.

This paper presents a method that can be used to model the response of MEMS suspended
inductor with auxiliary pillar under high-g shock. The deformation and stress of the inductor can be
calculated using the parameters of the inductor geometry and the shock pulse. First, the mechanical
response of the suspended inductor with auxiliary pillar under mechanical shock is analyzed, and the
deformations and equivalent stresses are formulated. Then the ANSYS finite-element (FE) software is
used to verify the results calculated by the method. Finally, the method is extended to the suspended
inductor with double auxiliary pillars.

2. Mechanical Response of a Suspended Inductor with Auxiliary Pillar under Shock

2.1. Model of the MEMS Suspended Inductor with Auxiliary Pillar and Shock Loads

Figure 1 shows the model of a MEMS suspended inductor with auxiliary pillar used in this study.
The inductor coil is composed of six segments, and the wire segments are denoted by S1–S6. We refer
to the inductor in the previous study [16] to decide the parameters of the inductor we use in this study.
The parameters of the inductor have been analyzed and optimized with the electromagnetic finite
element analysis software HFSS in [16]. Figure 2 gives the parameters of the inductor coil: the wire
width (w), spacing (s), and thickness (t) are 20 µm, 20 µm, and 10 µm, respectively. The lengths of L1
and L2 are 210 µm and 230 µm, respectively. The suspended height is 20 µm.
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The half-sine waveform is a typical shock pulse that is widely used in theoretical analysis.
It provides a good description of the acceleration observed in several tests, such as the air cannon and
the Hopkinson bar [13,17,18]. The half-sine waveform can be expressed as:

as(t) =

{
a0 sin (πt

τ ) 0 ≤ t ≤ τ

0 τ < t
, (1)

where a0 is the amplitude of the shock and τ is the duration of the shock load. As shown in Figure 3,
half-sine shock loads can be characterized by specifying the amplitude and the duration.
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2.2. Acceleration Response of the Suspended Inductor with Auxiliary Pillar

Generally, the silicon substrate is considered as a rigid body under mechanical shock, and the
inductor coil can be modeled as a resonator attached to an accelerating support [13]. The resonator is
considered as a linear and undamped spring-mass system with a single degree of freedom. As for the
suspended inductor with auxiliary pillar in Figure 1, the inductor coil is divided into two parts by the
pillar. Neglecting the deformation of the pillar, each part of the coil can be modeled as an undamped
SDOF system, as shown in Figure 4.
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The mass and the spring constant of each part of the coil are denoted by m and k, respectively. x(t)
and u(t) are the absolute displacement of the mass and the substrate, respectively.

The equation of mass motion can be expressed as:

m
..
x

k
+ x(t) = u(t) (2)

Equation (2) can also be expressed as:

m
k
·d

2 ..
x

dt2 +
..
x =

..
u(t) (3)
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and
1

ωn2 ·
..
a + a = as(t) (4)

In Equation (4), a is the absolute acceleration response of the mass, as(t) is the acceleration load
applied on the substrate, and ωn is the natural angular frequency.

Equation (4) can be solved using the Laplace transform [19]. The absolute acceleration response
of the mass is:

a(t) =


a0·

T
2τ sin ωnt−sin π

τ t
T2
4τ2 −1

0 ≤ t ≤ τ

a0·
T
τ cos ( πτ

T )
T2
4τ2 −1

sin ωn(t − τ
2 ) τ < t

(5)

where T is the time period of vibration and is given by T = 2π/ωn.
As shown in Equation (5), the absolute acceleration response of the mass is determined by the

time period of vibration T, the natural angular frequency ωn, the amplitude of the shock a0, and the
duration of the load τ. T and ωn of the structure can be obtained by modal analysis.

2.3. Mechanical Response of the Suspended Inductor with Auxiliary Pillar under Mechanical Shock

For the suspended inductor with auxiliary pillar in Figure 1, the inductor coil is divided into two
bending structures by the auxiliary pillar. Each part is a statically indeterminate structure because the
deformation of the pillar can be ignored. Figure 5 shows a top view of Part 1.
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The lengths of the three wire segments are L1, L2, and L3, respectively. Only inertial forces caused
by shock load are considered here because the influence of substrate deformation and traveling elastic
waves can be ignored [13]. The inertial distribution load of the i-th wire segment Si under shock can be
expressed by:

qi = witiρa (6)

where ρ is the density of copper, a is the absolute acceleration response, and wi and ti are the width
and thickness, respectively, of the i-th wire segment.

By releasing the constraint of the clamped end A (see Figure 5) and adding six generalized forces
(see Figure 6a), the equivalent system of the statically indeterminate structure can be determined.
Because the shock-sensitive direction of the inductor is perpendicular to its coil plane, only shock
along the z-direction is considered in this paper. By neglecting structural motion in the x-y plane, the
six generalized forces can be simplified to three, as shown in Figure 6b: a force Fz (X1 in Figure 6b), a
bending moment My (X3 in Figure 6b), and a torque Mx (X2 in Figure 6b).
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Then the canonical equation of force method can be established: δ11 δ12 δ13

δ21 δ22 δ23

δ31 δ32 δ33

·
 X1

X2

X3

+

 ∆1F
∆2F
∆3F

 =

 ∆1

∆2

∆3

 (7)

where δij is the generalized displacement of the released end along the Xi direction, which is
caused only by unit force Xj. ∆iF is the generalized displacement of the released end along the
Xi direction, which is caused only by the shock load. ∆i is the generalized displacement of the statically
indeterminate structure along the Xi direction. δij and ∆iF can be calculated by Mohr’s integration.
∆1 = ∆2 = ∆3 = 0 because the released end is a clamped end.

Equation (7) can also be expressed as: X1

X2

X3

 = −

 δ11 δ12 δ13

δ21 δ22 δ23

δ31 δ32 δ33


−1

·

 ∆1F
∆2F
∆3F

 (8)

where ∆1F is the generalized displacement of the released end along the X1 direction, which is caused
only by the shock load. According to Mohr’s integration, ∆1F can be expressed as:

∆1F = ∑
∫
Li

Mqi(xi) · MFi(xi)dxi

EIi
+∑

∫
Li

Tqi(xi) · TFi(xi)dxi

GIti
, (9)

where E and G are the Young’s modulus and the shear modulus of copper, respectively. xi is a location
indicator variable (0 < xi < Li), Mqi(xi) and Tqi(xi) are the bending moment and torque of the i-th
wire segment caused by shock load, respectively, and MFi(xi) and TFi(xi) are the bending moment
and torque of the i-th wire segment caused by unit force along the X1 direction, respectively. Ii and
Iti are the moment of inertia and the polar moment of inertia of the i-th wire segment’s cross section,
respectively.

For wire segment S1:

Mq1(x1) = − q1x1
2

2
(10)

Tq1(x1) = 0 (11)

MF1(x1) = −x1 (12)

TF1(x1) = 0 (13)

For wire segment S2:

Mq2(x2) = − q2x2
2

2
− q1L1x2 (14)
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Tq2(x2) =
q1L1

2

2
(15)

MF2(x2) = −x2 (16)

TF2(x2) = L1 (17)

For wire segment S3:

Mq3(x3) = − q3x3
2

2
− q2L2x3 + q1L1(

L1

2
− x3) (18)

Tq3(x3) =
q2L2

2

2
+ q1L1L2 (19)

MF3(x3) = L3 − x3 (20)

TF3(x3) = L2 (21)

By substituting Equations (10)–(21) into (9), ∆1F can be expressed as:

∆1F = q1L1
4

8EI1
+ q2L2

4

8EI2
+ q1L1L2

3

3EI2
− q3L3

4

24EI3
− q2L2L3

3

6EI3
+ q1L1

2L3
2

4EI3
− q1L1L3

3

6EI3
+ q1L1

3L2
2GIt2

+ q2L2
3L3

2GIt3
+ q1L1L2

2L3
GIt3

(22)

∆2F is the generalized displacement of the released end along the X2 direction, which is caused
only by the shock load. ∆2F can be expressed as:

∆2F = ∑
∫
Li

Mqi(xi) · MTi(xi)dxi

EIi
+∑

∫
Li

Tqi(xi) · TTi(xi)dxi

GIti
(23)

where MTi(xi) and TTi(xi) are the bending moment and torque, respectively, of the i-th wire segment
caused by a unit generalized force along the X2 direction.

For wire segment S1:
MT1(x1) = 0 (24)

TT1(x1) = 1 (25)

For wire segment S2:
MT2(x2) = 1 (26)

TT2(x2) = 0 (27)

For wire segment S3:
MT3(x3) = 0 (28)

TT3(x3) = −1 (29)

By substituting Equations (10), (11), (14), (15), (18), (19), (24)–(29) into (23), ∆2F can be expressed as:

∆2F = − q2L2
3

6EI2
− q1L1L2

2

2EI2
− q2L2

2L3

2GIt3
− q1L1L2L3

2GIt3
(30)

∆3F is the generalized displacement of the released end along the X3 direction, which is caused
only by the shock load. ∆3F can be expressed as:

∆3F = ∑
∫
Li

Mqi(xi) · MMi(xi)dxi

EIi
+∑

∫
Li

Tqi(xi) · TMi(xi)dxi

GIti
(31)
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where MMi(xi) and TMi(xi) are the bending moment and torque, respectively, of the i-th wire segment
caused by a unit generalized force along the X3 direction.

For wire segment S1:
MM1(x1) = 1 (32)

TM1(x1) = 0 (33)

For wire segment S2:
MM2(x2) = 0 (34)

TM2(x2) = −1 (35)

For wire segment S3:
MM3(x3) = −1 (36)

TM3(x3) = 0 (37)

By substituting Equations (10), (11), (14), (15), (18), (19), and (32)–(37) into (31), ∆3F can be
expressed as:

∆3F = − q1L1
3

6EI1
+

q3L3

6EI3
+

q2L2L3
3

2EI3
− q1L1

2L3

2EI3
+

q1L1L3
2

2EI3
− q1L1

2L2

2GIt2
(38)

δij is the generalized displacement of the released end along the Xi direction, which is caused
only by Xj and Xj = 1. According to Mohr’s integration, δij can be expressed as follows:

δ11 = ∑
∫
Li

MFi(xi)·MFi(xi)dxi
EIi

+ ∑
∫
Li

TFi(xi)·TFi(xi)dxi
GIti

= L1
3

3EI1
+ L2

3

3EI2
+ L3

3

3EI3
+ L1

2L2
GIt2

+ L2
2L3

GIt3

(39)

δ12 = δ21 = ∑
∫
Li

MTi(xi) · MFi(xi)dxi
EIi

+ ∑
∫
Li

TTi(xi) · TFi(xi)dxi
GIti

= − L2
3

2EI2
− L2L3

GIt3
(40)

δ13 = δ31 = ∑
∫
Li

MMi(xi)·MFi(xi)dxi
EIi

+ ∑
∫
Li

TMi(xi)·TFi(xi)dxi
GIti

= − L1
3

2EI1
− L3

3

2EI3
− L1L2

GIt2

(41)

δ22 = ∑
∫
Li

MTi(xi) · MTi(xi)dxi
EIi

+ ∑
∫
Li

TTi(xi) · TTi(xi)dxi
GIti

=
L2

EI2
+

L1

GIt1
+

L3

GIt3
(42)

δ23 = δ32 = ∑
∫
Li

MMi(xi) · MTi(xi)dxi
EIi

+ ∑
∫
Li

TMi(xi) · TTi(xi)dxi
GIti

= 0 (43)

δ33 = ∑
∫
Li

MMi(xi) · MMi(xi)dxi
EIi

+ ∑
∫
Li

TMi(xi) · TMi(xi)dxi
GIti

=
L1

EI1
+

L3

EI3
+

L2

GIt2
(44)

By substituting Equations (22), (30), (38), and (39)–(44) into (8), one can solve for the generalized
forces X1, X2, and X3. Then the bending moment Mi(xi) and the torque Ti(xi) of the structure under
shock can be calculated.

For wire segment S1:

M1(x1) = − q1x1
2

2
− X1x1 + X3 (45)

T1(x1) = X2 (46)
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For wire segment S2:

M2(x2) = − q2x2
2

2
− q1L1x2 − X1x2 + X2 (47)

T2(x2) =
q1L1

2

2
+ X1L1 − X3 (48)

For wire segment S3:

M3(x3) = − q3x3
2

2
− q2L2x3 +

q1L1
2

2
− q1L1x3 + X1(L3 − x3)− X3 (49)

T3(x3) =
q2L2

2

2
+ q1L1L2 + X1L2 − X2 (50)

When the suspended inductor coil is subjected to a mechanical shock load perpendicular to the
coil plane, both the critical normal stress and the critical shear stress will appear on the midpoint of
the w side of the coil wire cross section, as shown in Figure 7.
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The critical normal stress of the i-th wire segment can be expressed as:

σi−max(xi) =
Mi(xi)

Ii
· ti
2

(51)

The critical shear stress of the i-th wire segment can be expressed as:

τi−max(xi) =
Ti(xi)

αiwiti
2 (52)

The critical normal stress and the critical shear stress of the i-th wire segment can be calculated by
substituting Equations (45)–(50) into (51) and (52).

The Von Mises equivalent stress of the i-th wire segment can be expressed as:

σi−VonMises(xi) =

√
σi−max(xi)

2 + 3τi−max(xi)
2 (53)

The deformation at any position of wire segment S1 can be expressed as:

d1(a1) =
∫
a1

M1(x1) · MF1(x1)dx1

EI1
+
∫
a1

T1(x1) · TF1(x1)dx1

GIt1
(54)

where
MF1(x1) = −(a1 − x1) (55)

TF1(x1) = 0 (56)
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where a1 is a position indicator variable, 0 ≤ a1 ≤ L1.
By substituting Equations (45), (46), (55) and (56) into (54), the deformation at any position of S1

can be expressed as:

d1(a1) =
1

EI1
(

q1a1
4

24
+

X1a1
3

6
− X3a1

2

2
) (57)

The deformation at any position of S2 can be expressed as:

d2(a2) = ∑
∫
Li

Mi(xi) · MFi(xi)dxi

EIi
+∑

∫
Li

Ti(xi) · TFi(xi)dxi

GIti
(58)

where
MF1(x1) = −(L1 − x1) (59)

TF1(x1) = −a2 (60)

MF2(x2) = −(a2 − x2) (61)

TF2(x2) = 0 (62)

where a2 is a position indicator variable, 0 ≤ a2 ≤ L2.
By substituting Equations (45)–(48) and (59)–(62) into (58), the deformation at any position of S2

can be expressed as:

d2(a2) =
1

EI1
(

q1L1
4

24
+

X1L1
3

6
− X3L1

2

2
) +

1
EI2

(
q2a2

4

24
+

q1L1a2
3

6
+

X1a2
3

6
− X2a2

2

2
)− X2L1a2

GIt1
(63)

The deformation at any position of S3 can be expressed as:

d3(a3) = ∑
∫
Li

Mi(xi) · MFi(xi)dxi

EIi
+∑

∫
Li

Ti(xi) · TFi(xi)dxi

GIti
(64)

where,
MF1(x1) = a3 − L1 + x1 (65)

TF1(x1) = −L2 (66)

MF2(x2) = −(L2 − x2) (67)

TF2(x2) = −a3 (68)

MF3(x3) = −(a3 − x3) (69)

TF3(x3) = 0 (70)

where a3 is a position indicator variable, 0 ≤ a3 ≤ L3.
Assuming that:

A1(a3)=
∫
L1

M1(x1)·MF1(x1)dx1
EI1

= 1
EI1

(− q1L1
3a3

6 + q1L1
4

24 − X1L1
2a3

2 + X1L1
3

6 + X3L1a3 − X3L1
2

2 ) (71)

A2(a3) =
∫
L2

M2(x2) · MF2(x2)dx2

EI2
=

1
EI2

(
q2L2

4

24
+

q1L1L2
3

6
+

X1L2
3

6
− X2L2

2

2
) (72)

A3(a3) =
∫
a3

M3(x3)·MF3(x3)dx3
EI3

= 1
EI3

( q3a3
4

24 + q2L2a3
3

6 − q1L1
2a3

2

4 + q1L1a3
3

6 − X1L3a3
2

2 + X1a3
3

6 + X3a3
2

2 )
(73)
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B1(a3) =
∫
L1

T1(x1) · TF1(x1)dx1

GIt1
= −X2L2L1

GIt1
(74)

B2(a3) =
∫
L2

T2(x2) · TF2(x2)dx2

GIt2
=

1
GIt2

(− q1L1
2L2a3

2
− X1L1L2a3 + X3L2a3) (75)

B3(a3) =
∫
a3

T3(x3)·TF3(x3)dx3

GIt3
= 0 (76)

then,
d3(a3) = A1(a3) + A2(a3) + A3(a3) + B1(a3) + B2(a3) + B3(a3) (77)

The suspended inductor with auxiliary pillar is divided into two parts by the pillar, and each part
contains three wire segments. The deformation and Von Mises stress of both parts can be calculated
using the method described in this section.

3. Results and Discussion

This section describes the use of the ANSYS finite-element (FE) software to verify the calculated
deformation results and the Von Mises stress of the suspended inductor with auxiliary pillar.
The mechanical parameters of copper we used in FE analysis are: density ρ = 8900 kg/m3, Young’s
modulus E = 128 GPa, Poisson’s ratio 0.34, and yield strength 100 MPa [20]. The inductor was
meshed with tetrahedral mesh. The element size was 5 µm and the inductor model was divided into
4326 elements. To obtain the natural frequency of each part of the inductor coil, modal analyses of
both parts were carried out. Table 1 lists the first three modal frequencies.

Table 1. First three modal frequencies of each part of the inductor with auxiliary pillar.

Part Number Modal 1 Frequency/MHz Modal 2 Frequency/MHz Modal 3 Frequency/MHz

1 0.083042 0.18326 0.26661
2 0.13383 0.31126 0.44392

The frequency of the shock pulse in the actual environment was only on the order of 102–104 Hz,
which is much smaller than the modal frequencies of the structures [13]. Hence, only the first modal
frequency was taken into consideration.

Two types of shock pulse with an amplitude of 35,000 g were applied to the suspended inductor
with auxiliary pillar. The duration of the first type was 10 µs, which is comparable to the vibration
time period of the structure. The duration of the second type was 500 µs, which significantly exceeded
the vibration time period of the structure. Figure 8 shows the absolute acceleration responses of the
two coil parts.
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When the shock load duration was 10 µs, the structure experienced the shock pulse as a dynamic
load. The maximum absolute accelerations were amplified to various degrees. When the shock load
duration was 500 µs, the structure experienced the shock pulse as a quasi-static load.

As the height of the pillar is 20 µm and the maximum deformation of the pillar is only in
10−3 micron dimension according to the simulation results, we assume that the pillar does not bend
under shock. We analyze the two coil parts separately. Figure 9 shows the maximum Von Mises
equivalent stresses of the two inductor coil parts under the two kinds of shock.Micromachines 2018, 9, x FOR PEER REVIEW  11 of 20 
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Figure 9. Maximum Von Mises equivalent stress of the inductor under two kinds of shock pulse.
(a) Part 1; (b) Part 2.

The maximum Von Mises equivalent stress at any position on the inductor coil under a 10 µs
duration shock was greater than under a 500 µs duration shock because the absolute acceleration of
the coil parts under the 10 µs duration shock was higher. The maximum coil stress appeared at the two
ends of Part 1 of the coil. As the shock load amplitude increases, plastic deformation of the inductor
coil will occur first at these two positions.

By changing the shock load amplitude from 0 g to 35,000 g, a series of maximum Von Mises
equivalent stresses of the inductor coil can be calculated. Figure 10 shows the calculated results as
verified by ANSYS.
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load amplitude.

The maximum Von Mises stress is proportional to the amplitude of the shock pulse. The results
calculated by the proposed model agree with the ANSYS simulation results. Plastic deformation will
occur when the inductor undergoes a 30,000 g shock load with a duration of 10 µs, which occurred
because the maximum Von Mises equivalent stress exceeded the yield strength of the copper (100 MPa
in [20]). The maximum stress of the inductor coil under 35,000 g shock was solved for by the model
proposed in this paper and was also simulated by ANSYS. Table 2 lists the results. The results achieved
by ANSYS are considered as true values. The relative deviations of the maximum stress were 3.73%
and 6.32% with shock durations of 10 µs and 500 µs, respectively.

Table 2. Maximum Von Mises equivalent stress of the inductor with auxiliary pillar as calculated by
ANSYS and the proposed model.

Amplitude of
Shock/g

Duration of
Shock/µs

Max Von Mises Stress
by Model/MPa

Max Von Mises Stress
by ANSYS/MPa

Relative
Deviation

35,000
10 111.1 115.4 3.73%
500 63.7 68 6.32%

Figure 11 shows the maximum deformation of the two inductor coil parts under the two kinds
of shock pulses. The maximum inductor deformation appears at the midpoint of the S2 segment.
As the shock load amplitude increases, the coil will first contact the substrate at this position due to
the large deflection.

However, when a 35,000 g amplitude shock load with a duration of 10 µs is applied, the maximum
deformation is only 3.33 µm, which is less than the distance between the coil and the lead. The coil will
not strike to the lead or substrate when plastic deformation occurs. So the critical stress is the criterion
for the failure of the suspended inductor with auxiliary pillar under shock.

By varying the shock amplitude from 0 g to 35,000 g, a series of maximum deformations of the
inductor coil can be calculated. Figure 12 shows the calculated results as verified by ANSYS.

The maximum deformation was also proportional to the amplitude of the shock pulse. The results
calculated by the model agree with the ANSYS simulation results. The maximum coil deformations
under 35,000 g shock were solved for by the model proposed in this paper and were also simulated by
ANSYS. Table 3 lists the results. The relative deviations of the maximum deformation were 6.38% and
6.14% with shock durations of 10 µs and 500 µs, respectively.
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Comparing the results obtained by theoretical calculation and ANSYS simulation, it was found
that the results for maximum Von Mises equivalent stress and deformation calculated by the method
proposed in this paper agreed with the results obtained by simulation, with relative deviations of less
than 6.5%.
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Table 3. Maximum deformation of the inductor with auxiliary pillar as calculated by ANSYS and the
proposed model.

Amplitude of
Shock/g

Duration of
Shock/µs

Max Deformation by
Model/µm

Max Deformation by
ANSYS/µm

Relative
Deviation

35,000
10 3.33 3.13 6.38%
500 1.90 1.79 6.14%

4. Extension of the Theory to the Suspended Inductor with Double Auxiliary Pillars

4.1. Mechanical Response of the Suspended Inductor with Double Auxiliary Pillars

In the work described in this section, the method proposed in this paper was extended to the
suspended inductor with double auxiliary pillars, as shown in Figure 13. The suspended inductor
with double auxiliary pillars has better mechanical performance than the inductor with only one pillar.
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Figure 13. Schematic of MEMS suspended inductor with double auxiliary pillars.

The inductor coil is divided into three L-shaped bending beams by the pillars. Figure 14 shows a
top view of Part 1.
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The Von Mises equivalent stress and the deformation of the suspended inductor with double
auxiliary pillars can be calculated by the following steps. First, the absolute acceleration response
and the inertial distribution load of the L-shaped beam are calculated using Equations (5) and
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(6), respectively. Mqi(xi), Tqi(xi), MFi(xi), TFi(xi), MTi(xi), TTi(xi), MMi(xi), and TMi(xi) can be
calculated using Equations (10)–(17), (24)–(27), and (32)–(35). Then δij and ∆iF can be obtained by
Mohr’s integration. By substituting δij and ∆iF into the canonical Equation (7), the generalized forces
X1, X2, and X3 can be obtained. The bending moment and the torque of the two wire segments can be
calculated using Equations (45)–(48).

The Von Mises equivalent stress of the i-th wire segment can be expressed as:

σi−VonMises(xi) =

√
(

Mi(xi)

Ii
· ti
2
)

2

+ 3(
Ti(xi)

αiwiti
2 )

2

(78)

The deformation along the normal direction of the coil plane at any position along the wire
segment S1 can be expressed by:

d1(a1) =
1

EI1
(

q1a1
4

24
+

X1a1
3

6
− X3a1

2

2
) (79)

The deformation along the normal direction of the coil plane at any position along the wire
segment S2 can be expressed by:

d2(a2) =
1

EI1

(
q1L1

4

24 + X1L1
3

6 − X3L1
2

2

)
+ 1

EI2

(
q2a2

4

24 + q1L1a2
3

6 + X1a2
3

6 − X2a2
2

2

)
− X2L1a2

GIt1
(80)

where a1 and a2 are position indicator variables, 0 ≤ a1 ≤ L1, 0 ≤ a2 ≤ L2.
For other kinds of inductors with auxiliary pillars, we assume that the inductor coil is divided

into n + 1 parts by n pillars and each part contains m wire segments. We can calculate the Von Mises
equivalent stress and deformation of each coil part by the following steps:

1. Obtain the natural frequency of the coil part and calculate the acceleration response of the coil
part by using a SDOF model.

2. Each coil part is a statically indeterminate structure, so its equivalent system can be determined
by releasing the constraint of one of its clamped end. Then the canonical equation of the coil part
can be established as:  δ11 δ12 δ13

δ21 δ22 δ23

δ31 δ32 δ33

·
 X1

X2

X3

+

 ∆1F
∆2F
∆3F

 =

 ∆1

∆2

∆3

 (81)

where δij and ∆iF can be expressed as Equations (82) and (83), respectively, according to Mohr’s
integration:

δij =
m

∑
k=1

∫ Mjk Mik

EIk
dxk +

m

∑
k=1

∫ T jkTik

GItk
dxk (82)

∆iF =
m

∑
k=1

∫ Mqk Mik

EIk
dxk +

m

∑
k=1

∫ TqkTik

GItk
dxk (83)

where Mqk and Tqk are the bending moment and torque of the k-th wire segment caused by
the impact load, respectively. Mik and Tik are the bending moment and torque of the k-th wire
segment caused by the unit load along the Xi direction at the released end, respectively. Mjk and
T jk are the bending moment and torque of the k-th wire segment caused by the unit load along
the Xj direction at the released end, respectively.

3. The generalized forces X1, X2 and X3 can be obtained by solving the canonical equation. Then
the bending moment Mk and the torque Tk of the k-th wire segment can be calculated.
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4. Calculate the critical normal stress σk−max and the critical shear stress τk−max of the k-th wire
segment. Then the Von Mises equivalent stress of the k-th wire segment can be expressed as:

σk−VonMises =
√

σk−max
2 + 3τk−max

2 (84)

5. Apply a unit force to the position wherever the deformation needs to be solved and adopt the
Mohr’s integration for calculating the deformation of the coil part. The deformation at any
position of the k-th wire segment can be expressed as:

d(ak) =
k−1

∑
i=1

∫ Li

0

Mi MFi
EIi

dxi +
k−1

∑
i=1

∫ Li

0

TiTFi
GIti

dxi +
∫ ak

0

Mk MFk
EIk

dxk +
∫ ak

0

TkTFk
GItk

dxk (85)

where Mi and Mk are the bending moments of the i-th and k-th wire segment, respectively. Ti and
Tk are the torques of the i-th and k-th wire segment, respectively. MFi and MFk are the bending
moments of the i-th and k-th wire segment caused by the unit force, respectively. TFi and TFk
are the torques of the i-th and k-th wire segment caused by the unit force, respectively. ak is a
position indicator variable, 0 ≤ ak ≤ Lk.

4.2. Results and Discussion

Modal analyses of the three coil parts were carried out. The inductor with double auxiliary pillars
was also meshed with tetrahedral mesh. The element size was 5 µm and the inductor model was
divided into 4739 elements. The natural frequencies of the three parts were found to be 0.17 MHz,
0.21 MHz, and 0.33 MHz, respectively.

Two types of shock pulse were applied to the inductor. The durations of the shock pulses were
10 µs and 500 µs. By varying the shock load amplitude from 0 g to 100,000 g, a series of results for
the maximum Von Mises equivalent stress and the maximum deformation of the inductor coil could
be calculated. The results obtained by the method proposed in this paper were verified by ANSYS,
as shown in Figures 15 and 16.
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Figure 15. Maximum Von Mises equivalent stress as calculated by ANSYS and the proposed model
versus shock load amplitude.

Figures 15 and 16 show that the results obtained by the method proposed in this paper agreed
well with the results obtained by ANSYS simulation. The mechanical performance of the suspended
inductor with double auxiliary pillars has been significantly improved.

The maximum stresses and the maximum deformations of the inductor under 100,000 g shock load
obtained by the method proposed in this paper and by ANSYS are listed in Tables 4 and 5, respectively.
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load amplitude.

Table 4. Maximum Von Mises equivalent stresses of the inductor with double auxiliary pillars as
calculated by ANSYS and the proposed model.

Amplitude of
Shock/g

Duration of
Shock/µs

Max Von Mises Stress
by Model/MPa

Max Von Mises Stress
by ANSYS/MPa

Relative
Deviation

100,000
10 109.1 108.6 0.46%
500 78.37 77.21 1.50%

Table 5. Maximum deformations of the inductor with double auxiliary pillars, as calculated by ANSYS
and the proposed model.

Amplitude of
Shock/g

Duration of
Shock/µs

Max Deformation by
Model/µm

Max Deformation by
ANSYS/µm

Relative
Deviation

100,000
10 1.88 1.94 3.09%
500 1.35 1.38 2.17%

Comparing the results obtained by theoretical calculation and ANSYS simulation, it is apparent that
the calculated results agree well with the simulated results, with relative deviations of less than 3.1%.

Besides the mechanical performance, the radio-frequency performance of the inductors with one
and double pillar(s) are also considered. The RF performance of the inductor with single and double
pillar(s) are simulated by using the electromagnetic finite element analysis software HFSS. The quality
factors and inductances of the two kinds of inductors are shown in Figures 17 and 18, respectively.

From Figures 17 and 18 we see that the quality factor and the inductance of the inductor with
single pillar are only 1.2 and 0.07 nH higher, respectively, than the inductor with double pillars.
Although the inductor with double pillars has a worse RF performance because one more copper pillar
leads to an increase in the substrate loss, its mechanical performance is much better than the inductor
with a single pillar.
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5. Conclusions

In this paper, a method has been proposed to describe the response of MEMS suspended inductor
with auxiliary pillar under high mechanical shock by combining an SDOF model and a method of
solving statically indeterminate structures. This method was used to calculate the equivalent stress
and the deformation of the suspended inductor with auxiliary pillars under high mechanical shock.
The calculated results were found to agree well with the simulation results. The stress and deformation
of other types of inductors with auxiliary pillar can also be calculated using this method. The method
proposed in this paper provides a theoretical reference for mechanical performance evaluation and
reliability optimization design of MEMS suspended inductors with auxiliary pillars.
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