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Abstract: A localized maskless modification method of polyurethane (PU) films through an
atmospheric pressure He/O2 plasma microjet (APPµJ) was proposed. The APPµJ system combines an
atmospheric pressure plasma jet (APPJ) with a microfabricated silicon micronozzle with dimension
of 30 µm, which has advantages of simple structure and low cost. The possibility of APPµJ in
functionalizing PU films with hydroxyl (–OH) groups and covalent grafting of gelatin for improving
its biocompatibility was demonstrated. The morphologies and chemical compositions of the
modified surface were analyzed by scanning electronic microscopy (SEM), Raman spectroscopy,
and X-ray photoelectron spectroscopy (XPS). The fluorescent images show the modified surface can
be divided into four areas with different fluorescence intensity from the center to the outside domain.
The distribution of the rings could be controlled by plasma process parameters, such as the treatment
time and the flow rate of O2. When the treatment time is 4 to 5 min with the oxygen percentage of
0.6%, the PU film can be effectively local functionalized with the diameter of 170 µm. In addition, the
modification mechanism of PU films by the APPµJ is investigated. The localized polymer modified
by APPµJ has potential applications in the field of tissue engineering.

Keywords: atmospheric pressure plasma microjet; polyurethane; maskless surface modification;
gelatin; covalent grafting

1. Introduction

With the development of tissue engineering, the interaction between biomaterials and cells has
drawn much attention [1–3]. Advanced biomaterials should promote cell responses such as adhesion
and spreading [4]. Polyurethane (PU) is a preferred biomaterial for many different applications,
such as artificial heart or artificial blood vessels, because of its excellent physical and mechanical
properties [5,6]. Nevertheless, PU with nonideal biocompatibility could result in low cell affinity and
affect the cell adhesion onto its surface, which could limit its extensive applications. Therefore, it is
important to modify PU with biocompatible components, such as gelatin [7], chitosan [8], and other
extracellular matrix proteins [9] for improving its biocompatibility.

The surface modification methods of the biomaterial can be attributed to the followings: wet
chemical [10], ultraviolet light irradiation [11], ozone treatment [12], nonthermal plasma treatment [13],
etc. However, wet chemical methods need to use toxic reagents which can easily lead to environmental
pollution [14]. Besides, a major drawback of ultraviolet light irradiation and ozone treatment is that
they tend to enhance polymer degradation [15,16]. Nonthermal plasma treatment has a wide range
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of applications due to the advantages of being solvent free, treating complex shaped surfaces, and
not affecting the mechanical properties of the polymer [17]. However, the conventional low pressure
plasma surface modifications need complex and expensive vacuum systems [18]. Atmospheric pressure
plasma is generated in ambient air, and has been considered as one of new key technologies in the
field of surface treatment. Several plasma sources have been designed for surface processing of
materials, such as dielectric barrier discharges (DBDs) [19,20] and atmospheric pressure plasma jets
(APPJs) [21,22]. The typical electrode shapes of DBD sources are mainly parallel plate and cylinder.
The treated material needs to be placed between the electrodes, so the space is limited. APPJs are
generated in open space rather than in confined gaps, therefore, there is no limitation on the size and
structure of the object to be treated. In recent years, more and more attention has been focused on
the local modification of biomaterials to improve cell adhesion and migration, which has potential
applications in cell patterning [23,24], biosensors [25], etc. Nevertheless, it inevitably requires masks to
obtain micropatterns when using the APPJ to modify the biomaterial surface, which not only increases
costs, but also limits the flexibility of fabrication.

A large amount of effort has been made by researchers in recent years to solve those problems.
An atmospheric pressure plasma microjet (APPµJ) generated by various types of discharge mechanisms
has been developed. The characteristic size of APPµJ can reach micrometers or even nanometers
at atmospheric pressure [26,27]. It provides a method for micro/nano-scale surface modification
without a mask. In our previous work, a novel APPµJ-based material processing system has been
proposed and successfully applied for maskless localized etching of photoresist [28]. Different from
other APPµJ structures, our APPµJ has a microfabricated micronozzle which is attached to the outlet of
the millimeter scale quartz tube. The separated structure is convenient for assembly and replacement,
and it is therefore easy to obtain plasma microjets with different diameters and their arrays, which
could improve the flexibility and solve the problem of low processing efficiency of a single jet. To our
knowledge, only a few researchers have studied the local surface modification of biomaterial by APPµJ
for covalently coupling proteins [29,30], which may have great potential in the field of biomedicine.
The aim of our work is to achieve maskless micropatterning for surface grafting gelatin and to optimize
the plasma process parameters. The realization of this method may provide potential applications for
future cell adhesion and migration behavior research on the modified surface. In this work, a novel
maskless microplasma modification approach to achieve the localized modification of the PU films
for gelatin immobilization was proposed. When PU film is exposed to the He/O2 APPµJ, plasma
injected from a 30 µm micronozzle introduces hydroxyl (–OH) groups onto film surface, followed
by modification with organosilanes. Then, the glutaraldehyde can react with organosilanes to form
stable self-assembled monolayers. The glutaraldehyde is subsequently used to immobilize gelatin by
covalent bond, which is extensively used to improve the biocompatibility of the PU film. In addition,
the influence of gas composition and treatment time were investigated. The results show that the
effective functionalized area is approximately 170 µm in diameter when treated with 0.6% gas mixture
plasma for 5 min. Electrical characteristics and optical emission spectral (OES) of APPµJ were also
investigated. X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, fluorescence microscopy,
and scanning electronic microscopy (SEM) were used to characterize the surface chemical composition
and morphology changes.

2. Materials and Methods

2.1. Material

Polyurethane (PU, Bayer AG, Leverkusen, Germany) was used without further purification.
Glutaraldehyde (25%, Grade I) and (3-aminopropyl) triethoxy silane (APTES, 99%) were purchased
from Sigma-Aldrich Pte. Ltd. and used as received. FITC Conjugated Gelatin was purchased from
Thermo. Ltd. (Waltham, MA, USA). Phosphate buffer saline (PBS) was purchased from HyClone.
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2.2. Fabrication of Smooth PU Films

A portion of 0.5 g polyurethane particles were dissolved in a solution of 5.0 mL tetrahydrofuran
(THF) and stirred rapidly by magnetic stirring until it was completely dissolved. A planar polymer film
was received by dropping the solution on the glass. The remaining tetrahydrofuran was evaporated
until an approximately 150 µm thick film was formed. Finally, the prepared film was placed into a
vacuum oven and dried at room temperature to constant weight.

2.3. Atmospheric Pressure He/O2 Plasma Microjet

The schematic diagram of the APPµJ system is shown in Figure 1a. Figure 1c shows a local
magnified image of the APPµJ. This system includes an APPJ based on the dielectric barrier discharge
(DBD) principle, an inverted pyramid silicon micronozzle, XYZ axis linear stage. The APPJ is composed
of a quartz tube, a Teflon tube, a high-voltage (HV) electrode, and a grounded electrode. The discharge
of this pin-ring electrode structure is intense, resulting in lots of active plasma particles [31]. The length
of the quartz tube is 120 mm, and the inner and outer diameters are 3 and 5 mm, respectively. A copper
rod with a diameter of 2 mm and length of 80 mm is mounted inside the quartz tube, which works as a
high voltage electrode. A hollow Teflon cylinder is wrapped around the glass tube as an insulating
layer. A ring-shaped copper ground electrode is fitted around the Teflon tube, which is placed at a
distance of 30 mm from the tip of the high-voltage electrode and 40 mm away from the edge of the
quartz tube. An inverted pyramid silicon micronozzle with base dimension of 30 µm is attached to the
outlet of the quartz tube. A detailed description of the fabrication process of the micronozzle is given
in the next paragraph. The distance between micronozzle and PU surface is fixed at 1.0 mm. When
the plasma is generated in the tube, it can be delivered from the micronozzle to the surface of the PU
film, focused on the center. Figure 1b shows a photograph of the plasma microjet ejected from a silicon
micronozzle taken by digital camera.
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Figure 1. (a) The schematic of the atmospheric pressure plasma microjet (APPµJ) system; (b)
photograph of the plasma microjet ejected from a 30 µm silicon micronozzle; (c) local magnified
image of the APPµJ.

Figure 2a shows the fabrication procedure of the inverted pyramid silicon micronozzle. It was
fabricated on a 150 ± 10 µm thick p-Si (100) wafer by microfabrication technologies. The process
begins with a silicon wafer produced by conventional oxidation (i), photolithography (ii, iii), and
reactive ion etching (RIE, iv). The silicon dioxide was then used as the mask, and the inverted pyramid
micronozzle with the upper and lower dimensions of 242 µm and 30 µm was obtained by conventional
anisotropic wet etching with KOH (v). Finally, the protective layer of silicon dioxide was removed
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with hydrofluoric acid (vi). The schematic diagram and SEM images of the micronozzles are shown in
Figure 2b,c, respectively.Micromachines 2018, 9, x  4 of 12 
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2.4. Modification of Functionalized PU Films with Gelatin

The surface modification protocol is illustrated in Figure 3. Three steps are involved: (i) He/O2

plasma microjet treatment; (ii) (3-aminopropyl)triethoxy silane APTES and glutaraldehyde (GA) graft
polymerization; and (iii) gelatin immobilization.
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Figure 3. Schematic diagram of the three-step surface modification protocol.

The prepared smooth PU films were treated by a helium and oxygen gas mixture APPµJ for
hydroxyl group (–OH) functionalization [32]. The functionalized hydroxyl groups on PU films make
covalent bonding to biomolecules possible, such as to protein and gelatin [33,34]. The PU film
was placed on the platform and subjected to the microplasma for different process parameters to
obtain the optimum result. Surface-activated PU films were then immersed into 150 mL 0.5% APTES
aqueous solution for 30 min to form APTES-PU [35,36], after drying in oven at 50 ◦C, it was then
immersed into 150 mL 2.0% GA solution for 30 min to form GA-APTES-PU, which was used for gelatin
immobilization. For studying the possibility of connecting biomolecules on the polymeric surface with
the organosilane as intermediates, we used a fluorescently labeled gelatin with a molecular weight of
10,000 Da. In this way we can detect the eventual gelatin immobilization by fluorescence microscopy.
Thirty ul of 1 mg/mL fluorescein isothiocyanate (FITC)-Gelatin solution were manually deposited onto
the as-prepared film subjected to aldehyde groups of GA overnight to form gelatin-immobilized PU
films, referred to as gelatin-GA-APTES-PU. Subsequently, unreacted gelatin was removed by washing
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extensively with PBST solution (0.5% Tween-20 in PBS buffer), PBS solution, and then distilled water
for 3 times, respectively.

2.5. Diagnostic Methods

The APPµJ is driven by the AC sinusoidal resonant high voltage power source (CTP-2000 K,
Nanjing Suman Electronics Co., Nanjing, China) of ±7.0 kV amplitude at a frequency of 10 kHz.
The discharge is produced in a glass tube with 1000 sccm helium and 6 sccm oxygen mixed gases.
The flow rates of helium and oxygen are controlled by mass flow meters, respectively. The voltage
of discharge is measured by a high voltage probe (Tektronix, Inc., P6015A, 1000:1, Beaverton, OR,
USA), and the discharge current of plasma in the glass tube (I1) and plasma microjet (I2) were obtained
by measuring the voltage by 10 Ω non-inductive resistors, R1 and R2, respectively. The electrical
behavior was monitored via a Tektronix digital oscilloscope DPO-3014, and the optical emission of the
discharge was collected by an optic spectrometer through an optical fiber (Avantes, AvaSpec-2048-4,
wavelength: 250–950 nm, resolution: 0.12 nm, Apeldoorn, The Netherlands). The fiber integrated
with the collimating lens was placed at the side of the microjet and collected optical emission from
plasma. The morphologies of modified PU films were observed by optical microscopy (BA310Met-T,
Motic) and SEM (Zeiss Evo 18). XPS analysis was performed by X-ray photo-electron spectrometry
(Thermo ESCALAB 250, Thermo Fisher Scientific, Waltham, MA, USA) with an excitation source of Al
Ka radiation (hυ = 1486.6 eV). The X-ray spot size was 500 µm. Raman measurements were performed
using a 785 nm laser and an Andor Shamrock SR-500iA spectrometer (Andor Tech, Belfast, Northern
Ireland) equipped with a charge-coupled device (CCD) camera (DV420A-OE, Andor Tech) connected
to PC. A 60× water immersion objective lens was employed with the confocal microscope to focus the
laser, which was focused (50 mW) on the sample over an exposure time of 10 s.

3. Results and Discussion

3.1. Electrical Characteristics of APPµJ

Figure 4 shows the typical waveforms of applied voltage and current characteristic of APPµJ.
According to the waveforms, multi-spikes are observed in the current waveforms (I1) during both
positive and negative half cycles of applied voltage. The life of each current pulse is several tens of
nanoseconds. We speculate these current peaks correspond to the typical filament discharge between
power and ground electrodes through the quartz discharge tube. The discharge current of the plasma
microjet (I2) has several multi-spikes. During these current peaks, plasma bullets ejected from silicon
nozzle are irradiated onto the PU film surface [37,38].
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3.2. The Optical Emission Spectral Characteristics of APPµJ

Figure 5a shows the optical emission spectra of the APPµJ under the same applied voltage of
±7.0 kV. The spectrum shows that there are strong nitrogen molecular lines as well as a few helium
and oxygen atomic lines. Nitrogen species arise because the plasma is ejected into the air where its
energetic electrons and He metastables ionize and excite air molecules [39]. The emission spectrum
clearly indicates that OH (306–309 nm), O (777 nm), and He (587, 707 nm) exist in the plasma microjet.
The lines 337, 357, and 380 nm represent the second positive system of nitrogen molecules. The lines of
the first negative system of N2

+ at 391 and 427 nm are also visible in the spectrum [40]. In order to
study the effect of the oxygen concentration on oxygen-containing functional groups, different volumes
of oxygen are added to obtain the optimum parameters, as shown in Figure 5b. It is noted that with the
oxygen ratio increasing from 0.6% to 1.0%, the intensity of reactive O atom and OH radicals decrease.
The most important reason is that oxygen, as an electronegative gas, has high-electron affinity. When
the seed electron density is reduced with the increase of oxygen ratio, weakening of the discharge can
be observed [41]. The decreasing of the reactive species could affect the number of surface functional
groups, which is in accordance with the fluorescence microscopy images. Details will be discussed in
the following sections.
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3.3. XPS Analysis

As show in Figure 6a,b, XPS measurements were performed on pristine and plasma treated
samples to get an insight into the chemical composition of the PU surface. Based on the deconvoluted
C1s peaks, the concentration of the different chemical bonds can be calculated and the obtained results
are given in Table 1. It can be seen that the concentration of C–C and/or C–H bonds decreases after
He/O2 plasma treatment, while the concentration of oxygen-containing groups (C–O, C=O, and
O–C=O) strongly increases. During the treatment, we conjecture that metastables, reactive species,
and UV and VUV photons in the plasma microjet will weaken and break the C–C and/or C–H bonds
of the outermost PU film for surface activation [39,42]. As a result, the ratio of C–C and/or C–H bonds
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decreases. Oxygen, as a reactive gas, can generate the oxygen-containing functional groups and these
groups can be bonded to the macromolecule chain directly, changing the chemical composition of
the film surface. Moreover, the plasma itself consists of charged species such as electrons and He
metastables which can ionize the oxygen and H2O in surrounding air to create more exited species, such
as O+, OH+, O−, O∗, and N2

+ [43,44]. Therefore, the increase of O indicates that oxygen-containing
polar groups are formed on the surface, which is important for biomolecule immobilization. Besides,
an increase of N is mainly due to the ionization of the nitrogen in the ambient air, however, it does not
react with organosilanes to form stable self-assembled monolayers and does not affect the grafting
of gelatin.
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Table 1. Atomic composition and concentration of chemical groups on the untreated sample and
plasma-treated PU sample. (He/O2 microjet, treatment time: 300 s, helium flow rate: 1000 sccm,
oxygen flow rate: 6.0 sccm, applied voltage: ±7.0 kV, nozzle–polymer distance: 1.0 mm).

Sample O/C Ratio (at%) C–N (%) C–C/C–H (%) C–O (%) C=O/O–C–O (%) O–C=O (%)

Untreated 29.18 3.41 71.22 14.52 10.84 0
Treated 35.23 19.40 34.93 27.86 15.60 2.21

Meanwhile, the C1s peak of the XPS spectra was also investigated in detail to evaluate which
oxygen-containing functional groups have been incorporated on the PU surface by plasma treatment.
As shown in Figure 6a, the C1s peak of the untreated PU film can be decomposed into three distinct
peaks, i.e., C–C/C–H (285.0 eV), C–O (286.5 eV), and C=O/O–C–O (287.7 eV) [45]. Figure 6b shows the
C1s peak of the PU film after He/O2 plasma treatment, the peak at 285.0 eV sharply decreases while
the peaks at 286.5 and 287.7 eV increase. The increase of the peak at 286.5 eV is due to the generation
of hydroxyl groups which are important for gelatin immobilization. Moreover, a new peak at 289.1 eV,
which can be attributed to O=C–O groups, appears after plasma treatment.

According to the XPS results, the surface of PU films have been locally functionalized with
oxygen-containing functional groups.

3.4. Surface Morphology of PU Film Functionalized by APPµJ and Modified by Gelatin

Figure 7a shows the micropatterns of FITC-gelatin on PU film modified by APPµJ for 5 min.
The applied voltage is ±7.0 kV, the helium gas flow rate is 1000 sccm, and oxygen gas is 6 sccm.
Figure 7b is the normalized fluorescent intensity profiles of the dash-dotted line in the fluorescence
microscope image. We find an interesting phenomenon that the fluorescent intensity of the
functionalized area is not uniform. It is obvious that four different regions can be observed from
the center to the outside area, which are defined as I to IV. The center region (170 µm) shows the
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strongest fluorescent intensity, followed by region II (390 µm) and region IV, indicating that the center
region has the best immobilization efficiency of gelatin. In the process of modification, large amounts
of high energy He atoms or reactive species in the plasma microjet accelerate the surface physical
bombardment of the film, which induces a variation in the surface roughness. As shown in Figure 7c,
the roughness in the central area is higher than in region II because of the different distribution of
the active particles in the microjet [46,47]. Along the expansion of rings, the diameter of region III
is about 750 µm. The surface morphology of this region is relatively smooth and the fluorescence
intensity is the weakest. It means that there are no effective functional groups in region III. The result
is in accordance with the Raman spectroscopy analysis in Section 3.5. This phenomenon is due to
the diffusion effect when the plasma is transferred to the surface of the sample and the interactions
between the plasma microjet and the surrounding air [39]. Region III should be the transition area
between the core area and the peripheral area of the plasma propagating along the film surface. We
conjecture that the smooth surface is attributed to the influence of airflow [48]. The mechanism of
surface modification still deserves further study. The diameter of the outermost region IV is about
1200 µm and the roughness and the fluorescent intensity of this area are relatively lower than the
central area because the chemical species in the expansion plasma differed from the center towards the
outside [47–50].
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3.5. Raman Spectroscopy Analysis

To further verify our inference, we performed Raman spectroscopy analysis. As shown in
Figure 8a, the Raman spectra of 5 different regions (regions I–IV and the edge region) of the
plasma-treated PU film and untreated PU film were measured. From the Figure 8a, we can see
the primary alcohol (RCH2OH) peak at 1050 cm−1 [51]. In order to better understand the difference
between the peaks of different regions, we further processed these Raman signals. The Raman signals
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of region I–IV and the edge region on the plasma-treated sample were subtracted from the Raman
signal of the untreated region, resulting in Figure 8b. There is a distinct peak at 1050 cm−1. The peak
of region I is the strongest, followed by region II and region IV. Region III is almost similar to the edge
region, and no obvious peak is found. The different fluorescence intensities of the treated area were
attributed to the different hydroxyl distributions on PU film surface. This result is consistent with our
fluorescence result and also verifies our hypothesis.Micromachines 2018, 9, x  9 of 12 
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3.6. Influence of O2 Flow Rate and Plasma Treatment Time

For further evaluation of the functional area by the plasma-assisted process, we analyzed the
effects of other processing parameters. Figure 9 shows that the fluorescence images of the functional
area varies with processing time and oxygen percentage. Under the same treatment time, as the
oxygen flow rate increases from 6 sccm to 10 sccm, the fluorescence intensity of the region I and II was
gradually decreased. The increase of the oxygen gas flow rate could lead to a significant decrease in
the density of oxygen radicals. It is attributed to the recombination of active species [52], which is
in accordance with the optical emission spectrum analysis. Beyond that, the fluorescence intensity
of region IV was also decreasing. The additional oxygen might absorb the electrons and quench the
metastable He atoms [41]. The decrease of energetic electrons and metastable He atoms makes the
physical bombardment effect weakened, thus decreasing the roughness.
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Under the same O2 flow rate, the fluorescence intensity increases gradually as the processing time
increasing. Analyzing from the intensity distribution of fluorescence images, when the processing time
is 4 to 5 min with the oxygen percentage of 0.6%, the PU film can be effectively locally functionalized
with hydroxyl groups. When the processing time increases to 6 min, the central region I of the film
surface was seriously damaged, which caused no gelatin grafting on this region. Besides, when the
oxygen percentage is 0.8% or 1.0%, the concentration of fluorescence intensity of regions I and II was
slightly increased as the processing time increasing, which indicated the functionalized efficiency is
improved slightly.

4. Conclusions

In this paper, a method for localized maskless modification of PU films by using an APPµJ was
proposed. We demonstrated the possibility that He/O2 plasma is able to functionalize PU films
for gelatin immobilization. Due to the different spatial distribution of oxygen-containing functional
groups and the interaction between microplasma and ambient air, different areas of the PU film were
grafted with gelatin with different fluorescence intensity. Finally, the effects of plasma processing
time and oxygen flow rate on the surface functional results of the PU films were discussed. When the
processing time is 4 to 5 min with the oxygen percentage of 0.6%, the PU film can be effectively locally
functionalized with the diameter of 170 µm. We found that the ratio of O2 flow had a great influence
on the functional results, and that higher O2 flow tended to weaken the discharge intensity and reduce
the degree of functionalization. We believe that the localized maskless modified polymer surfaces by
APPµJ could offer opportunities for applications in the tissue engineering, biosensing, and biomedical
fields. In the future work, we will combine the silicon micronozzle arrays with scanning technology to
realize localized maskless micropatterning of biomaterials.
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