
micromachines

Article

Flexible Tactile Sensor Array Based on Aligned
MWNTs-PU Composited Sub-Microfibers

Weiting Liu 1, Xiaoying Cheng 1,2,*, Xiaodong Ruan 1 and Xin Fu 1

1 State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, No. 38 Zheda Road,
Hangzhou 310027, China; liuwt@zju.edu.cn (W.L.); xdruan@zju.edu.cn (X.R.); xfu@zju.edu.cn (X.F.)

2 Faculty of Mechanical Engineering and Automation, Zhejiang Sci-Tech University, No. 928 Second Avenue,
Hangzhou 310018, China

* Correspondence: Chengxy@zju.edu.cn; Tel.: +86-571-8795-3395

Received: 27 February 2018; Accepted: 20 April 2018; Published: 24 April 2018
����������
�������

Abstract: This present paper describes a novel method to fabricate tactile sensor arrays by producing
aligned multi-walled carbon nanotubes (MWNTs)-polyurethane (PU) composite sub-microfiber (SMF)
arrays with the electrospinning technique. The proposed sensor was designed to be used as the
artificial skin for a tactile sensation system. Although thin fibers in micro- and nanoscale have
many good mechanical characteristics and could enhance the alignment of MWNTs inside, the high
impedance as a consequence of a small section handicaps its application. In this paper, unidirectional
composite SMFs were fabricated orthogonally to the parallel electrodes through a low-cost method
to serve as sensitive elements (SEs), and the impedances of SEs were measured to investigate the
changes with deformation caused by applied force. The particular piezoresistive mechanism of
MWNTs disturbed in SMF was analyzed. The static and dynamic test results of the fabricated tactile
sensor were also presented to validate the performance of the proposed design.

Keywords: flexible tactile sensors; sub-microfiber array; nanocomposite; carbon nanotubes; electrospinning

1. Introduction

To simulate the human skin, which has four types of mechanoreceptors to archive high spatial
definition and keep flexibility and compliance simultaneously, extensive research has been conducted
on developing different kinds of transduction methods for tactile sensors that can be embedded
in the structure of a robot or prosthetic hand [1–4]. Among these mechanisms, the piezoresistive
method is prevalent for its simple and low-cost preparation process with good flexibility [5].
Moreover, piezoresistive composite materials made up of the polymeric matrix and conductive
fillers have been widely studied over the last decades because of their higher sensitivity and higher
compatibility with complex curves than rigid materials such as microelectromechanical systems
(MEMS) piezoresistors [6–8]. Although the composites are intrinsically sensitive and flexible, the bulky
size (especially in the thick direction) of these materials would impede the full utilization of these
good properties [9]. In contrast, the form of fine fiber can improve the sensitivity and flexibility of
materials [10,11], and unlike direct drawing, template synthesis, self-assembly and phase separation
techniques, electrospinning is a more effective and convenient method able to fabricate polymer-based
composite fibers in various diameters [12]. However, the nano- and microfibers of functional
composites are well applied in many areas, such as biological and chemical sensors [13], whereas the
reports about the tactile sensing are few [14,15].

Therefore, to develop a highly sensitive, simply structured and low-cost tactile sensing device,
this paper presents a novel proposal of a flexible tactile sensor based on sensitive composited SMF
arrays fabricated by a modified electrospinning method. The composite here is a dielectric polymer
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with conductive particles filled. The electrical resistivity of this material would drop continuously
when the volume fraction of dopant increases until the percolation threshold is reached. At this point,
the resistance of the composite changes dramatically along with the variation of external force
applied on it [16]. Although the associated theory in bulk size has already been extensively studied,
the counterpart in slim structure has not been reported other than morphological analysis [17,18].
In this work, conductive polymer composite is prepared in aligned thin fibers of sub-micrometer
scale to archive highly orientated arrangement of conductive fillers. Unidirectional composite
sub-microfibers (SMFs) are orthogonal to the parallel electrodes to form resistance networks to
decrease the high impedance of one single composite fiber. Then two sets of n SEs parallel arrays are
perpendicular to each other to form a matrix so that 2n sensitive elements (SEs) can make both electrical
connection and electronic interface much easier than N × n SEs. Meanwhile, SMFs are developed by
electrospinning process modified by rotating technique which has a much simpler processing than
other solutions of producing the slim structure.

In the previous study, it was found that a polymer integrated with carbon nanotubes could achieve
good piezoresistive performance because of the property of the latter material [19]. In this paper,
multi-walled carbon nanotubes (MWNTs) are distributed into polyurethane (PU) to realize the tactile
sensor. By a modified electrospinning technique, composite fibers are fabricated onto a flexible
printed circuit board (FPCB), which is demonstrated later. The resistivity-force characteristics of
these sensors are investigated. Other relevant data such as static and dynamic properties are also
shown. The mechanism of the sensing process and the structure of the proposed sensor is described in
Section 2. Section 3 is about the fabrication of sensing elements through the modified electrospinning
method. Then, the test results are shown and discussed in Section 4.

2. Sensor Mechanism and Design

2.1. Mechanism Analysis

In this work, sensitive elements are made of PU with doped MWNTs. Carbon particles are
utilized as one of the most common conductive filling materials for their high electrical conductivity
and stability. When approaching percolation threshold, MWNTs can not only improve the sensitive
of piezoresistive composite much more than other allotropes but also decrease the influence on the
impedance from ambient temperature [20]. A large amount of research has already been reported
about the application of MWNTs/polymer composite in developing strain and force sensors in which
the sensitive elements are fabricated in bulk size [6,21,22]; however, in this paper, a novel tactile sensor
with the sensitive element in thin aligned fibers form is described. Thin fiber in sub-micrometer
diameter not only constrains the dispersion of MWNTs and increases their alignment as well as
electrospinning progress does [23], but also the drum collector arranges the polymer fibers parallel so
that MWNTs in different fibers remain in the same orientation which makes SEs show anisotropy in
electricity (see Section 4).

The electrical conductivity of sensitive fiber is mainly decided by the distance between the conduct
fillers (the conductivity of MWNTs is 104 S/m, whereas that of PU is usually less than 10−12 S/m).
However, different from the stretching situation, SMFs in the proposed sensor are compressed in the
radial direction as shown in Figure 1a. This drawing also demonstrates a typical dispersion of MWNTs
(simplified as long rods) in a PU fiber with an electric passage lined out. The blue lines are the passages
along the surface of MWNTs, and red ones are the passages in the polymer that dominate the resistance
of the composite fiber. The later passages could be divided into two kinds: the one connects to the
outside of the fiber (as 1 and 5 in Figure 1a) and the other connects to the inside of the fiber (as 2, 3 and
4 in Figure 1a). Situation 2 shows that two MWNTs are contacted or within the tunneling distance,
while situation 3 shows that two MWNTs are overlapped and four are the separated in the longitudinal
direction. Considering the longitudinal distance between MWNT and electrode or between MWNTs
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in different fibers, situations 1 and 5 could be classified into situation 3 or 4. Thus, the resistance of one
fiber could be described as

Rfiber =
j

∑
i=1

Rcnti +
k

∑
i=1

Rci +
m

∑
i=1

Roi +
n

∑
i=1

Rsi (1)

where Rcnti is the resistance of one MWNT along its surface, Rci is the resistance in situation 2, Roi is
situation 3, Rsi is situation 4; j, k, m, and n are the amounts of these resistances respectively. Because
the former two parts are smaller than the latter two by orders, the whole resistance could be estimated
by formula

Rfiber ≈
m

∑
i=1

Roi +
n

∑
i=1

Rsi (2)

As in Figure 1b, once the fiber is affected by a uniform load, the radius in the y direction will
compress and that in the x direction will elongate. However, because of the high aspect ratio of SMF,
the length in the z direction will barely change, and it can thus be ignored, simplifying the analysis.
This deformation causes two opposite effects on the whole resistance of the composite fiber: on one
hand, according to the law of resistance, the decrement of the section’s area (the elongation in the x
direction is shorter than the compression in the y direction for Poisson’s ratio) such as in situation 3
will increase the resistance; on the other hand, the two parts in situation 2 will decrease because the
distance between two MWNTs in the xy plane becomes smaller whereas the distance in the z direction
changes little, which possibly causes dramatic local resistance change owing to the distance variation in
the range of quantum-tunnelling effect in case of oriented arrangement of MWNTs. The predominated
function of the two contradictories determines the overall resistance change. When the ratio of MWNTs
is near percolation, the resistance of composite fiber will drop significantly under load.
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Figure 1. (a) A typical dispersion of multi-walled carbon nanotubes (MWNTs) (simplified as long
rods) in a polyurethane (PU) fiber, where the blue line indicates the electrical path along the surface of
MWNT and red one between two MWNTs; (b) The change of electrical path between two MWNTs
when the fiber is deformed by applied force.
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2.2. Structure Design

There are two layers of aligned composite SMFs in the proposed flexible tactile sensors.
These layers are mutually perpendicular and fabricated on different sides of an FPCB (Figure 2).
A serial of parallelized Cu strips on the polyimide (PI) film serve as electrodes which segment the
sensing layer. PI and Cu layers are 20 µm and 15 µm thick respectively. The Cu strip is 0.25 mm width
and the central distance of electrodes (CDoE) is set at 0.5 mm, 1.0 mm, and 2.0 mm to prepare sensors
with different spatial resolutions. The detail of the fiber structure will be discussed in Section 3.1.
It is very important that, between Cu strips, parallel resistor nets are formed to lower the resistance
and increase the measurability of composite fiber. As in Figure 2, several cuts are made on the SMFs
layer every two electrodes to separate each SE so as to decrease the coupling effect between adjacent
ones. Considering an SE affected by a uniform stress, the impedance measured is

R′m =
a(l − a)RfiberR′fiber

(l − a)Rfiber + aR′fiber
(3)

where R
′
fiber is the resistance of the fiber in the loading area, Rfiber is the resistance of the fiber out of

the loading area, l and a are the lengths of the SE and diameter of loading area respectively which can
also indicate the quantity of fibers. Each SE array of one side can detect the force distribution in one
dimension, and the information about force location and amplitude can be derived through combining
the responses of SEs from both sides.
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Figure 2. The schematic demonstration of the proposed flexible tactile sensor with two orthogonal
unidirectional composite sub-microfiber (SMFs) layers on both side of flexible printed circuit board
(FPCB). One SE consisting of parallel SMFs between two electrodes is indented with a round contact
area as in the figure.

2.3. Signal Acquisition

Figure 3 is the diagram of the data acquisition system. However, the normal multiplex circuits
cannot obtain the current signal from the SE because of the high resistance. Thus, the resistance signals
of piezoresistive arrays are converted to voltage signals by a specially developed 16-channel high
resistance measuring device. Then, the signals are sent to the acquisition board (NI-6394, National
Instruments Corporation, Austin, TX, USA) and the data are analyzed and displayed on a computer.
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By changing the mass ratio of fillers in composite, the average impedance between two electrodes
could be adjusted to the scale of 109 Ω (see Section 3.1). Thus, the high resistance measuring device is
designed to detect resistance variation ranging from 1.0 × 108 Ω to 0.4 × 1010 Ω.
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3. Development of Sensor

3.1. Preparation of Composited Material

The MWNTs used in this paper are Dimethylformamide (DMF) based on dispersion with 7.8 wt %
of solid (Timesdisper, TNDDM, Chengdu Organic Chemicals, Chengdu, China), and the PU is
Elastollan 1185 A from BASF SE (BASF Polyurethanes GmbH, Lemförde, Germany). The densities of
the MWNTs and PU are 1.8 g/cm3 and 1.12 g/cm3, respectively. The outside diameter of the MWNTs
is 50 nm and the length is around 10~20 µm. To increase the spinnability of the composite, we have
chosen tetrahydrofuran (THF, Sinopharm Chemical Reagent, Shanghai, China) as the solvent so that
PU is kept at 15 wt % of the solution. To maximize the sensitivity of composite, the volume ratio
of filler and polymer should be close to percolation threshold. This value is converted to mass ratio
for convenience.

Differently to other conductive fillers, MWNTs can be treated as long rods with a large aspect
ratio. According to Celzard et al.’s work [24], the excluded volume method has good efficiency in
estimating the critical concentration of material in this shape. The critical concentration, which is the
volume fraction of the filler in composite, can be calculated by

φc = 1− exp
(
−
〈Vex〉Vcyl

〈Ve〉

)
(4)

where Vcyl is the volume of filler and can be derived from the following equation with assuming that
MWNTs are long rods (l) with hemispherical ends (r):

Vcyl =
4
3
πr3 + πlr2 (5)
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<Ve> represents the average exclude volume of this rod-like filler and it is given by

〈Ve〉 =
32
3
πr3 + 8πr2l + πrl2〈sin γ〉µ (6)

<sinγ>µ is an indication of the orientation degree of the fillers and complex to be calculated;
however, there are two extreme cases of this volume: γ = π/4 for randomly aligned fillers and γ = 0
for parallel aligned ones. <Vex> is the total excluded volume and same as <sinγ>µ: 1.4 for randomly
and 2.8 for parallel [25]. Thus, the critical concentration can be as high as 29.53% when the MWNTs
are totally paralleled. To search for this volume ratio of the composite SMF, we have prepared and
exploited a series of different solutions for the fabricating process described in Section 3.2 (CDoE is
0.5 mm and the width of fiber film is 25 mm). The surface resistance is measured by a high resistance
meter (ZC-90G, Shanghai Taiou Electronic, Shanghai, China) and shown in Figure 4, and the abscissa
is the mass ratio for convenience. It is obvious that the critical concentration is located between 25%
and 30% mass ratio, i.e., 15.5% and 18.6% volume ratio. Considering the resistance of SE decreases
when force is applied, the mass ratio of the composite is chosen at 25% in order to reach reliable
resistance measurement.
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3.2. Fabrication of Sensitive SMF by Modified Electrospinning

The electrospinning method is an efficient technique to fabricate fine polymer fibers with a
diameter ranging from several nanometers to micrometers [26]. However, the randomness of fibers’
arrangement is a significant defect of this method. To overcome this problem, many researchers have
reported several modified techniques [27–30]. In this paper, a drum collector [30] is implemented to
produce thick and large fine fiber film so that its resistance could be decreased effectively [31].

The diagram of the fabrication system is shown in Figure 5. The pipette with a 1 mm diameter
outlet is mounted on a motion stage which is jogging at 1 mm/s with a stroke of 25 mm during
the fabricating process. An aluminum drum with a diameter of 75 mm is driven by a step motor to
5000 rpm and the FPCB is attached to its surface with its electrodes parallel to the axis. It is important
to connect all the electrodes to the drum to increase the effect of alignment of the fibers [29]. A syringe
pump is connected to the pipette and supplying the composite solution at 0.5 mL/h. The distance
between the tip and drum is 6 cm and 12 kV voltage is applied.
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Figure 5. The diagram of fabrication system of aligned SMFs on FPCB based on electrospinning
device. Number 1 is a syringe pump, 2 is a high voltage generator, 3 is a linear motion stage and 4 is a
motor-driven aluminum drum with FPCB attached.

It is difficult to determine the thickness of the fiber film during the fabrication. Therefore,
electrospinning time is chosen as the factor to control the thickness. After the fabrication on one
side is finished, the FPCB is turned over and rotated 90◦ before reattached to the drum, and then the
other side begins to collect. The photo of a fabricated flexible tactile sensor is shown in Figure 6a.
A scanning electron microscope (SEM; SU8010, Hitachi, Tokyo, Japan) image of SMFs between two
electrodes in Figure 6b is clearly shown the detail designed structure, and the collected fibers are
distributed in an acceptable alignment. However, the structure is not totally regulated and the main
reason is the high conductivity of electrospinning solution which increases the bending instability of
jet [32]. Investigation of the high magnification SEM photo (Figure 6c) revealed to us that the diameters
of composite fibers were mainly under 1 µm in the sub-micrometer scale. Also, three transmission
electron microscope (TEM; CM200, Philips, Amsterdam, The Netherlands) images of a single composite
SMF in Figure 7 shows the typical situation 2, 3 and 4 of MWNTs dispersion described in Section 2.1
which dominate the resistance change while a force is applied. To protect the sensitive fibers, we have
applied a polyimide (PI) layer (7413D, 3M Company, Maplewood, MN, USA) with the thickness of
60 µm over the SMF layer.
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4. Test and Discussion of Results

4.1. Piezoresistivity of Single SE

To measure the piezoresistivity of the parallel SMF structure between two electrodes,
a polymethylmethacrylate (PMMA) disk with a diameter of 10 mm is placed on the composite material
of the proposed sensor and the SE under the center of the disk is observed. The resistance changes
of SEs with different fabrication time are measured by the high resistance meter when the readout is
stable after different weights are placed on this square. The test results drawn in Figure 8a show that
the impedance of SMF decreases dramatically when the weight starts to increase (the initial weight
is 20 grams) and, after a period of fast dropping, it slowly reaches a flat area where adding weight
(increased to over 1000 gram) influences it little because the Young’s modulus of PU increases greatly
along with the increasing of deformation. To fit the results from SMFs fabricated in 10 min, a logarithm
function is used for the resistance change:

y = −1.087− 0.142 ln
(

x + 4.81× 10−4
)

(7)

According to Fechner’s law [33], for human perception, the relation between stimulus and
perception is a logarithm which just fits the sensitive curve of proposed tactile sensor. This property
grants the sensor high sensitivity to distinguish the small differences in low force area and a large
range of measurement.

By changing the electrospinning time, a series of SMF layers of different thicknesses is produced
and the increase of the thickness (represented by electrospinning time) reduces the change rate of
resistance obviously, as in Figure 8a. The main reason for this reduction could be that the thicker the
SMF layer is, the less the decrement ratio of thickness under the same weight would become because
the strain of the elastic layer that counterbalances the pressure stays the same.

To study the effect of parallel resistors networks formed by unidirectional SMFs orthogonal to
the parallel electrodes, tactile sensors with the direction of SMFs along the parallel electrodes are
prepared and served as comparatives. The comparisons between resistances of SEs from different
sensors are drawn in Figure 8b while the SEM images of SMFs in two different arrangements are shown
in Figure 8c,d. The impedances from counterparts are higher than from the proposed sensor and this
disparity is maintained at around 150% as the CDoE enlarges, which means the proposed structure
has a persistent effect on decreasing the resistance of SE. This phenomenon could be explained as that
the MWNTs in the SMFs orthogonal to the electrodes could form the electrical paths as described in
Section 2.1 whereas electrical paths in the SMFs parallel to the electrodes would mainly depend on
situations 1 and 5 which have higher impedances than the rest.
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4.2. Static and Dynamic Validation Test

Experiment tests to validate the prototype flexible tactile sensor can be divided into two kinds
by the equipment setups: static validation test and dynamic validation test. The former implements
a static indentation test and sliding test with the combination of an auto positioner (VP-25XYZL,
Newport, Irvine, CA, USA) and a linear motion stage (LM-600, Newport) while the latter performs a
dynamic indentation test with a vibration exciter (V406, Brüel & Kjær, Nærum, Denmark, controlled
by Spider-81B controller from Crystal Instruments, Santa Clara, CA, USA) as the photos shown in
Figure 9.

Micromachines 2018, 9, x  9 of 13 

 

 
Figure 8. (a) The resistance change of SE with different thickness of SMFs layer under applied weight 
(measured in 10~15 s after weight placed); (b) The resistance change ratio comparison between SMFs 
perpendicular and parallel to electrodes with different CDoE; (c) SEM image of SMFs perpendicular 
to electrodes; (d) SEM image of SMFs parallel to electrodes. 

4.2. Static and Dynamic Validation Test 

Experiment tests to validate the prototype flexible tactile sensor can be divided into two kinds 
by the equipment setups: static validation test and dynamic validation test. The former implements 
a static indentation test and sliding test with the combination of an auto positioner (VP-25XYZL, 
Newport, Irvine, CA, USA) and a linear motion stage (LM-600, Newport) while the latter performs a 
dynamic indentation test with a vibration exciter (V406, Brüel & Kjær, Nærum, Denmark, controlled 
by Spider-81B controller from Crystal Instruments, Santa Clara, CA, USA) as the photos shown in 
Figure 9. 

 
Figure 9. (a) A photo of static test equipment, where 1 is an auto positioner, 2 is a linear motion stage, 
3 is proposed sensor and 4 is a static force sensor; (b) A photo of dynamic test equipment, where 1 is 
a vibration exciter, 2 is a dynamic force sensor, 3 is proposed sensor and 4 is manual positioner. 

In the static test, parallel SEs on one side of the FPCB are considered. During the static 
indentation test, a series of PMMA round disks with different diameters is set between indenter and 
sensor. The resistances of the SMFs under the disk will decrease at the present of indentation force 
and the change of impedance between two electrodes should follow with Equation (3). The results in 

Figure 9. (a) A photo of static test equipment, where 1 is an auto positioner, 2 is a linear motion stage,
3 is proposed sensor and 4 is a static force sensor; (b) A photo of dynamic test equipment, where 1 is a
vibration exciter, 2 is a dynamic force sensor, 3 is proposed sensor and 4 is manual positioner.
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In the static test, parallel SEs on one side of the FPCB are considered. During the static indentation
test, a series of PMMA round disks with different diameters is set between indenter and sensor.
The resistances of the SMFs under the disk will decrease at the present of indentation force and the
change of impedance between two electrodes should follow with Equation (3). The results in Figure 10
demonstrate that the structure of parallel SEs has a good spatial discrimination in one direction.
For the sliding test, a polydimethylsiloxane (PDMS) cylinder is attached to the end of the indenter to
serve as an elastic buffer and driven by the linear motion stage with different velocities. A typical
output of the parallel SEs under a sliding of 10 mm/s is drawn in Figure 11a, and by measuring the
time differences between the adjacent SEs and considering the distance between them, the sliding
speed could be calculated from the signals. The calculation results of varying speed from 10 mm/s
to 50 mm/s are drawn in Figure 11b and compared with the real speed to show the accuracy of the
estimation by proposed sensor.
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Figure 11. (a) Output of parallel SEs (CDoE is 1 mm) under a sliding of 10 mm/s filtered by 30 Hz
low-pass; (b) Calculated speed from the time difference of output’s peak between adjacent SEs;
(c) Normalized output of a SE under sine indentations with different frequencies filtered by 30 Hz
low-pass; (d) The responses of the SE to sine indentations with different frequencies.
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In the dynamic test, the indentation force is set as a sine wave with varying frequencies from 5 Hz
to 25 Hz while the amplitude is invariant to validate the frequency-domain performance of the tactile
sensor. Figure 11c draws the filtered signals of one SE in a 0.2 s period under the indentation force of
5 different frequencies, and for easy to compare, all the amplitudes are normalized. Figure 11d shows
the responses of the SE to the indentation force of different frequencies. From the curves, we could find
that the proposed sensor has a good response to the dynamic force with the frequency under 25 Hz.

5. Conclusions

Composite SMF has both the piezoresistive property of conductive composite and good
mechanical characteristics from its sub-micro scale. The proposed structure of unidirectional SMFs
orthogonal to the parallel electrodes could decrease the impedances of SEs while increasing the
piezoresistive property of them. The fabrication of the tactile sensor proposed in this paper is simple
to be realized, and the flexibility of this tactile sensor is obvious, as shown in the photo. The prototype
sensors are fabricated and their static and dynamic performances are also tested. The proposed sensor
could detect applied static force changing within 10 N and has a minimum sensitive to 0.2 N; it also
could measure the speed of sliding in the direction perpendicular to the electrodes. For dynamic
testing, this sensor could follow the sine indentation with frequencies from 5 Hz to 25 Hz. However,
the surface resistance of SE is still too large (~109 Ω) which produces very small signals that hinder the
development of signal acquisition circuits and weaken the capacity of resisting interference. Further
research on this flexible tactile sensor should focus on increasing the conductivity of SMF, and also
another future work would be to mount the sensor onto a prosthetic and grant closed loop control on
the task of grasping subjects.
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