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Abstract: Since the systematic evolution of ligands by exponential enrichment (SELEX) method was
developed, aptamers have made significant contributions as bio-recognition sensors. Microdevice
systems allow for low reagent consumption, high-throughput of samples, and disposability. Due to
these advantages, there has been an increasing demand to develop microfluidic-based aptasensors for
analytical technique applications. This review introduces the principal concepts of aptasensors and
then presents some advanced applications of microdevice-based aptasensors on several platforms.
Highly sensitive detection techniques, such as electrochemical and optical detection, have been
integrated into lab-on-a-chip devices and researchers have moved towards the goal of establishing
point-of-care diagnoses for target analyses.
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1. Introduction

In the past decade, technologies for analytical detection sensors have undergone significant
growth. Conventional sensors are robust, reliable, and provide high reproducibility of measurements.
However, their main drawback is that they cannot be integrated into a compact packaging flow,
which in many analysis cases is critical. Beyond this, expensive instrumentation and long analysis time
are general problems to be considered. For these reasons, microdevice platforms offer an attractive
alternative to conventional techniques [1]. Furthermore, microdevices are also important for reducing
the amount of sample required, for alleviating interferences or cross-contamination by their disposable
design, and for integrating multiple sensor arrays to increase the throughput. Sensors perform three
functions: targeting an analyte, recognizing an element, and transducing a signal. The analyte interacts
in a selective way with the recognition site, which shows some affinity or a catalytic reaction. In a
biosensor, the recognition system is based on biochemical or biological sensing elements such as
antibodies, enzymes, nucleic acids, or aptamers [2]. These elements are commonly immobilized on a
physicochemical transducer and combined with a detector to generate an electronic signal readout that
is proportional to the quantity of the target. Antibodies and enzymes have made a big contribution
to a wide range of applications that are based on molecular recognition. The use of antibodies
became widespread by the 1970s, when polyclonal techniques from immunized animals was a popular
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choice [3]. The catalytic enzyme-based recognition system is very attractive in biosensor applications
due to a variety of measurable reaction products arising from the catalytic process, which includes
protons, electrons, light, and heat. Despite the fact that antibodies and enzyme based assays are
established as a standard method for analytical detection, they are still restricted in recognizing several
small molecules or non-immunogenic targets, which are not easy to analyze and differentiate.

Oligonucleotides such as RNA, DNA or peptides can be used as the receptor for the recognition
of specific small organic molecules or even as a complementary strand in the hybridization process.
The name of such an oligonucleotide is aptamer (“aptus” meaning “fitted” and “meros” meaning
“part”) [4]. Some aptamers contort into three-dimensional (3D) conformations that can bind to target
molecules in stable complexes and they commonly rely on van der Waals forces, hydrogen bonds,
or electrostatic interactions [5]. Aptamers play a role similar to antibodies. However, they are obtained
by a chemical synthesis that is easily modified, more stable, and inexpensive. Also, aptamers can
discriminate between highly similar molecules, such as theophylline and caffeine, which differ by only
a methyl group [6]. In addition, after performing the recognition function, aptamers can be efficiently
regenerated without loss of either sensitivity or selectivity [7]. All these features make aptamers very
suitable as a receptor in bio-sensing applications than antibodies.

This review, as described in Figure 1, addresses the current state of research related to microdevice
instruments and the advantage of emerging aptamer biosensor for numerous applications and target
analysis. It is divided into three parts: (i) classification of microdevice platforms; (ii) detection methods
and assay formats; and (iii) applications to actual samples. Current work in aptamer selection-based
microdevices and characterizations are also covered, and future perspectives in the field are offered.
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methods and application to actual samples.

2. The SELEX Method (In-Vitro Selection)

Aptamers are oligonucleotides, commonly 12–80 nucleotides long, and they have a function to act
as specific affinity receptors towards a broad spectrum of numerous targets including small organic
molecules, proteins, cells, viruses, and bacteria. New aptamers are originated by an in vitro selection
process known as the SELEX (Systematic Evolution of Ligands by EXponential enrichment) method.
This method was simultaneously developed by Tuerk and Gold [8] and Ellington and Szostak [9],
in 1990. The SELEX method contains several steps such as incubation, separation, amplification,
and purification. Briefly, a library of randomized RNA or DNA sequences is incubated with the target
of interest. The sequences with no affinity or only a weak affinity to the target are removed from
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the library, while the sequences that have strong binding are then recovered and amplified using a
polymerase chain reaction (PCR), this process narrows down the aptamer candidates. The selection
process is repeated approximately 7 to 15 times to create a sufficiently narrow pool of aptamer
candidates that can then be characterized to determine their efficiency.

A conventional SELEX method requires extensive manual handling of reagents, and it is
time-consuming, typically requiring a dozen or more rounds of repeating the method and weeks to
months to achieve suitable affinity. The integration of several SELEX steps in a single small platform
is an appealing trend in the field. It offers a range of capabilities of high-resolution separation
between oligonucleotide candidates using small quantities of reagents and samples. A single-round
screening of aptamers was reported and this marked the innovation of a fully automated and integrated
miniaturized SELEX process [10].

3. Classification of Microdevices

3.1. Microfludic Devices

Microfluidics, also known as “lab-on-a-chip,” is an emerging technology that represents a
revolution in laboratory experimentation, bringing the benefits of integration, miniaturization,
and automation to many research areas. It is the science and technology of systems that control small
amounts (10−9–10−18 L) of fluids in channels with dimensions of submillimeter to submicrometer [11].
The reduced dimensions and volumes in microfluidic channels allow all tasks to be done with much
less sample than what otherwise might be used. It is beneficial to improve the transport of analyte
from the sample volume to the biorecognition element, in particular for a surface-bound sensing
element [12]. In recent years, the development of microfluidic chips as a miniaturized diagnostic
platform has attracted the attention of researchers. The basic operating units of biochemistry analysis,
e.g., sample preparation, reaction, and separation tests, can be integrated into a micron scale chip,
and then the whole analysis process can be completed automatically.

3.1.1. Microfluidic SELEX Devices

One example that combines the advantages of the SELEX method and microfluidic systems into a
compact platform design is a competitive assay test of the selected aptamer to reduce the number of
sequences subjected to sequencing and affinity characterization. The entire SELEX process is shortened
and the possibility to produce the aptamer as a biorecognition element is increased [13]. Integration
of the affinity selection and amplification steps in SELEX by combining bead-based biochemical
reactions has been demonstrated [14–18]. A simple microfluidic SELEX device was developed by
Olsen et al. [17], this device was fabricated using single layer soft lithography (Figure 2). In this
work, an electrokinetic microfluidic device for aptamer enrichment was demonstrated as an integrated
microfluidic device without requiring an offline process. The electrokinetic microfluidic device features
a microchamber and an electrokinetic transfer microchannel that allows oligonucleotide migration
under an electric field. A heater and temperature sensor are used to control the target-aptamer binding
and amplification process through PCR thermal cycling. In another example, Birch et al. [19] developed
an inertia microfluidic SELEX or I-SELEX device to establish a system for continuous partitioning of
cell-bound aptamers away from unbound nucleic acids in a bulk solution. The device was fabricated
from polydimethylsiloxane (PDMS) and bonded to microscopic glass slides and had bi-loop spiral with
double inlets-outlets (Figure 3). The working process began by pumping the target-aptamer library
and buffer through each inlet, then the unbound aptamers migrate along the outer wall towards the
waste outlet. Using this strategy, they successfully identified a high-affinity aptamer that was a subset
of specific interactions with distinct epitopes on malaria-parasite infected red blood cells. In order
to improve efficiency and selectivity, some groups have developed techniques such as the volume
dilution challenge microfluidic SELEX (VDC-MSELEX) [20], dielectrophoresis and electrophoresis
SELEX [21], SELEX assisted by graphene oxide (GO) [22], surface plasmon resonance (SPR)-based
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SELEX methods [23,24]. SPR-based SELEX methods have attracted attention in recent years because
selection and evaluation can be performed simultaneously without labeling the sensor.
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Figure 3. Bi-loop spiral design of inertial microfluidic SELEX (I-SELEX) with dual inlets and outlets.
(a) The unbound oligonucleotide/any particles migrate towards the outer-side wall (blue color) and
are separated with the desired target; (b) Numbers 1–5 represent cross sections inside the channel.
Fluorescence-labeled aptamer was used to identify each position. Reproduced with permission from
reference [19]. Copyright 2015 Macmillan.

3.1.2. Microfluidic Chip Aptasensors

Microfluidic chips are a device or micro-channel that integrates a fluidic system including steps
for transporting, mixing, preparing, and detecting a sample. Dimensions of the device must be in the
range of a millimeter to a few square centimeters [25]. In recent years, microfluidic chips have aroused
increasing interest for various application because of their desirable features, such as the smaller sample
amount needed and lowered reagent consumption. The substrate materials of microfluidic chips
such as polymers (e.g., PDMS, PMMA, PS) [26–34], ceramics (e.g., glass) [6,13,14,16–19,21,25,35–63],
and semiconductors (e.g., silicon) [64–73], are currently used to obtain mechanical strength. Many
researchers utilize PDMS and the soft lithography technique to fabricate microfluidic devices due to
their easiness of use and simple process. Prototypes can be rapidly built and tested because researchers
do not waste time with laborious fabrication protocols. Contrary to common beliefs, soft lithography
does not require hundreds of square meters of clean room space. Indeed, a small bench space under a
lab fume hood is sufficient for placing PDMS prototyping instruments to quickly assess a microfluidic
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technique. Recently, Ma et al. [62] developed a very attractive design for a volumetric bar chart chip
(V-chip) aptasensor. This group applied a distance-readout method combined with aptamer-responsive
hydrogel. Platinum nanoparticles (PtNPs) were used to encapsulate aptamer and hydrogel. Upon
introduction of the target, the aptamer bound with the target then induced disruption of the hydrogel
and released the PtNPs. Subsequently, the hydrogel was loaded into the volumetric bar chart chip
while the PtNPs catalyzed the reaction of H2O2 to produce O2. The colored ink flow in the V-chip
was triggered by O2 and was quantitatively related to the concentration of the target. Although the
instrument design was very simple, it still needs to treat the sample with an immunoaffinity column
similar to conventional methods. Zhao et al. [68] fabricated an aptamer-grafted silicon nanowire
substrate (SiNS) embedded microfluidic chip and chaotic mixer PDMS for sensitive detection of
circulating tumor cells (CTCs). As a cancer marker, the presence of CTCs in blood is very rare and it is
difficult to repeatedly observe them during the treatment, so Zhao et al. developed an aptamer-cocktail
form with a synergistic effect (two or more aptamers may work synergistically, this phenomenon leads
to increased cell affinity) (Figure 4). They constructed the cell-SELEX to produce multiple aptamers that
were immobilized on the microfluidic device. In order to ensure the synergistic effect, they switched
the position and number of aptamers to examine optimal conditions. Furthermore, they also evaluated
the cell capture efficiency as a function of aptamer density and found that the efficiency gradually
increased with aptamer density.
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Figure 4. A representative chaotic mixer microfluidic device combined with an aptamer cocktail-grafted
silicon nanowire substrate (SiNS). The different aptamers work synergistically to enhance capture
affinity in a low-concentration target. Reproduced with permission from reference [68]. Copyright 2016
John Wiley and Son.

Automatic and integrated detection in a microfluidic device was demonstrated by Lee’s
group [46,47,56]. They fabricated two layers of PDMS structures and a glass substrate into a device
having several chambers and including an external magnet, a micropump and a microvalve. As shown
schematically in Figure 5, the experiment started by immobilizing the first aptamer on magnetic
beads (MBs) then incubating the target in the micro chamber to form a complex aptamer-MBs-target.
The external magnet was used to collect the complex molecules during the washing process, while the
unbound and interfering molecules were washed away (Figure 4b step c–d). When the magnetic field
was removed, the complex aptamer-MBs-target still remained at the micro-pump. In the next step,
the FAM-labeled aptamer was introduced to determine the fluorescent intensity. Taking advantage
of another feature of microfluidic design, Dou et al. [48] developed microfluidic droplets-based
aptamer-functionalized graphene oxide (GO) to detect low-solubility molecules. The droplet-based
design enables the rapid mixing of fluids in the droplet with a high reaction efficiency, even between
two different phases of compounds like 17β-estradiol with solvent. The graphene oxide (GO) was
used for fluorescence quenching and bonded with aptamer. Their microfluidic device consisted of
two layers, the top layer was a PDMS channel with three inlets and one outlet (as the detection
zone) and the bottom layer was a glass substrate. The target estradiol was dissolved in ethyl acetate
as the oil phase, whereas an aptamer-GO was the aqueous phase. To generate droplets, Dou et al.
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used a T-junction channel. When the water and the oil phase introduced at different flow rates
meet at the T-junction, water-in-oil emulsion droplets will be generated and the aptamer-GO-target
complex starts to form at this time. The principle detection of the microfluidic droplets is based on the
distance-dependent fluorescence quenching properties of GO. Competitive binding of the aptamer
and the target decrease the affinity of the adsorption by GO, this condition may release the aptamer
from the GO surface, thus resulting in the fluorescence recovery (“turn-on” of fluorescence intensity).
Giuffrida et al. [33] also used microfluidic droplets with a T-junction channel to detect lysozyme.
However, their device had six inlets and was equipped with a mixing region and a chaotic mixer
channel to allow chemiluminescence detection. The AuNPs was used to enhance chemiluminescence
intensity and it was conjugated with the aptamer. Giuffrida et al. reported that their device had several
advantages over conventional devices, such as greater sensitivity (femtomolar level), faster detection
(10 min), and a low background signal in the absence of the target. Several groups have utilized a
microfluidic device for the separation process called microchip electrophoresis (MCE). Lin et al. [41]
developed separation techniques on a MCE device based on a tunable aptamer. Different lengths of
aptamers could modulate the electrophoretic mobility of proteins and promote effective separation in
hydroxyethyl cellulose buffer. Pan et al. [37] proposed laser-induced fluorescence detection (LIF) on a
MCE device to detect tumor marker carcinoembryonic antigen (CEA). The application of magnetic
beads (MBs) to assist in the target-induced strand cycle would increase the sensitivity.
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Figure 5. Integrated microfluidic chip system using a sandwich aptamer. (a) The device was composed
of PDMS structures (air control layer & liquid chamber layer) and a glass substrate; (b) Schematic
ilustration of experimental procedure performed on the integrated microfluidic chip system.
Reproduced with permission from reference [47]. Copyright 2016 Elsevier. (c) The configuration of the
inlet-outlet, chambers, micromixers, and microvalve. Reproduced with permission from reference [46].
Copyright 2016 Elsevier.

3.2. Paper-Based Microdevice Aptasensors

Paper as a substrate in microdevices is a very promising material because its properties provide
a versatility of functions. First of all, the cellulose structure allows a passive pump dispenser to
be made; the fluid moves by capillary force, which precludes the need for an external instrument.
Second, the porous cellulose structure serves to immobilize particles easily. Colorimetry is a common
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signaling method for obtaining qualitative or semiquantitative results [74]. Since Whitesides’s group
revitalized the field of microfluidic paper-based devices in 2007 [75], applications of paper devices have
significantly increased due to their simple and low-cost fabrication. Paper-based microdevices can be
classified into three main types: microfluidic paper analytical devices, dipstick assays, and lateral flow
strip assays [76]. Integrating a paper analytical device and an aptamer to develop sensitive and efficient
diagnosis point-of-care-test (POCT) devices for on-site detection was reported by Zhang et al. [77],
who developed equipment-free quantitative aptamer-based assays with naked-eye readout to detection
adenosine. The super-paramagnetic particles were modified with a short DNA strand for anchoring
an aptamer probe. In the presence of the target, the complex aptamer-target was released from the
magnetic surface, which then triggered a hybridization chain reaction (HCR) and glucose oxidase was
activated to oxidize glucose to H2O2 and glucose acid. The number of glucose oxidase molecules was
proportional to the target concentration. The unique fabrication of a micro paper-based analytical
device (µPAD) aptasensor was demonstrated by Fu et al. [78], who were inspired by Rubik’s Cube
(RC) toys and formed small iron components to generate hydrophobic barriers through a stamp-mode.
The six-faced RCs have different patterns and can be tailored to make multiple combination channels.
Fu et al. integrated the portable glucometer readout to detect signals (Figure 6a). During the stamping
process, rosin (wax) penetrated into the paper, forming the hydrophobic channel and sample test zone.
Although the RC stamp method has good potential for instrument-free sensing, preparing the aptamer
sensor, supporting enzyme and carrying out reagent loading remain challenging tasks.

Origami paper analytical devices (oPADs) have been introduced by several groups [79–81].
For example, Liu et al. [80] used a glucose oxidase tag to modify the relative concentrations of an
electroactive redox couple, and a digital multimeter (DMM) to transduce the result. They folded the
chromatography paper into two layers. The first layer, including the sample inlet, was fabricated
by wax printing. The second layer was fabricated by screen printing conductive carbon ink.
Furthermore, this paper was covered with plastic lamination to prevent fluid evaporation and any
contamination. The biotin-labeled aptamer was immobilized on microbeads trapped within the
paper fluidic channel and the electrochemical current rise with increasing adenosine concentration.
This technique demonstrated a simple preparation when the aptamers immobilized on microbeads.
However, the present challenges still occur when the aptamers directly immobilized on the cellulose
structure. Yan et al. [79] presented a novel porous Au-paper working electrode on a compatible design
origami-electrochemiluminescence (o-ECL). In order to amplify the signal, they used AuNPs, due to
their large surface area, stability, and biocompatibility especially with aptamers. The ECL intensity
increased only when ATP (adenosine triphosphate) was present. On the other hand, Ma et al. [81]
developed the specific recognition of an aptamer and the amplification strategy of a hybridization
chain reaction (HCR) using an electrochemiluminescence (ECL) probe (Ru(phen)3

2+). Lateral flow strip
assays (LFSAs) are another type of paper-based microdevices. Their simple design allows for on-site
detection. Several groups have successfully developed LFSAs combined with aptamer-functionalized
AuNPs. As an example, Raston et al. [82] performed an easy fabrication of an LFSAs using a sandwich
aptamer conjugated with AuNPs for sensitive vaspin detection. A strip contained three pads: sample
pad, nitrocellulose membrane pad, and absorption pad. Two aptamers probes were used that basically
functioned as a capturing probe and a signaling probe. When the sample containing vaspin was loaded
on a sample pad, the primary aptamer in the test zone captured the vaspin. Thus, the color could
be observed in the test zone. For the control experiment, a complementary aptamer in the control
zone captured the remaining AuNP-labeled aptamer, thus the signal could always be observed as the
control. The signal could only be observed in the presence of vaspin, while no signal was observed
in the test zone for adiponectin, HSA (human serum albumin), and buffer as shown in Figure 6b.
Wu et al. [83] and Zhou et al. [84] applied this assay strip to get a sensitive and rapid detection of
Escherichia coli O157:H7 and Ochratoxin A. They covered the LFSA device with a plastic cover and
utilized a portable strip reader to quantify the result.
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as indicator. Reproduced with permission from reference [82]. Copyright 2017 Elsevier.

4. Detection Methods and Assay Formats

4.1. Electrochemical Detection Methods

In general, an electrochemical reaction is defined as an electron transfer from a reactant to
form a product that gives rise to an electrical current flowing through the cell. Electrochemical
detection methods can be divided into three types of dynamic methods. The first type is known
as the amperometric method and the current measured at a given electrode potential represents an
analytical response that is dependent on the reactant concentration. The second type is known as the
voltametric method and the current is measured at a particular potential to obtain good sensitivity and
low interference (the current-potential curve is archived for analytical purposes). The third type is
called the galvanostatic method and the response is acquired in the form of a potential-time curve.
Electrochemical measurements are typically performed using a cell comprised of three electrodes:
(1) A working electrode (WE) where the main reaction, such as a redox and immobilization of a probe
occur; (2) A reference electrode (RE) that measures the potential of the WE without passing the current
through it; and (3) A counter electrode (CE) that serves to set the WE potential and balance current.

Many electrochemical techniques are used in analytical chemistry. The most commonly used ones
for microfluidic devices or aptamer biosensors are amperometry [43], voltammetry [31,34,40,44,80,85],
and electrochemical impedance spectroscopy [32,35,72,86–89]. Liu et al. [87] developed ZnO/graphene
(ZnO/G) composite with S6 aptamer for a photoelectrochemical (PEC) detector. The AuNPs were
electrodeposited on ZnO/G composite that was immobilized with the S6 aptamer, then indium tin
oxide (ITO) was used as an electrode to facilitate the ZnO/G composite reaction. As a supporting
electrolyte, Liu et al. utilized ascorbic acid as an electron donor for scavenging photogenerated holes
under a mild solution medium. The electrochemical impedance spectra were applied to characterize the
PEC biosensor and examine each condition (bare, after ZnO/G composite was dropped onto the ITO
surface, and the aptamer-target complex form). Sanghavi et al. [40] proposed a unique microfluidic
aptasensor that features glassy carbon electrodes and a nanoslit microwells on a glass substrate.
Their method does not require a labeling, immobilizing, or a washing process. Aptamer-functionalized
AuNPs were used to enhance the net area available for target cortisol capture and to enable the
unhindered diffusion of analytes towards the binding surface. Square wave voltammetry (SWV) data
were acquired by scanning the potential of the working electrode toward the positive direction in
the −0.5 to −1.2 V range with frequency 100 Hz. Another electrochemical technique was developed
by Chad et al. [66]. They proposed a microfluidic electrolyte-insulator-semiconductor (EIS) chip
based on ion-sensitive field-effect transistor with capacitive detection. The working principle of the
proposed device is the change of the gate voltage that occurs due to the release of protons or
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intrinsic charge biomolecules during biomolecule interactions. A thiolated aptameric peptide was
immobilized on AuNPs for recognition of a protein kinase A (PKA) target. Interaction between
the aptamer and target led to a shift in the gate voltage. Recently, Thiha et al. [72] presented a
fabrication technique for a suspended carbon nanowire sensor (sub-100 nm diameters) by simple
electrospinning and applying carbon-microelectromechanical system (C-MEMS) techniques (Figure 7).
The C-MEMS techniques provided patterning of the polymer (typically SU-8 photoresist) with a
high aspect ratio and 3D structures shape. After the patterning process, the polymer was pyrolyzed
and electrospun to obtain carbon nanostructures, then it was integrated with a microfluidic chip
to form a label-free chemiresistive biosensor. The amine-functionalized aptamer was covalently
attached to carboxylic groups with the assistance of sulfo-N-hydroxysuccinimide (sulfo-NHS) and
N-(3-dimethylamnopropyl)-N-ethylcarbodiimide hydrochloride (EDC). The detection principle is
based on conductivity changes that occur when the target binds on the suspended nanowire.
The current-potential (I-V) was characterized before and after incubating with the target and the
resistance value (R) was obtained from the inverse of the I-V curve slope. The percent ratio change of
the resistance was calculated as ∆R/R0, where ∆R is the difference in resistance after incubation with
target (R) and the original resistance (R0).
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Figure 7. Fabrication steps of the carbon nanowire aptasensor. (a) The device was fabricated by integrating
electrospinning and photolithography with carbon-microelectromechanical system (C-MEMS) technique;
(b) Electrospun SU-8 nanowire; (c) Single SU-8 nanowire after photolithography and development;
(d) Microfluidic platform containing the nanowire sensor. Reproduced with permission from reference [72].
Copyright 2018 Elsevier.
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4.2. Optical Detection Methods

The analytical techniques based on light interaction with a sample are known as optical detection
methods. To obtain an optical sensor, a specific reagent is involved in a sensing layer and its reaction
process is monitored by a light beam that is conveyed by optical fibers. An optical transducer was
obtained after measuring the absorbed or emitted light power on the sensing layer. As the dependence
of light power on the wavelength represents an optical spectrum, consequently the application of this
method needs a component that is able to absorb or emit light. Otherwise, some external molecule may be
used as an optical label. Fluorescent materials [13,17,19,21,28,37,38,42,45–48,50,53–56,60,61,68,69,90–96],
and dyes (colorimetry) [25,64,74,77,78,82–84,97,98] are commonly used as labels in microdevices based
on aptasensors.

4.2.1. Fluorescence Methods

Florescence methods consist of light emission by molecules previously excited through light
absorption. Weng and Neethirajan [92] used 6-carboxyfluorescein (6-FAM) as the aptamer label
and multi-walled carbon nanotubes (MWCNTs) or graphene oxide (GO) for the quencher in their
device. When the target norovirus was present, fluorescence was recovered due to the release of
the labeled-aptamer from the MWCNT surface and it was detected at Ex/Em = 490 nm/520 nm by
the multi-mode reader Figure 8. The “signal-on” fluorescence aptasensor was also demonstrated by
Ueno et al. [55]. They demonstrated a portable design with a multichannel chip for simultaneous
detection of three to five samples. A recent update on a fluorescence aptasensor was presented by
Jin et al. [95]. This group developed nanocomposites composed of magnetic Fe3O4-aptamer-carbon
dots that exhibited down-conversion fluorescence (DCF) and up-conversion fluorescence (UCF)
emissions simultaneously. The UCF emission wavelength is shorter than its corresponding excitation
wavelength, whereas the DCF (usually called fluorescence) is the opposite. The high binding affinity
between the target and aptamer could induce unwinding of the carbon dots from the target-aptamer
complex and recovery of the UCF signal. Therefore, in the presence of the target, the UCF signal (peak
at 475 nm) gradually increased.
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4.2.2. Colorimetry Methods

Colorimetry methods are commonly used to determine the concentration of a solution by
measuring the absorbance of at a specific wavelength, this approach is also applied in lateral strip
detection with a control or known concentration [82–84]. Simple to enable and develop, instrument-free
colorimetry is favorable. Wei et al. [98] and Zhang et al. [77] developed instrument-free detections
using a microfluidic aptasensor: the colored result could be identified easily by the naked eye. Another
advantage of a colorimetry-integrated microdevice was utilized by Fraser et al. [97]. They designed an
integrated Aptamer-Tethered Enzyme Capture (APTEC) on a microfluidic device and applied it for
a telemedicine application. The APTEC technique has three main steps: First, micromagnetic beads
(µMBs) were coated with the aptamer via a streptavidin-biotin interaction. Then the coated beads



Micromachines 2018, 9, 202 11 of 25

were incubated on lysed sample of human blood. When the target was present, the aptamer-coated
µMBs bound specifically to the target (protein PfLDH). Second, the unbound molecules and other
contaminants were washed and removed by the mobile phase. Third, the aptamer-coated µMBs-target
was transferred by mobile phase to the development chamber that contained the development reagent
and a stronger colorimetry signal was generated. The non-target sample would not develop a
colorimetry signal in the described assay (Figure 9). For signal analysis, the microdevice was placed
on the top of an iPad that displayed a homogenous white light then covered with an opaque box.
The smartphone camera was used for capturing the images and coupled with supporting information
such as time, date, and GPS coordinates for the telemedicine application. Furthermore, the receiver
analyzed the images with ImageJ software.
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Figure 9. Microfluidic Aptamer-Tethered Enzyme Capture (APTEC) biosensor. (a) The reaction scheme
of the reagents and redox reaction that results in the generation of an insoluble purple diformazan
dye. There was a color difference between positive and negative samples; (b) The smartphone camera
was used for capturing images in a telemedicine application. Reproduced with permission from
reference [97]. Copyright 2018 Elsevier.

4.3. Miscellaneous Methods

4.3.1. Surface Plasmon Resonance (SPR) Methods

Large groups of electrons in an oscillating state form a surface of plasmons, which is a phenomenon
known as SPR. The SPR depends on three factors: angle of incident, wavelength of the radiation,
and refraction index of the sample. These methods are routinely used for investigating molecular
interactions. Dausse et al. [23] demonstrated an SPR method for sequence selection during the SELEX
method, called SPR-SELEX, that could perform selection and evaluation simultaneously. Other groups
utilized a microfluidic aptasensor integrated with an SPR sensor to realize rapid and easy-to-use
quantitative analysis [26,99].

4.3.2. Surface Acoustic Wave (SAW) Methods

These methods are based on acoustic excitation by means of two electrodes placed on the same
surface interdigitated transducer (IDT) configuration. The acoustic wave induced by an IDT is
propagated in a thin layer at a piezoelectric surface. Ahmad et al. [100] proposed a microfluidic
device that applies acoustic waves to drive functionalized microparticles into a continuous flow
microchannel to separate particle-conjugated target proteins from the sample. This platform utilized
an IDT transducer (with an Au-Cr layer) that was patterned on top of the piezoelectric lithium niobate
(LiNbO3) substrate to generate high-frequency surface acoustic waves (SAWs). The aptamer was
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conjugated to streptavidin-functionalized polystyrene microparticles and incubated with a sample
mixture. When the target thrombin was present, the aptamer formed a microparticle-aptamer-target
complex and other molecules remained in a free condition. Once the high-frequency SAWs were
actuated, the complex aptamer was separated from the mixture due to the lateral migration of fluid
under the influence of the acoustic radiation force and collected in outlet 2 (Figure 10). Furthermore,
Zhang et al. [101] proposed a microfluidic love-wave sensor that is a special type of SAW sensor that
uses a shear horizontal wave to reduce energy dissipation and to increase the surface sensitivity.
The device was prepared on a LiTaO3 (lithium tantalate) substrate with an aluminum IDT and
functionalized with aptamer.
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4.3.3. Chemiluminescence and Electrochemiluminescence Methods

Luminescence, as a general term is related to the energy transition between molecular orbitals
that produces an emission of light. When the excitation of the molecules is caused by a chemical
reaction, this light emission is chemiluminescence [27,33,36,58,71,81]. The emission that accompanies
an electrochemical reaction is known as electrochemiluminescence [79]. Costantini et al. [58] developed
an aptamer-linked immobilized sorbent assay (ALISA) that was performed in a microfluidic device
that had a functionalized poly(2-hydroxyethyle methacrylate) PHEMA polymer brush layer on a
glass substrate. The ALISA relied on the formation of a sandwich-like structure consisting of the
target and two target related-aptamers. The first aptamer was bounded on PHEMA to capture
the target and the other aptamer was a biotin-labeled probe. The avidin-labeled HRP (horseradish
peroxidase) would give a chemiluminescent signal after binding with the biotin, this signal indicated
that PHEMA-aptamer was interacting with the target.

5. Target Analytes

5.1. Disease Markers

As described in Section 4, microfluidic aptasensors have numerous advantages for point-of-care
detection, mostly as disease markers. Thrombin is a critical biomarker for Alzheimer’s disease and it
is a well-known target for a microfluidic aptasensor and every year several researchers have reported
updates for thrombin detection that offer more sensitivity. Lin et al. [64] proposed a very sensitive
detection of thrombin from human plasma serum with a detection limit 0.082 pg·mL−1 and a linear
range 0.1–50.000 pg·mL−1. On the other hand, some groups focused on improving the detection
method. For example, Zhao et al. [25] developed a microfluidic chip without signal amplification
and using only naked-eye detection. The detection limit was 20 pM, this result is quite satisfying for
simple detection purposes. Song et al. [60] used a sandwich aptamer-target-aptamer to assay thrombin
with high selective detection even in the presence of concentrated bovine serum albumin (BSA). They
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obtained a thrombin detection limit of 25 pM. Uddin et al. [29] used a device with attractive disk
and microbeads to reduce the sample-to-result time from 40 min to 15 min while using only 10 µL of
sample volume. They obtained a thrombin detection limit of 25 pM.

5.2. Viruses and Bacteria

The detection of viruses and bacteria in real samples is important for dealing with environmental
contamination or foodborne diseases. Commonly, their detection relies on culture-based tests,
antibody-based tests, and polymerase chain reaction (PCR)-based tests. Despite their usefulness,
these methods are costly and time-consuming. Neethiarajan group’s [31,92] successfully developed a
simple microfluidic aptasensor for norovirus detection with low detection limits (100 pM). The device
not only had good sensitivity, but was also selective to norovirus even in the present of interferon.
Moreover, the total analysis time was significantly reduced compared with the conventional method.
Wang et al. [46] demonstrated a fluorescent-labeled universal aptamer to determine three different
influenza viruses (influenza A-H1N1, H3N2, and influenza B) at the same time in 20 min. Another
multiple detection was developed by Zuo et al. [90]. Their microdevice was able to detect multiple
bacteria (Lactobacillus acidophilus, Staphylococcus aureus, Salmonella enterica) at the same time. This
device was consisted of a ready-to-use microfluidic aptasensor with a detection limit of 11.0 CFU·mL−1

and total time for detection was about 10 min.

5.3. Antibiotics

Antibiotic residues in foodstuffs pose certain hazards to human health among people who
are sensitive to antibiotics, have an imbalance of intestinal microbiota or have bacterial resistance.
Unfortunately, many of these residues are unintentionally consumed because some of the conventional
methods may not meet the need for fast and high throughput analysis in food safety screening.
Recently, the detection of multiple antibiotic residues based on a microfluidic aptasensor has been
developed to fulfill these needs in food safety screening. The detection principle is based on
microchip electrophoresis (MCE) and the target is a catalyzed hairpin assembly. The device could
simultaneously detect kanamycin and oxytetracycline with detection limits of 0.7 pg·mL−1 and
0.9 pg·mL−1, respectively [102]. Using a similar MCE method, Zhou et al. [103] developed a
label-free and sensitive detection of chloramphenicol that reached a detection limit of 0.003 ng·mL−1.
Hou et al. [86] reported the fast detection of tetracycline using an interdigital array microelectrode
(IDAM). The IDAM was integrated with impedance detection into a miniaturized conventional
electrode and it was able to detect 1 nM of tetracycline in a milk sample.

5.4. Toxins

A rapid, sensitive, and specific assay technique was developed for routine analysis in foods
and animal feedstuffs. Several researchers proposed a microfluidic aptasensor assay to analyze
mycotoxin [50,58,62]. A lateral flow strip aptasensor assay was developed to detect ochratoxin A
more easily. To perform a test, only the minimum sample volume and reagent volume were needed.
The whole process was completed within 15 mins and a visual detection limit of 1 ng·mL−1 was
obtained [84]. This assay was suitable for rapid and on-site detection, especially for screening raw
materials in the animal feed production industry. Another challenging factor to analyze these toxins is
isolation from the real samples. The uneven distribution of mycotoxin in matrix samples should be
considered to apply additional steps on sample preparation. In recent years, marine toxins have drawn
the attention of scientists due to the increased consumption of sea products. Certain toxins have been
identified: saxitoxins, tetrodotoxin, okadaic acid, brevetoxins, and gonyautoxin 1

4 . Although these
toxins are mostly produced by microalgae, especially dinoflagellates, it is now clear that bacteria are
responsible for the production of some toxins. Handy et al. [24] published the first article related to
marine toxin detection with an aptasensor, specifically saxitoxin. They developed saxitoxin-aptamer
sequences by the SELEX method and evaluated the binding affinity with the SPR method. Tetrodotoxin
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is one famous marine toxin because of its involvement in the fatal food poisoning found in puffer fish,
starfish, and blue-ringed octopus. Recently, a sensitive detection of tetrodotoxin using a microfluidic
aptasensor was developed by Jin et al. [95], with a detection limit of 0.06 ng·mL−1. Okadaic acid is
known as diarrhetic shellfish toxin (DST) and is found in contaminated shellfish. Various microfluidic
techniques for okadaic acid detection have been developed, including interdigitated microelectrodes
with AuNPs [73], a paper-based aptasensor [61], and an enzyme-linked aptamer assay (ELAA) [22].
In the ELAA competitive assay, the lowest limit of detection reached 0.01 ng·mL−1 and the widest
detection range was from 0.025 to 10 ng·mL−1 in spiked clam samples. The binding affinity of an
aptamer to detect brevetoxins and gonyautoxin-1/4 has been tested. The lowest dissociation constants
for brevetoxin were 4.83 µM [104] and for gonyautoxin 1

4 17.7 nM [105].

6. Conclusions and Future Perspectives

Applications of aptasensors on microdevices have led to positive outcomes in bioanalysis.
This paper has attempted to offer readers an overview of recent trends and advancements in the
development and application of microdevices based on aptamer sensors. Table A1 (Appendix A)
summarizes device features, including their classifications and assay formats. Microdevice sensors in
flow analysis systems deals with the control and manipulation of fluid volumes in the submicroliter
region that are constrained to very small size channels. The fluid flow can be prompted by applied
pressure or electrokinetics. What distinguishes microdevice systems from a conventional flow analysis
systems is the integration of a large network of channels and other microdevices (such as actuators
and valves) on a small chip. The major concepts and principles of device fabrication still rely on
photolithography, etching, bonding, screen printing, doping, and thin film formation. These fabrication
techniques give rise to various collaborations in multidisciplinary research. The utilization of new
nanomaterials (metal nanoparticles, polymer nanoparticles, carbon dots, magnetic beads, and micro
beads) has promoted the development of aptamer sensors that offer high throughput and good
sensitivity. Many innovations presented in the literature are still at the proof-of-concept state. However,
some have already been applied to commercial applications, such as the lateral flow strip assay. This
technique does not require a sophisticated instrument or may even be instrument-free as a result of
naked-eye detection.

Based on the current circumstances in the field of bioanalysis, several points that can be considered
in the future are noted: (1) Despite their many advantages over other conventional methods, the scaling
down of existing procedures to use microdevice-based aptasensors sometimes needs to be improved
from the onset; (2) The simplest design is not always related to the smallest dimension. The movement
towards ergonomic design, easy to handle, and cost-effective devices will certainly occur; (3) Marine
toxins have attracted attention due to the increased human consumption of marine products. However,
detections using microfluidic-based aptasensors are still limited to only a few toxins. The continued
developments of such methods are expected in the near future.

Developing relatively simple and sensitive microdevices that are easily fabricated and combining
them with automatic and embedded elements in compatible substrates by micro-total analytical
systems (µTAS) will certainly increase in the coming years.
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Appendix A

Table A1. Summary of microdevice-based aptasensors on several platforms and target analytes.

Detection Method Substrate Aptamer Target Matrix Sample LOD or Linear Range Device Features Reference

Electrochemical

Chronoamperometry Glass Peptide Thrombin - 10 fg·mL−1 to 1 µg·mL−1 Plasma-functionalized
SWCNT [43]

DPV PDMS Biotin-Aptamer-Ferrocene Norovirus Bovine Blood 100 pM
100 pM to 3.5 nM

Integrated PDMS-SPCE
Graphene-Au composite
Switch-off signal

[31]

SWV Glass Competitive aptamer Cortisol
Saliva
glucocorticoids in
serum

10 pg·mL−1

30 pg·mL−1 to 10 µg·mL−1
Sample volume (<1 µL)
Graphene modified electrode [40]

SWV Glass MB-labeled Aptamer TGF-β1 Human hepatic
stellate cell 1 ppb PDMS layer with microcup

Comparing with ELISA [44]

Digital multimeter Chromatography
paper - Adenosine - 11.8 µM Origami paper device

Attractive design [80]

DPV Paper Peptide Renin - 300 ng·mL−1

DEP (disposable
electrochemical printed)
Uses SPR to check binding
affinity

[85]

EIS Poly-imide film - Bisphenol A (BPA) Food (canned) 152.93 aM
1 fM to 10 pM

Printed circuit board material
Rapid detection (20 s) [32]

EIS Glass - Avian Influenza
Virus Virus culture 0.0128 hemagglutinin units (HAU)

Interdigitated electrode
On site detection
SELEX on Chip

[35]

Resistance Si-Wafer Amine-functionalized
aptamer

Salmonella
typhimurium Fresh beef 10 CFU·mL−1

Carbon nanowire sensors
C-MEMS
Rapid detection (5 min)

[72]

EIS Glass - Tetracycline Milk 1 pM

Multi-walled carbon
nanotubes
Interdigital array
microelectrode

[86]

Photoelectrochemical Indium Tin Oxide
(ITO) S6 aptamer SK-BR-3 - 58 cell·mL−1

102 to 106 cells·mL−1
ITO-based SPEs device
Disposable ITO device [87]

EIS Cyclic olefin
copolymer Short strand aptamer Ampicillin

Kanamycin A
UHT low fatm
milk

10 pM
A = 100 pM to 1 mM
K = 10 nM to 1 mM

PEDOT-OH:TsO
All polymer substrate [88]
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Table A1. Cont.

Detection Method Substrate Aptamer Target Matrix Sample LOD or Linear Range Device Features Reference

EIS Glass Sgc8
TD05

CCRF-CEM
Ramos cells

T-cell acute
lymphoblastic
leukemia (ALL)

-
Logic aptamer sensor (LAS)
Simple detection with digital
multimeter

[89]

Optical

Fluorescence Glass Aptamer-antibody
sandwich

Cancer stem-like
cells - -

Cell-SELEX
Automatic device
Heater—cooling chip

[13]

Fluorescence Glass Aptamer sandwich with
magnetic beads

Human
immunoglobulin
A (IgA)

Random
oligonucleotides - Microfludic SELEX

Fully integrated platform [17]

Fluorescence Glass - Malaria parasite Red blood cells - I-SELEX
Only requires syringe pump [19]

Fluorescence Glass - - Mixed cells -
Cell-SELEX
Dielectrophoresis and
electrophoresis

[21]

Fluorescence PDMS Hair pin aptamer Protein tyrosine
kinase-7 Cell culture 0.4 nM

Laser-induced fluorescence
detector (LIFD)
Microfluidic droplet

[28]

Fluorescence Glass FAM-aptamer Carcinoembryonic
antigen (CEA) Human serum 68 ng·mL−1

130 pg·mL−1 to 8 ng·mL−1
Micro chip electrophoresis
(MCE) [37]

Fluorescence Glass Cy3-aptamer Thrombin Human serum 0.4 fM Avidin-biotin interaction
Use 2 kinds of aptamer [38]

Fluorescence Glass Photoluminescent
GOQD-aptamer Lead ion (Pb2+)

Drinking water
Tap water
Lake water

0.64 nM
1 to 1000 nM

Packed with cation exchange
resins
Peristaltic PDMS Micropump

[42]

Fluorescence Glass G-quadruplex VEGF-165 protein DMEM cell media 0.17 pM
0.52 to 52.00 pM

Label-free
In the presence of Ir(III) no
signal

[45]

Fluorescence Glass FAM-aptamer universal Influenza virus Random
oligonucleotides 3.2 HAU Automatic process

Rapid detection [46]

Fluorescence Glass FAM-aptamer sandwich Influenza A
(InfA/H1N1) 0.032 HAU Magnet external

Rapid detection [47]

Fluorescence Glass Fluorescence-labeled 17β-estradiol Estradiol solution 0.07 pM Microfluidic droplet
Turn-on signal [48]

Fluorescence Glass G-quadruplex structure Ochratoxin A - - Fluorescence polarization [50]

Fluorescence Glass Multivalent DNA
aptamer nanospheres

Human acute
leukemia cells Human blood - Flow cytometry analysis

Rapid detection [53]
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Table A1. Cont.

Detection Method Substrate Aptamer Target Matrix Sample LOD or Linear Range Device Features Reference

Fluorescence Glass FAM-aptamer
Thrombin
Prostate specific
antigen (PSA)

- -
FRET
Longer spacer gives good
sensitivity

[54]

Fluorescence Glass FAM-aptamer

Thrombin
Prostate specific
antigen (PSA)
Hemagglutinin

- -

FRET
Multiple target
Aptamer immobilize on GO
flakes

[55]

Fluorescence Glass Sandwich aptamer FITC

Glycated
hemoglobins
(HbA1c) & Total
hemoglobin (Hb)

Blood -
Automated microfluidic
system
Low reagent consumption

[56]

Fluorescence Glass Sandwich aptamer Thrombin - 27 pM Gold nanohole array
Nanoimprinting technology [60]

Fluorescence Glass Aptamer functionalize
QD

Lysozyme, OA,
Brevetoxin,
ß-conglutin lupine

Fresh egg white
Mussel tissue
Sausage

Lysozyme (343 ppb); OA (0.4 ppb);
Brevetoxin (0.56 ppb); ß-cl(2.5 ppb)

Quantum Dots (QD)
GO-quencher
Comparing with ELISA

[61]

Fluorescence Si-nanowire Cocktail aptamer Non-small cell
lung cancer Blood -

PDMS chaotic mixer
Aptamer grafted Si-nano wire
substrate

[68]

Fluorescence Glass FAM-aptamer ss-DNA - - Isolating ssDNA from dsDNA
PC membrane [69]

Fluorescence Chromatography
paper

Aptamer-functionalized
GO

Staphylococcus
aureus

Buffer (Bacterial
colonies) 11.0 CFU·mL−1

PDMS/paper/glass
microfludic device
Fast detection

[90]

Fluorescence Paper - Cancer cells Cell culture MCF-7: 6270 cell·mL−1

HL-60: 65 cell·mL−1

Mesoporous silica
nanoparticles (MSNs)
Naked-eye detection

[91]

Fluorescence Paper FAM-aptamer Norovirus Spiked mussel
sample

MWCNT: 4.4 ng·mL−1

GO: 3.3 ng·mL−1

13 ngmL−1 to 13 µg·mL−1

Multi-walled carbon
nanotubes
Graphene oxide

[92]

Fluorescence Printed circuit board
(PCB) - Cocaine

Adenosine
Human blood
serum

Cocaine: 0.1 pM
Adenosine: 0.5

MECAS-chip
Simultaneous detection [93]

Fluorescence Glass FAM-aptamer Lysozyme - - Electrophoresis frontal mode
FACME method [94]

Fluorescence - Amine-aptamer Tetrodotoxin
(TTX)

Human blood
Urine

0.06 ng·mL−1

0.1 ng·mL−1 to mg·mL−1
Marine toxin
Fe3O4/apt/CD composite [95]
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Table A1. Cont.

Detection Method Substrate Aptamer Target Matrix Sample LOD or Linear Range Device Features Reference

Colorimetry

Colorimetry Glass Sandwich aptamer Thrombin - 20 pM
Naked-eye & Flatbed
detection
Micro pump

[25]

Colorimetry Si-wafer G-quadruplex structure Thrombin Human blood 0.083 pg·mL−1

0.1 to 50.000 pg·mL−1
Rolling circle amplification
Micro channel [64]

Colorimetry Paper Cross-linking aptamer Cocaine Urine 7.3 µM Utilizes ImageJ software
Hydrogel-µPAD [74]

Colorimetry Paper Hybridization chain
reaction Adenosine Human serum 1.5 µM

1.5 µM to 19.3 mM
Naked eyes detection
Uses superparamagnetism [77]

Colorimetry Paper Aptamer attached
microbeads Adenosine Urine - Rubik’s cube stamp

Stamping method [78]

Colorimetry Paper
Cellulose fiber Sandwich aptamer Vaspin Buffer & serum Buffer: 0.137 nM

Serum: 0.105 nM
Lateral strip assay
Naked-eye detection [82]

Colorimetry Paper
Cellulose fiber Biotin modified aptamer E. coli O157: H7 Culture E.coli 10 CFU·mL−1 Lateral strip assay

Naked-eye detection [83]

Colorimetry Paper
Cellulose fiber Competitive aptamer Ochratoxin A - 1 ppb

Lateral strip assay
Naked-eye detection
Rapid detection

[84]

Colorimetry Clear resin Biotinylated aptamer PfLDH enzyme
(Malaria)

Human blood
serum 0.01%

Telemedicine
Ipad - Iphone detection
3D printing resin

[97]

Colorimetry Paper Hydrogel-aptamer
Cocaine
Adenosine
Pt +2

Urine -
Naked-eye detection
Signal off-on by interaction
apt-target

[98]

Miscellaneous

Surface Plasmon
Resonance Hairpin RNA aptamer Aptamer

candidate Random library KD = 8 nM SPR-SELEX
SELEX on chip [23]

Surface Acoustic Wave PDMS Polystyrene aptamer
conjugate Thrombin Buffer - Acoustic wave driven

Interdigitated transducer [100]

Surface Acoustic Wave LiTaO3 substrate with
SiO2 film Aptamer beacon

Prostate specific
antigen (PSA)
ATP

-

PSA = 10 ppb
10 ppb to 1 ppm
ATP = 0.1 pM
0.5 pM to 7 nM

Interdigitated transducer
Utilized AuNPs [101]

Chemiluminescence PDMS Aptamer-antibody
sandwich

free prostate
specific antigen
(fPSA)

Human semen 0.5 ng·mL−1 Performed in parallel
Antibody labeled HRP [27]
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Table A1. Cont.

Detection Method Substrate Aptamer Target Matrix Sample LOD or Linear Range Device Features Reference

Chemiluminescence PDMS Thiolated aptamer Lysozyme Human serum 44.6 fM
Droplet microfluidic
Digital microfluidic
Low sample volume

[33]

Chemiluminescence Glass Aptamer-antibody
sandwich HbA1c Blood 0.65 g·dL−1

Three-layer chips
Detection time 25 min
Utilizes magnetic beads

[36]

Chemiluminescence Glass - Ochratoxin A Beer 0.82 mg·L−1 Polymer brush
ALISA [58]

Electrochemiluminescence Paper Sandwich aptamer ATP - 0.1 pM
0.5 pM to 7 nM

Origami design
Modified porous paper [79]
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