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Abstract: In the typical Inertial Navigation System (INS)/ Global Navigation Satellite System (GNSS)
setup for ground vehicle navigation, measures should be taken to maintain the performance when
there are GNSS signal outages. Usually, aiding sensors are utilized to reduce the INS drift. A full
motion constraint model is developed allowing the online calibration of INS frame with respect to
(w.r.t) the motion frame. To obtain better heading and lateral positioning performance, we propose to
use of vanishing point (VP) observations of parallel lane markings from a single forward-looking
camera to aid the INS. In the VP module, the relative attitude of the camera w.r.t the road frame
is derived from the VP coordinates. The state-space model is developed with augmented vertical
attitude error state. Finally, the VP module is added to a modified motion constrains module in the
Extended Kalman filter (EKF) framework. Simulations and real-world experiments have shown the
validity of VP-based method and improved heading and cross-track position accuracy compared with
the solution without VP. The proposed method can work jointly with conventional visual odometry
to aid INS for better accuracy and robustness.

Keywords: inertial navigation system; vanishing point; nonholonomic constraints; Extended Kalman
filter; Stochastic Cloning Kalman filter; relative attitude; MEMS inertial measurement unit

1. Introduction

Accurate vehicular navigation is of great importance for some core parts in “smart cities”.
It is not only used in the Guidance, Navigation and Control systems for autonomous driving,
but also in V2X (vehicle-to-everything) technologies for effective transportation and cooperative
safety communications among vehicles. For example, the positioning and heading information is
shared among the V2V (vehicle-to-vehicle) network, according to the Cooperative Awareness Message
(CAM) and Basic Safety Message (BSM), from the European Telecommunications Standards Institute
(ETSI) and US Society of Automotive Engineers (SAE), respectively [1,2]. The inertial navigation system
(INS) has the sole capability to produce a complete and continuous set of navigation state data, with
high precision during a short time span. However, the positioning error grows considerably with time,
especially when using low-cost MEMS inertial measurement units (IMU). Therefore, INS should be
integrated with other aiding sensors. INS and Global Navigation Satellite System (GNSS) integration is
commonly used for outdoor vehicles navigation. Nevertheless, GNSS may not be available in tunnels,
and can suffer from obstruction and multipath errors in city centers and mountainous regions. There is
also a possibility of a GNSS receiver being jammed or spoofed [3,4].

Various aiding sensors can be used to mitigate the error growth of INS in GNSS denied
environment, such as motion constraints (e.g., Non-holonomic Constraints (NHC) as a “virtual”
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sensor) [5], speed sensors (wheel odometers, Doppler radars) [6], LiDAR sensors [7], and digital maps
for map-matching or map-aiding [8,9]. Recently, many researchers proposed to use vision sensors
to aid the navigation system, in loosely coupled form, with visual odometry (VO) module [10,11] or
in tightly coupled form [12–14], and achieved remarkable results. Apart from commonly used point
features in the pose estimation, vanishing points extracted from parallel lines in the scene can be
used to obtain attitude information, which in then fused with INS in a loosely coupled manner. A
simple and fundamental work of determining the rotation between two camera views was introduced
by [15]. Rotation matrix between the two camera coordinate systems can be solved linearly when one
obtains coordinates of three non-collinear vanishing points represented in both images. An alternative
method using only two dominant directions is presented by [16] based on the Rodrigues’ formula. The
vanishing point-based attitude estimation method has been investigated to help indoor pedestrian
navigation or improve VO performance in hallway environments [17–19] and UAV navigation in
urban areas with structured buildings [20,21].

For land vehicle applications, Kim et al. [22] showed improved accuracy when adding the
omnidirectional vision attitude module to the INS/odometer integration for car navigation with a
“Manhattan world” assumption [23] during GPS outages. These methods rely on the observation
of parallel lines in structured buildings. However, there may be no sufficient building observations,
for example, when driving through dense treed areas. Parallel lane markings or boundaries can be
generally observed and detected in the structured road. Previous research considered ground plane
tracking [24], camera calibration [25], and vehicles’ in-lane lateral distance calculation or prior road
map-based shape registration for better localization performance [26–28]. Basically, these methods
use observed lane markings for relative lateral positioning. Few works have been done on the
navigation aiding using the vanishing point of parallel lane markings. In the earlier work, we used
VP measurements of parallel lane markings to aid the INS onboard a car [29]. The relative heading
aiding is treated in an absolute way, i.e., using true heading aiding method, which may cause large
positioning error after certain time during GNSS outages. As the heading error grows larger, the
measurement will be less relevant to the true heading error.

For the estimator used for integrated navigation, EKF (Extended Kalman filter) is most widely
used due to its computation efficiency and the fact that nonlinearities of the error system model and
measurement model are moderate in common situations. There are other nonlinear filters that do
not linearize the system model at all, such as the Unscented Kalman filters (UKF) and particle filters
(PF) [30–32]. For the application of GPS/INS navigation system, a performance comparison between
EKF and UKF was made in [31]. It is reported that EKF and UKF offer identical performance except
for unrealistic situation, e.g., a sixty kilometres initial position error. For the in-motion alignment
of a low-cost INS with large initial attitude errors, the UKF outperforms EKF [32]. Recently, a dual
Kalman filter method [33,34] is developed to estimate input and state simultaneously, which is suitable
for structures fatigue damage identification. However, in the inertial navigation-based multi-sensor
integration, the inputs are from IMU sensor readings, which are already known. The sensor biases are
usually augmented into the state vector.

In this paper, the motion constraints module with a full module and the VP module are
developed to aid the INS in the framework of EKF. We develop the VP aiding method based on
the idea of Stochastic Cloning Kalman filter [35,36] considering the relative nature of the attitude
measurement, which is also the estimation tool in the application of Micro Aerial Vehicle indoor
navigation [37]. Using the sequential updating EKF, the proposed method can be easily incorporated
into the conventional VO-based loosely-coupled vision-aided inertial navigation system (VINS) to
improve the accuracy and robustness.

The paper is organized as follows. The coordinate systems involved are defined and the
relationship is established between VP 2D coordinates and relative attitude of the camera frame w.r.t.
the road frame. Based on this relationship, the VP aiding module is developed with an augmented
state. VP module is then added into existing motion constraint aided INS. We evaluate the proposed
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algorithm by the Monte Carlo simulations and real data experiments. Discussions and conclusions are
presented in the end.

2. Relative Attitude from Vanishing Point Coordinates

2.1. Coordinate Systems Definition

The coordinate systems defined here follow the right hand rule as shown in Figure 1 [29].

1. Navigation frame (n-frame): For the near-Earth navigation, it is defined as the local-level frame
where x, y, z axes are in the directions of east, north and up.

2. Vehicle motion frame (m-frame) [38]: x-axis is parallel with the non-steered axle, pointing to the
right, y-axis points to the forward, and z-axis points up. Both y and z-axes are in the vertical
plane of symmetry. The origin, which is the measurement origin of the vehicle, is the position at
road height, mid-way between the wheels of non-steered axle.

3. IMU body frame (b-frame): x-axis points right, the y-axis points forwards and the z-axis points
up. The origin is the measurement origin of the IMU.

4. Camera frame (c-frame): The camera is looking forward, so the z-axis points forward, x-axis
points right, and y-axis points down.

5. Camera intermediate frame (c′-frame): rotate 90◦ about x-axis of camera frame to get camera
intermediate frame. It is introduced to derive the relationship between the vanishing point
coordinates and relative attitude of the camera.

6. Road markings frame (r-frame): fixed to a road and rotated with the road terrain and road
direction. Suppose the vehicle is moving on the road with parallel lane markings. In r-frame,
x and y axes are in the road plane, perpendicular to and along the lane markings, respectively.
z-axis is perpendicular to and pointing out from the road surface.

Figure 1. Coordinate systems.

2.2. Camera Relative Attitude Derived from Vanishing Point Coordinates

A vanishing point (VP) is the point of intersection of image projections of a set of parallel 3D lines,
e.g., lane-lines. Each set of parallel lines is associated to a VP in an image. As shown in Figure 2, the VP
of the parallel lines is the intersection of the image plane with a ray parallel to the world lines through
the camera center. The VP image coordinates are not affected by the relative translation, but only
affected by the relative rotation between the camera and the scene [39]. This property enables the
VP-based module a tool to determine the camera-to-scene relative attitude, which can be utilized as an
aiding source for the INS. It is known that at least two sets of parallel lines are needed to determine all
three degree of freedom of a camera’s relative attitude [16].
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Figure 2. Vanishing point and relative attitude.

Here we define some Euler angles and rotation matrices that are important for our proposed
methods. The rotation matrix from the r-frame to the c′-frame (Cr

c′ ) can be represented by a set of Euler
angles (θ, γ, ψ), which denote the relative pitch, relative roll and relative yaw, respectively. The rotation
order is as follows. First rotate ψ about z-axis of r-frame, then θ about x-axis, and finally γ about y-axis.
When the first two rotations are completed, as illustrated in Figure 2, we derive the image coordinates
of vanishing point

x1
vp = xc +

f
cos θ tan ψ

y1
vp = yc + f tan θ

(1)

where f is the focal length of the camera, xc and yc are the coordinates of principle point. After the 3rd
rotation, the final vanishing point coordinates (xvp, yvp) can be expressed as[

xvp − xc

yvp − yc

]
=

[
cos γ sin γ

− sin γ cos γ

] [
x1

vp − xc

y1
vp − yc

]
(2)

Therefore, we have

xvp = xc +
f

cos θ
tan ψ cos γ + f tan θ sin γ (3)

yvp = yc −
f

cos θ
tan ψ sin γ + f tan θ cos γ (4)

From Equations (3) and (4), one can find that there are two knowns (xvp and yvp), and three
unknowns (θ, γ, ψ); therefore, additional constraints are needed to solve the equations.

Here we derive the relative yaw angle from the vanishing point coordinates. Combine
Equations (3) and (4) and cancel out the relative yaw angle ψ, then we have

(xvp − xc) sin γ + (yvp − yc) cos γ = f tan θ (5)
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From Equation (3), we can obtain relative yaw of c-frame w.r.t. r-frame.

ψ = arctan

(
xvp−xc

f − tan θ sin γ
)

cos θ

cos γ
(6)

Here we assume the relative roll is zero,

γ̂ = 0 (7)

Then the relative pitch and yaw can be expressed as

θ̂ = arctan
yvp − yc

f
(8)

ψ̂ = arctan
(

xvp − xc

f
cos θ̂

)
(9)

Note that the relative attitude here is the camera intermediate frame c′ w.r.t. the road frame.

2.3. Straight Lane Determination and Vanishing Point Detection

Lane marking detection has been widely researched in the literature of autonomous driving and
is gradually being incorporated into vehicles navigation modules [40]. In this paper, the measurement
is derived from the image observations of parallel straight lane markings, so straight lane detection
should be performed before the VP extraction. The VP extraction is based on the commonly used
Hough transform which can extract dominant lines in the binary edge image.

The following will provide more details on the straight lane detection module (shown in Figure 3).
First, the region of interest (ROI) is selected from the original image, and the edges are detected using
the Canny Edge detector. The Hough transform is applied to the bottom ROI, which is near straight,
to get multiple straight line parameters (polar coordinates ρ − θ space), which are grouped with
into several lane marking groups using DBSCAN (Density-Based Spatial Clustering of Applications
with Noise) clustering. Only one lane marking in the bottom ROI is selected, and we obtain the
interested lane marking points by searching the binary image from bottom to top with small regions
along the main direction trend. Then the straight lane marking detection consists of two parts:
(1) curve-fitting using interested lane points to suggest initial decisions of straight or curved lane,
and (2) a delayed-decision mechanism based on the accumulated initial decisions among frames.

Figure 3. Straight Lane Detection Procedure.
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For the first part, the interested lane marking points’ coordinates are stored for a quadratic
polynomial curve fitting. The initial straight detection criterion is the comparison between estimated
coefficient and the threshold of the second-degree term. Erroneous points may be selected as interested
lane points, for example, the straight lane may be wrongly identified as a curved lane. For this reason,
we add second part, a simple “delayed” decision mechanism to obtain final results. It works as follows:
the initial decisions of both “straight” or “curve” lanes are accumulated among image frames. At least
Nc curve detections suggest a curved lane, and at least Ns straight lane detection after a long-curved
segment will determine a straight lane. The values of the thresholds (Nc and Ns) in the decision
mechanism are based on the velocity of the vehicle, heading change, and so on.

2.4. Measurement Uncertainty

Because the relative attitude measurement will be fused with INS solutions, it is essential to
determine the measurement uncertainty. The error sources include IMU-camera calibration error,
zero-roll assumption error, vanishing point detection error, and so on. We assume the accurate
inter-sensor calibration, so calibration error is not considered here.

Now we investigate the measurement uncertainty caused by the zero-roll assumption error.
As presented in the following subsection, relative yaw is the main aiding source, so we conduct a
sensitivity analysis on the relative yaw w.r.t. the zero-roll assumption error.

From Equations (3), (4) and (6), we derive the partial derivation of ψ w.r.t. γ

∂ψ

∂γ
= cos2 ψ(tan ψ tan γ− sin θ) (10)

Assuming the zero-roll assumption error is4γ, the induced relative yaw error is

4ψ =
∂ψ

∂γ
4γ = cos2 ψ(tan ψ tan γ− sin θ)4γ (11)

We set an example for better illustration of how large the induced error can be. The ranges of the
relative yaw and the relative pitch are set [−20◦, 20◦] and [−3◦, 3◦], respectively. The true relative roll
is set −3◦ (which means the relative roll error is −3◦). As shown in Figure 4, the maximum absolute
value of4ψ is less than 0.2◦, occurring at the maximum relative pitch and yaw values.

For the error of VP detection, it usually comes from the Hough transform in the line detection.
The empirical VP uncertainty is set as pixel level. The measurement errors can also come from the
faulty identifying curved lane marks as straight, which should be avoided as much as possible. Due to
the nature of inertial navigation, an incorrectly identified straight lane marking can lead to larger
errors in the navigation solution than a straight line not found. Therefore, our strategy is to give the
relatively strict thresholding as illustrated in the “Straight Lane Determination” procedure in Figure 3.
The influence of false detections will be presented in the discussion section.
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3. Sensor Fusion Process

This section describes the system model, measurement model and EKF used for the sensor
integration using vehicle motion constraints, odometer information and vanishing point observations.
In this paper, we make following assumptions of the system:

(1) The vehicle is moving on a certain road segment, where the road boundaries or lane markings
are parallel;

(2) The camera has been calibrated, i.e., the Interior Orientation Parameters (IOPs) are known.
The relative rotations between IMU frame and camera frame are also known.

3.1. Filter State

The navigation state is presented by the position (latitude L, longitude λ and height h), the velocity
(east velocity, north velocity, and up velocity), and the attitude (pitch, roll, and heading). Differential
equations of position Pn, velocity V n, and attitude matrix Cn

b are

Ṗn
=

 L̇
λ̇

ḣ

 =

 0 1
RM+h 0

1
(RN+h) cos L 0 0

0 0 1

V n (12)

V̇ n
= Cn

b f b − (2ωn
ie + ωn

en)× V n + gn (13)

Ċn
b = Cn

b [ω
b
ib×]− [(ωn

ie + ωn
en)×]Cn

b (14)

where Cn
b is the attitude matrix, RM and RN are meridian radius of curvature and prime vertical radius

respectively, f b is the specific force vector measured by the accelerometers, and ωb
ib is the angular

rate vector of the body frame w.r.t. the inertial frame, measured by the gyroscopes. ωn
ie is the earth

rotation angular rate vector w.r.t. the inertial frame, and ωn
en is the angular rate of the navigation

frame w.r.t. ECEF frame. gn = [0 0 − g]T is the gravity acceleration vector in navigation frame,
and g is the magnitude of local gravity acceleration. The notation [a×] is the asymmetric matrix of
a vector a. INS mechanization is the process to calculate the navigation states, propagated through
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Equations (12)–(14) by using numerical integration methods, given the initial navigation states and
IMU measurements [41,42].

The navigation states can be considered as the full states, and the associated errors are called
error states. For the EKF-based integrated navigation systems, error states are estimated and used to
correct the full states once the measurement update is accomplished [43]. For convenience, the filter
state refers to the error state, which is denoted as X. For the normal INS-based EKF, the state is a
15-dimensional vector, not including the scale factors of the IMU sensor:

X I =
[
δV nT φnT δpT bT

g bT
a

]T
(15)

where the navigation state error vectors δV n, φn, and δp are the velocity errors, attitude errors, and
position errors, respectively. INS error model describes the differential equations of navigation state
errors. bg and ba are the bias vectors of gyroscopes and accelerometers, each element of which is
modeled as a 1st order Gauss-Markov process.

Here we augment two groups of states, one for the motion constraints aiding and the other for
the VP aiding.

X =

[
XT

I δβx δβz Kod δrbT︸ ︷︷ ︸
motion constraint

φ0
U︸︷︷︸

VP-aiding

]T

(16)

where δβx and δβz are the misalignment errors between b-frame and m-frame about x and z axes. δrb

is the lever-arm error vector of the IMU measurement origin w.r.t. the origin of m-frame. Kod is the
scale factor error of the odometer. φ0

U is the cloned state of the third component of φn at the beginning
of the detection of a straight lane segment. Thus, the dimension of the system state is 22.

The reason we augment the error state of δβx, δβz, Kod and δrb is to achieve accuracy improvement
of the system. Specifically, these values may not be calibrated beforehand or may not be accurate.
Also, values can change in various driving scenarios due to the suspending system and different tyre
pressures. In this paper, δβx, δβz, Kod and δrb are modeled as random constants. φ0

U is also modeled as
a random constant because it will not propagate with time.

3.2. Motion Constraint Aiding

Here Non-holonomic Constraint (NHC) is applied as the velocity constraint along the body x
and z axes. It is based on the assumption that the land vehicle does not jump off the ground or slide
sideways under normal conditions. The forward velocity can be derived from the wheel odometer
if available. In this condition, the odometer measurement and pseudo-measurement of lateral and
vertical velocity in the vehicle motion frame are formed as

Ṽ m
veh =

 0
Ṽod
0

 =

1 0 0
0 1 + Kod 0
0 0 1

V m
veh + vV (17)

where V m
veh is the vehicle velocity in m-frame, Ṽ m

veh is the measurement of NHC and the velocity
indicator, and vV is the measurement noise vector.

Based on the equation of relative linear motion in [44], a basic relationship exists between IMU
body frame velocity and vehicle frame velocity:

V m
veh = Cm

b (V
b + [ωb

eb×]r
b) (18)

where V b is the IMU velocity in the b-frame, [ωb
eb×] is the cross product of the angular velocity of the

b-frame w.r.t. Earth-centered Earth-fixed (ECEF) frame, rb and Cm
b are the lever-arm vector and the

rotation matrix between the m-frame and the b-frame.
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Based on Equation (18), we can estimate V̂ m
veh from INS as follows,

V̂ m
veh = Ĉm

b (Ĉ
b
nV̂ n

+ [ω̂b
eb×]r̂

b) (19)

where V̂ n and Ĉb
n are the INS calculated velocity and attitude matrix. Ĉm

b and r̂b are estimated from
the calibration, otherwise through an initial guess (for example, an identity matrix and a zero vector,
respectively, for nearly aligned b and m frames).

The residual measurement is formed by subtracting the INS derived vehicle and velocity from
odometer and NHC pseudo-measurement.

ZNHC/OD = V̂ m
veh − Ṽm

veh (20)

Neglecting the second-order error items, the measurement equation can be written as [29]

ZNHC/OD = Ĉm
n δV n − Ĉm

n [V̂
n×]φn + Ĉm

b (ω̂
b
eb×)δrb +

 0 −Vy 0
0 0 −Vy

Vy 0 0


δβx

δβz

Kod

+ vV (21)

where Vy is the forward speed measured by the speed sensor or calculated from INS.
NHC aiding acts as a virtual sensor for land vehicle navigation, and can be applied in most driving

conditions. If there is no odometer in the system, we select the first and third rows of Equation (21) to
formulate the measurement.

3.3. Vanishing Point Aiding

In Section 2, we calculated the relative attitude from vanishing point coordinates. Now we will
describe how this information can be used to aid the INS. As usual, we construct the measurement to
associate with the state.

When the VP is detected for the first time (at time t0) on the straight lane segment, we can calculate
the attitude of this road segment (Ĉn

r ) w.r.t. the navigation frame:

Ĉn
r = Ĉn

b,0C̃b,0
r = Ĉn

b,0Cb
c(C̃

r
c,0)

T (22)

where Ĉn
b,0 is the INS attitude matrix at t0, Cb

c is the IMU-camera rotation matrix, C̃r
c,0 is the camera

attitude matrix w.r.t the road frame at time t0, which is calculated by

C̃r
c,0 = C̃r

c′ ,0Cc′
c = fDCM

(
[θ̂, γ̂, ψ̂]t0

)
· fDCM ([−90◦, 0, 0]) (23)

where fDCM(·) is the function to calculate the direct cosine matrix from the Euler angles. The value of
C̃r

c,0 is then stored for later use. As the vehicle moves on this road segment (at time t), we obtain the
relative attitude from the VP measurement.

C̃r
c,t = fDCM

(
[θ̂, γ̂, ψ̂]t

)
· fDCM ([−90◦, 0, 0]) (24)

Then we can derive the attitude matrix C̃n
bVP

from VP module at time t

C̃n
bVP

= Ĉn
r C̃r

c,tC
c
b (25)

The measurement matrix is constructed as:

ZM = Ĉn
b

(
C̃n

bVP

)T
(26)

where Ĉn
b is the current attitude matrix from INS.
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Then we derive the relationship between the measurement matrix and the state with small error
angle assumption.

ZM ≈ (I −φn×)Cn
b Cb

r (I + ϑr
VP,t×)(I − ϑr

VP,0×)Cr
b,0Cb,0

n (I + φn
0×) (27)

Neglecting the second-order error items,

ZM = I −
[
(φn −φn

0 + ϑr
VP,0 − ϑr

VP,t)×
]

(28)

where I is the 3-dimensional identity matrix, φn
0 is the attitude error at time t0, ϑr

VP,t and ϑr
VP,0 are the

relative attitude error from VP at current time instant t and time t0, respectively. The vector form of
the measurement is

ZV = −1
2

ZM(3, 2)− ZM(2, 3)
ZM(1, 3)− ZM(3, 1)
ZM(2, 1)− ZM(1, 2)

 = φn −φn
0 + ϑr

VP,0 − ϑr
VP,t (29)

Here we do not want to incorporate the erroneous pitch/roll information from VP, which may
deteriorate the pitch/roll estimation. Hence, the final measurement is the third component of ZV .

ZVP =
[

0 0 1
]

ZV = φU − φ0
U + vVP (30)

where vVP is the measurement noise.

3.4. State Augmentation Treatment

We treat the state φ0
U as an augmented state, which is the cloned state of φU at the very beginning

when a straight lane segment is detected. It is based on the idea of Stochastic Cloning Kalman
filter [35,36]. Stochastic Cloning deals with the relative state measurement which depends on the
current state as well as the previous state of the system. The core of Stochastic Cloning is considering
the interdependencies (cross-correlation terms) between the previous states and current states. At the
start time (t0) of the relative measurement, the relevant state is cloned and augmented in the state
vector, and the state covariance is also augmented with considering the cross-correlation between
the original state and cloned state. This essential step is often called “re-initialization”, because there
is a life-time for the cloned state. During the life-time of the cloned state, EKF will evolve the state
covariance matrix properly as long as the cloned state is modeled as a random constant.

Denote the first 21 states as normal states Xn, and last cloned state as Xc, such that the state in
Equation (16) is written as

X = [XT
n XT

c ]
T (31)

Once the start of a new straight line segment is detected, we re-initialize the cloned state
augmentation. The re-initialization is established as follows:

1. Clone the value of Xn(6) to Xc;
2. Set the state covariance as

Pk =

[
I21

J1×21

]
Pnn

[
I21

J1×21

]T

=

[
Pnn Pnc

PncT Pcc

]
(32)

where Pnn is the covariance matrix of normal state Xn, Pcc is the covariance matrix of the cloned state
Xc, and Pnc is the cross-correlation between normal state and cloned state. J1×21 is the Jacobian of Xc

to Xn, which is presented as
J1×21 =

[
O1×3

[
0 0 1

]
O1×15

]
(33)
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From the calculation, we can find that Pcc is the element of Pnn at index of (6, 6), which is the
variance of the attitude error about the up direction.

The flowchart of integrating vanishing point module and motion constraint module with INS is
illustrated in Figure 5. In the VP aiding module, when a set of new parallel straight lane markings is
first detected, the road attitude of this segment is calculated and stored, which is used for future vehicle
heading computation. Also, the state and covariance re-initiation is performed. Then subsequent VP
observations can be used to construct the measurement residual information for measurement update.
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Figure 5. Flowchart of vanishing point and motion constraint aided INS.

4. Results

The described algorithm in the preceding subsections has been evaluated using simulations and
real experiments. The results are given in this subsection. The simulation and experiments have shown
the validity of using VP of lane markings to mitigate the INS heading error in order to achieve better
positioning accuracy.

4.1. Simulation Results

We conducted Monte-Carlo simulations to evaluate the performance of VP aided land vehicle
navigation algorithm. Specifically, we compared two schemes: INS/NHC/Odometer integration with
and without VP aiding. A trajectory lasting 356 s was designed and generated. Several straight lines,
turns, accelerations and climbing maneuvers were conducted. As shown in Figure 6, the main trend is
along the north direction. The IMU, camera, odometer, GNSS parameters, lever-arm and boresight
error of IMU are listed in Table 1. The distance traveled is 1571 m during the GNSS outage, which
starts from 80 s till the end of the simulation. The valid VP flags over time are shown in Figure 7,
indicating when the VP is used as a measurement.

The estimation of IMU-vehicle frame boresight misalignment and scale factor of the odometer
are shown in Figure 8. It can be seen that the boresight alignment angles βx and βz and the scale
factor of the odometer Kod can be quickly estimated in the first tens of seconds. The reason is that
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the vehicle undergoes some accelerations and decelerations during this period, and these maneuvers
make the misalignment and scale factor observable [38]. The subsequent turns can also benefit their
observability, contributing to good estimation accuracy.

The east and north position error, heading error, and vertical gyro bias estimation error of two
schemes with 50 Monte Carlo trials and 3-sigma slope are illustrated in Figures 9 and 10. We can
see from the 3-sigma RMS error slope that the overall performance of INS/NHC/Odometer with
VP aiding method is better than the one without VP aiding. For the final cross-track error (east
position error in this trajectory), the VP-based method achieves 0.32% DT (1 σ) with 33% improvement
compared with no VP method (0.48% DT, 1 σ). The along track errors (north direction) are almost
the same, and relatively small, for both schemes, because the forward velocity information from the
odometer is utilized, which can benefit the forward positioning accuracy. As illustrated in Figure 10a,b,
VP-based method has better heading accuracy, and the heading error growth is slower when the VP
measurement is valid during GNSS outage. This is the primary reason for the improved performance
of lateral positioning. For the vertical gyroscope bias estimation, we can see that when VP-aiding is
used, nearly half of the bias has been estimated in the end, which outperforms the method without VP
aiding (Figure 10c,d).

Figure 6. Horizontal trajectory.

Figure 7. Valid vanishing point flags in the simulation.
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Figure 8. Boresight misalignment and scale factor of odometer (50 Monte Carlo trails estimation using
INS/NHC/OD/VP are in thin solid lines; reference values are in thick dash green lines).
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Table 1. Sensor Parameters

Sensors Items Values

Gyroscopes (200 Hz) Bias 36◦/h (1 σ)

ARW 0.6◦/
√

h(1 σ)

Accelerometers (200 Hz) Bias 1 mg (1 σ)

VRW 0.05 m/s/
√

h(1 σ)

Camera (10 Hz) IOPs Same with the experiment
VP accuracy 2 pixels (1 σ)

Speed indicator (odometer) Scale factor error 0.001 (1 σ)
Noise standard deviation 0.005 m/s (1 σ)

Relative Pose
IMU/Vehicle misalignment x-axis: 0.8◦, z-axis: 1◦ (1 σ)
IMU/Vehicle lever-arm 0.1 m in three directions (1 σ)
camera/vehicle boresight error 1◦ for pitch (1 σ)

GNSS (1 Hz, valid in first 80 s) Position accuracy 2 m (1 σ)
Velocity accuracy 0.5 m/s (1 σ)
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(a) East position error without VP
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(b) East position error using VP
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(c) North position error without VP
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(d) North position error using VP

Figure 9. Position errors (50 Monte Carlo trials in solid lines and 3-sigma slope in dashed lines).
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(a) Heading error without VP
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(b) Heading error using VP
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(c) Vertical gyro bias error without VP
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(d) Vertical gyro bias error using VP

Figure 10. Heading and vertical gyro errors (50 Monte Carlo trials in solid lines and 3-sigma slope in
dashed lines).

4.2. Experimental Results

The vanishing point and NHC aided fusion algorithm described in the preceding section were
tested using “2011_09_26_drive_0028“ and “2011_09_26_drive_0101“ dataset (shortened as Path-0028
and Path-0101, respectively) from the KITTI benchmark dataset [45]. The raw IMU data (100 Hz)
and rectified grayscale images (10Hz, global shutter) are used to verify the algorithm. The biases of
gyroscopes and accelerometers are 36◦/h and 1 mg, respectively. The reference is navigation results
from an IMU/GPS data with the L1/L2 RTK positioning accuracy of 0.01 m, pitch/roll accuracy of
0.03◦, and heading accuracy of 0.1◦ [46]. A rough value of the lever-arm between IMU and the vehicle
frame can be calculated based on the IMU’s mounted position. The boresight angles between IMU and
the vehicle frame is unknown, so the initial values are assumed to be zeros.

To illustrate the performance of the proposed algorithms, we simulate the GPS outages on
the trajectory. There is no wheel odometer or Doppler radar data in the dataset. For Path-0028,
we compared the performance of the following navigation schemes.

(1) Free INS: Only INS mechanization is performed to calculate the navigation states.
(2) INS/NHC: NHC is triggered every 1 s with the measurement noise being 0.1 m/s (1 σ).
(3) INS/NHC/VP: Vanishing point aiding module is added into the system. It is triggered by the

straight lane markings detection and valid vanishing point measurement.
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For Path-0101, we added an odometer output module derived from reference data to perform
the INS/NHC/OD integration. The performances are compared among free INS, INS/NHC/OD,
and INS/NHC/OD/VP.

In the VP detection, we select three Hough peaks in the image and get three intersections of
three lines to have better accuracy and robustness. The vanishing point coordinates are determined
by averaging the three intersections. A thresholding testing is conducted to detect the wrong lane
marking selection. A χ2 statistic for the measurement residuals is generated for blunder detection to
further improve the robustness of VP-based measurement update. The valid VP flags over time are
recorded and shown in Figure 11 for Path-0028 and Path-0101, indicating when the VP can be used as
a measurement.

(a) path-0028 (b) path-0101

Figure 11. Valid vanishing point flags in the experiments.

4.2.1. Results of experiment #1: Path-0028

The path-0028 is approximately 776m through dense trees and lasts 45 s (430 images), containing
several direction changes of the path, as shown on Figure 12a. Here the whole trajectory of the GPS
data was blocked except for the initial value of navigation states.

The position estimation results of the three navigation schemes are shown in Figure 12, and a
summary of the navigation errors is given in Table 2. We can see that NHC/INS integration improves
the positioning accuracy about 71% (horizontal error dropped to 4 m from 14 m). When the VP module
is added, a further 33% improvement over INS/NHC scheme is achieved and the positioning error
reduces to 0.32% DT. Pitch estimation gets improved when NHC is applied, while roll estimation does
not. The reason is that there is a relationship between vertical velocity and pitch angle inherently in
NHC, which makes the pitch angle observable. There is no improvement for pitch/roll estimation
when VP is added on INS/NHC, since only relative yaw information is utilized. As illustrated in
Figure 13, the heading error gets smaller when the VP-aiding works, which is the main reason for
increased positioning accuracy. The vertical gyroscope bias (not shown here) is estimated to a value
of 3◦/h when using VP. In this sense, we can see the complementary benefits to the INS when using
motion constraint and VP observation.

The estimation of relative pose (lever-arm and boresight misalignment) error between IMU frame
and the vehicle frame is presented in Figure 14. The value of misalignment about the pitch axis reaches
to about 0.4◦. If the misalignment has not been augmented into the states, the induced velocity error
in vertical direction will be 0.126 m/s under the speed of 18 m/s. A method to account for this is to
increase the measurement noise variance of NHC. However, the biased measurement error will still
degrade the system performance. State augmenting has the potential strength to achieve improved
results under the condition that the augmented states are observable.
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Table 2. Navigation Errors During GPS Outage (path-0028).

Free INS INS/NHC INS/NHC/VP

Mean Max RMS Mean Max RMS Mean Max RMS

East position (m) 0.918 4.337 1.731 −0.893 2.097 1.086 0.701 1.582 0.840
North position (m) −4.337 13.23 5.670 −1.327 3.313 1.616 −0.839 2.139 1.026

Height (m) 0.063 0.558 0.282 0.091 0.566 0.267 0.072 0.547 0.271
Pitch (◦) 0.096 0.216 0.108 0.012 0.103 0.038 0.009 0.103 0.038
Roll (◦) −0.032 0.114 0.046 −0.024 0.099 0.045 −0.020 0.095 0.043

Heading (◦) −0.241 0.409 0.254 −0.248 0.423 0.262 −0.189 0.423 0.206
East velocity (m/s) 0.089 0.221 0.124 −0.044 0.132 0.069 −0.031 0.122 0.059

North velocity (m/s) 0.315 0.824 0.372 −0.080 0.171 0.091 −0.055 0.132 0.072
Up velocity (m/s) 0.004 0.038 0.022 0.004 0.040 0.021 0.004 0.039 0.021

(a) Reference and calculated trajectory (b) Horizontal position error

Figure 12. Position estimation results (path-0028).

Figure 13. Attitude estimation error.
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Figure 14. IMU-Vehicle relative pose estimation.

4.2.2. Results of Experiment #2: Path-0101

The path-0101 lasts 91 s, and the total traveled distance is about 1236 m with a standstill at the
beginning. The simulated GNSS outage starts from 32 s until the end of trajectory. The positioning
results and navigation errors are shown in Figure 15 and in Table 3, respectively. In the scheme of
INS/NHC/OD, the horizontal position performance in the last epoch achieved 61% improvement
compared with free INS. With the help of VP module, the cross-track error (most in north direction)
is further improved over 50% to 0.153 m of RMS, and the heading RMS error is reduced to 0.167◦

from 0.21◦.
The lane markings in the whole trajectory are generally straight with several small curved

segments. In the experiments, we find that if these small curved lane markings are also considered as
straight and VP measurements are used, there will large variations in the heading and lateral position
estimation, while the mean value of their errors are small. That is to say, small change of the lane
marking direction will cause the heading estimation drift to the opposite direction, if the lane direction
variation has not been detected. Thus, careful and strict treatment should be conducted on the straight
lane detection module. We will discuss it in the following section.

Table 3. Navigation Errors During GPS Outage (path-0101).

Free INS INS/NHC INS/NHC/VP

Mean Max RMS Mean Max RMS Mean Max RMS

East position (m) 2.768 7.076 3.561 −1.970 4.336 2.355 −1.877 4.1224 2.241
North position (m) −4.337 13.23 5.670 −1.327 3.313 1.616 −0.839 2.139 1.026

Height (m) 0.063 0.558 0.282 0.091 0.566 0.267 0.072 0.547 0.271
Pitch (◦) 0.096 0.216 0.108 0.012 0.103 0.038 0.009 0.103 0.038
Roll (◦) −0.032 0.114 0.046 −0.024 0.099 0.045 −0.020 0.095 0.043

Heading (◦) −0.241 0.409 0.254 −0.248 0.423 0.262 −0.189 0.423 0.206
East velocity (m/s) 0.089 0.221 0.124 −0.044 0.132 0.069 −0.031 0.122 0.059

North velocity (m/s) 0.315 0.824 0.372 −0.080 0.171 0.091 −0.055 0.132 0.072
Up velocity (m/s) 0.004 0.038 0.022 0.004 0.040 0.021 0.004 0.039 0.021
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Figure 15. Reference and calculated trajectory on Google Earth (path-0101).

5. Discussion

5.1. Robustness of VP-Aiding Approach

There may still be the circumstances that the curvature of the lane mark is small, but wrongly
identified as the straight line. Assume the vehicle moves in a curved road, while the camera detects
the lane markings as straight. When the initial road frame r0 is obtained, it will be registered and act as
the reference frame when the camera is still observing the “same” segment. However, the true road
frame will change along the curve road as shown in Figure 16, from r1-frame to r3-frame, for instance.
Now we will describe its influence on the Kalman filter. In this situation, the attitude matrix from VP
module described in Equation (25) will be changed to the following form.

C̃n
bVP

= Ĉn
r0

C̃ri
c,tC

c
b (34)

where the subscript r0 is the initial road frame and the superscript ri (i = 1, 2, . . .) is the instant road
frame along the road. After the derivation, the measurement in Equation (30) can be written as

ZVP =
[

0 0 1
]

ZV = φU − φ0
U − αi + vVP (35)

where αi is the angle from r0-frame to ri-frame around the vertical axis. The term −αi + vVP will
be considered as the measurement noise. The sensitivity analysis turns out to be the analysis of
measurement error αi to the filter performance. The most desirable situation is that the road lane
markings are randomly curved, i.e., the direction changes slightly from one side to the other randomly,
such that αi is considered to be zero-mean white noise. The worst case is that the road is bending
to one direction, causing αi continuously growing, which will violate the Kalman filter assumption.
The heading error state will be erroneously estimated and the gyro bias in z-axis will also get influenced.
This kind of “soft” failure can be detected, for example by using the AIME (Autonomous Integrity
Monitored Extrapolation) method. The concept is to form the averaged normalized innovation from
last N measurements [4]. The AIME innovation test statistic for the filter at time k is [47]

s2
k = δzT

µ C−1
µ δzµ (36)

where

C−1
µ =

k

∑
i=k+1−N

C−1
i (37)

δzµ = Cµ

k

∑
i=k+1−N

C−1
i δzi (38)
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where δzi and Ci are filter innovation and corresponding covariance at time i. The test statistic has a
chi-square distribution with the degree of freedom being the measurement vector size. The chi-square
test is conducted for the fault detection. Here the test statistic s2

k has a chi-square distribution with one
degree of freedom, since the VP measurement has one dimension. Two parameters should be set for
the fault detection. One is the threshold TAIME to be compared with the test statistic s2

k . The other is
the sample size N.

If s2
k exceeds TAIME, then the soft-fault is reported. The threshold TAIME can be calculated or

looked up in a table when the significance level (α) or confidence level (1− α) is given. Here we choose
the normal significance level α = 0.05 (false alarm rate), so that TAIME = 3.84 with one degree of
freedom. The selection of TAIME is a trade-off between the detection sensitivity and false-alarm rate.

The selection of sample size N is a trade-off between detection sensitivity and response time.
Larger the sample size is, easier the detection will be. However, it is also demanded to have faster
response time for less contaminated state estimates. In our setup, N is selected as 50 for 10 Hz image
rate, which means a 5-s time window for the fault detection. As shown in Table 4, it can also detect
the very slowly drifting case (#4: radius = 8000 m) with 5 s time window. Larger drift can be detected
more quickly, if multiple test statistics with different sample sizes are computed.

Figure 16. Curved lane markings and instant road frames.

To verify the robustness of proposed algorithm, we simulate several trajectories, each of which
consists of a straight lane and a curved lane with a different radius, the worst case mentioned above.
The straight and curved parts both last 120 s, with the constant speed of 10 m/s.

The sensors’ specifications are listed in Table 1. The GNSS is available during first 80 s,
while motion constraints are used throughout the trajectory. To have a better idea of how the curviness
can affect the proposed method, we examine three VP-aiding schemes, namely,

(1) No VP: only motion constraints are used to aid the INS;
(2) VP: Proposed VP-aiding method is used without soft faults detection;
(3) VP & AIME: Proposed VP-aiding method is used and soft faults detection (AIME) is utilized.

Monte Carlo simulations are conducted 50 runs for each scheme and each trajectory.
Corresponding curved lane detection and heading accuracy results (1-sigma RMS errors at the
endpoint) are presented in Table 4. The heading and vertical gyro bias estimation error for the
trajectory #3 are illustrated in Figure 17 without AIME and in Figure 18 when AIME is used.
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For the straight line detection algorithm (the threshold of second-degree term a0 = 1× 10−4 in
Figure 3 in our case), we find that it can report the curved lane successfully when the curve radius is
less than 3150 m (for example the case radius R = 3000 m). When the radius is larger (cases #2 to #4
in Table 4), the straight line detection algorithm will wrongly detect the lane as straight. As a result,
VP-aiding demonstrates very large heading and vertical-gyro bias estimation errors. More curved the
lane is, larger errors will be. The heading error growth rate is approximately the turning rate in such
curved lane. For example, for R = 4584 m, the turning rate is 10 m/s/4584 m = 450◦/h, and heading
error growth rate is 14.18◦/120 s = 425.4◦/h.

When we add the AIME soft fault detection function (AIME detection sample size N is 50 (5 s
measurements)), the heading and vertical-gyro bias errors drop significantly compared with VP
without AIME. The heading error is slightly larger than the scheme without VP, because VP still
works in the 5 s detection period. The fault measurements have the direct influence to heading angle,
while the vertical-gyro bias estimation is less influenced by the short fault interval, so we can observe
that the vertical-gyro bias error is smaller than the scheme without VP in Table 4. As a result, the AIME
is suggested for the soft failure detection in proposed VP-aided INS.

(a) Heading error (b) gyro bias error of vertical-axis

Figure 17. Heading and vertical-axis gyro bias estimation errors for trajectory No.3 without AIME
(50 trials and 3-sigma error bound).

(a) Heading error (b) gyro bias error of vertical-axis

Figure 18. Heading and vertical-axis gyro bias estimation errors for trajectory No.3 when AIME is used
(50 trials and 3-sigma error bound).
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Table 4. Simulation Results of Different VP-aiding Schemes under Different Curve Radii (RMS Error).

Trajectory No. Curve Detected No VP With VP VP & AIME

Heading z-Gyro Bias Heading z-Gyro Bias Heading z-Gyro Bias

# 1: R = 3000 m Success 0.27◦ 4.35◦/h 0.25◦ 3.98◦/h – –
# 2: R = 4584 m Failed 0.27◦ 4.67◦/h 14.18◦ 128.99◦/h 0.34◦ 4.20◦/h
# 3: R = 6000 m Failed 0.32◦ 5.45◦/h 10.87◦ 97.92◦/h 0.32◦ 4.40◦/h
# 4: R = 8000 m Failed 0.28◦ 4.72◦/h 8.12◦ 73.54◦/h 0.31◦ 3.99◦/h

5.2. A Complement to Point-Based VO-Aiding

We emphasis that the proposed method is not necessarily superior to the conventional point-based
VO. It acts as a complementary method to aid the INS. One of the main advantages of VP-aiding method
is that it does not need to track or match the features among frames. Compared to point features, lane
markings are "higher level" features containing road direction information. Therefore, our method has
the potential to incorporate the digital map to obtain the absolute heading information for additional
aiding, which is somehow related with our previous work [29]. However, the disadvantages are also
obvious. VP-aiding can only work in the environment with parallel lines, and using the lane VPs
only provides one dimension attitude information. For the conventional VO aiding, there is no shape
requirement in the scene, and it can output 3-dimentional relative rotation and relative translation
(up to scale for monocular case).

The main challenge for conventional monocular VO is the data degeneracy in the pose estimation.
The essential (E) matrix is unstable when the feature points lie close to planes, for example, on the
ground plane, or when there is no motion or pure rotation of the camera. On the contrary, homography
(H) computation requires the feature points on a plane or pure rotation of the camera. To handle
this, it is required to detect the degenerate configurations and automatically switch between E and H,
which will lead to additional computation cost [16].

As VP-aiding and VO-aiding utilize different environmental features, they can work together to
improve accuracy and robustness of the vision-aided INS.

6. Conclusions

In this work, we have investigated an alternative approach to mitigate the navigation error growth
by using the vanishing point observations to aid the INS for land vehicle navigation applications.
The VP module, extracting information from parallel lane markings, is added to the modified
NHC/odometer aiding module to further constrain the navigation errors during GNSS outages.
The main contributions are the development of VP-aided INS measurement model and the motion
constraint aiding module considering the body-to-vehicle frame misalignment. The Monte Carlo
simulations and real experiments have shown the smaller heading and position drifting by fusing
VP measurements and motion constraint to the navigation system, because of the complementary
information provided by these two aiding modules for the INS.
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