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Abstract: Graphene transparent conductive electrodes are highly attractive for photodetector
(PD) applications due to their excellent electrical and optical properties. The emergence of
graphene/semiconductor hybrid heterostructures provides a platform useful for fabricating
high-performance optoelectronic devices, thereby overcoming the inherent limitations of graphene.
Here, we review the studies of PDs based on graphene/semiconductor hybrid heterostructures,
including device physics/design, performance, and process technologies for the optimization
of PDs. In the last section, existing technologies and future challenges for PD applications of
graphene/semiconductor hybrid heterostructures are discussed.
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1. Introduction

A photodetector (PD) is a device for detecting light, the underlying mechanism is conversion
of light to an electrical signal called a photocurrent (PC). PDs are used in a wide range of academic
and industrial fields, including image sensing, optical communications, environmental monitoring,
and chemical/biological sensing [1–3]. In PDs, usually made of inorganic or organic semiconducting
materials, incident photons are absorbed and subsequently electron-hole pairs are generated, thereby
producing PC. PDs are classified mainly as photodiodes, photoconductors, and phototransistors.
Despite increasing reliability of the fabrication processes, their high cost/complexity and the large
driving voltage of PDs have limited the diffusibility, compatibility, and versatility of PDs for broad
applications and new technologies. In order to solve these problems, many studies have focused
on how to develop simple processes for high-performance PDs, especially by using transparent
conductive electrodes (TCEs) such as metal nanowires (NWs) [4,5], conducting polymers [6],
carbon nanotubes [7,8], and graphene instead of metal or transparent conducting oxide electrodes.
Among them, graphene is recognized as one of the next-generation TCEs, as explained below.
Firstly, the extremely high carrier mobility of graphene enables ultrafast conversion of photons or
plasmons to electrical signal, which is highly desirable for high-speed photodetection [9,10]. Secondly,
the tunable electrical and optical properties of graphene, such as carrier densities, band alignments,
and polarities, via chemical or electrostatic doping offer great flexibility for optimizing the performance
of graphene-based optoelectronic devices [11,12].

A wide variety of optoelectronic devices based on graphene are still being studied, and some
of them have already reached a level of competitiveness comparable to conventional semiconductor
devices [13,14]. However, single-layer graphene has low light absorbance (only 2.3%) in the ultraviolet
(UV) to near infrared (NIR) region and short light-matter interaction length, unfavorable for light
harvesting applications [15,16]. In addition, the ultra-short lifetime of excitons in pure graphene
resulting from its gapless nature also leads to fast carrier recombination, which limits the efficient
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production of PC or photovoltage [17,18]. Graphene itself can act as an absorber in ultrafast and
ultra-broadband detectors, but the sensitivity of graphene-based detectors is relatively low, not suitable
for most practical applications.

The emergence of the graphene/SiC interface in 2009 [19] as the prototype of
graphene/semiconductor heterostructure has attracted much attention due to the expected synergistic
properties of the two materials. Afterwards, the rapid development of graphene transfer techniques
has led to a wide variety of unique designs for the functionality of the device geometry based on
graphene/semiconductor hybrid heterostructures. Unlike other detector structures, the best feature
of graphene/semiconductor junctions is the adjustable Schottky barrier height, useful not only for
understanding the interface transport mechanism, but also for adjusting the device functionalities.
Recent studies have shown that graphene/semiconductor interfaces/heterojunctions are efficient for
generation, separation, and transmission of photocarriers, thereby exhibiting new features in their
optoelectronic applications [20–23]. A broad review of recent developments in this area will not only
offer new insight into light–matter interactions, but it will also help inspire future nontraditional
next-generation detector designs.

Chemical vapor deposition (CVD)-grown graphene was first employed in graphene/Si
heterojunctions, resulting in 65% external quantum efficiency (EQE) [24], which served as the prototype
for the subsequent intensive studies on the graphene TCEs-based various kinds of semiconductor
hybrid heterojunctions for high-efficiency PDs [24–100]. Here, we review recent progress in the
development of graphene TCEs-based semiconductor hybrid heterojunction PDs. Despite the frequent
use of mechanical cleavage and chemical exfoliation for graphene, we focus on CVD-grown graphene
for PDs, most popular for practical device applications at the moment. First, we briefly explain key
figure-of-merit parameters that are used to characterize PDs. In the main section, we discuss the
issues related to physics/design, processing technologies, and performance of PDs fabricated by
using various kinds of materials. Finally, we summarize the technologies reported so far and the
significance/outlook for guiding continuing development of the graphene-TCEs-based PDs.

2. Operation Mechanisms

Graphene/semiconductor hybrid heterostructures can be formed by directly combining graphene
with one-, two-, and three-dimensional semiconductors through relatively simple manufacturing
processes. When graphene and a semiconductor material form a junction, charge transfer occurs
until the Fermi energy levels of the two materials coincide because their work functions mismatch.
Meanwhile, the free charge region inside the semiconductor near the interface is depleted by the
charge transfer, resulting in the formation of the built-in electric field. In case of graphene/n-type
semiconductor junction, the immobile positive charge formed by the depletion of electrons bends
the semiconductor band near the interface upward. More details are given in previous reports [101,
102]. In the equilibrium state where the Fermi energy levels are aligned, the discontinuity of the
allowed energy states of the two materials creates an energy barrier (ΦB) to prevent the electrons from
flowing from the semiconductor to the graphene. Depending on the energy of the radiation (E) = hν

(h = Planck’s constant and ν = photon frequency), PC is generated based on two main mechanisms.
(1) When ΦB < hν < semiconductor band gap (Eg), the electrons are excited from the graphene and
are injected into the semiconductor; (2) When hν > Eg, the electron-hole pairs are generated in the
depletion layer of the semiconductor. The PDs are operated based on the photovoltaic or photogating
effect depending on their device configurations.

2.1. Photovoltaic Effect

The PD can be operated in a photovoltaic mode (=zero bias). The heterostructures generally
exhibit rectifying behaviors, i.e., nonlinear current density-voltage (J-V) characteristics under dark.
A PD operating in this mode is named as a photodiode, whose linearity, detectivity, and sensitivity
are maximized due to the lowest dark current. In contrast, the responsivity (R) is usually low due
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to the lack of internal gain. The PD can be also operated in reverse bias (photoconductive mode),
where the built-in external electromagnetic field enhances the separation efficiency of the electron-hole
pairs, thereby reducing the response time due to the shortening of the passage time and the decrease
of the diode capacity. The photovoltaic mode is more suitable for precise photodetection with the
photoconductive mode being better suited for high-speed applications.

2.2. Photogating Effect

Photogating effects occur in the heterostructures-based phototransistors. The operating
mechanism of the phototransistors is as follows. Once electron-hole pairs are generated in
semiconductors, one type of carrier is transferred to the graphene, and the opposite-type carrier
is trapped in the semiconductor. The trapped charges act as a local gate, thereby effectively modulating
the Fermi level of graphene through capacitive coupling. This induces more carriers and consequently
modulates the electrical conductance. In addition, the transferred free carriers circulate many times
in the graphene channel within their lifetime, which contributes to higher photoconduction gain.
The gain is expressed as gain = lifetime/transit, where transit is the transit time of the photogenerated
carriers through the graphene channel. Shorter transit time and longer lifetime should be obtained
to achieve higher gain. Nevertheless, the lifetime of the photocarrier is determined by the response
time, which is directly related to the carrier recombination process. Thus, a high gain will extend the
response time. A phototransistor can show much higher R than a photodiode, but the response speed
of the former is slower than that of the latter. Due to the effective gate field of the trapped carriers,
the photogate effect generally appears as a horizontal shift of the source-drain current-gate voltage
(ISD-Vg) curve of the graphene transistor upon illumination. In addition, the direction of the curve
shift represents the polarity of the captured carriers, and the photogate effect can induce positive or
negative PC by Vg.

3. Figure of Merits for Characterizing Photodetectors

3.1. Responsivity (R)

R is defined as the ratio of PC to incident light power, which indicates how efficiently a PD
responds to an optical signal, as expressed by the equation R = Iph/Llight, in a unit of A/W, where Iph is
the PC and Llight is the incident-light power. R is proportional to EQE of a PD, meaning the conversion
rate from photons to electrons/holes. Therefore, EQE is related to R based on the following equation:

R = EQE × λq/hc (1)

where λ is the incident-light wavelength, q is the absolute value of electron charge, h is the Planck
constant, and c is the speed of light.

3.2. Detectivity (D*)

D* is the weakest level of light which can be detected by the device, and is determined by R and
noise of a PD. D* is given by D* = (A·∆f)1/2 × R/in. Where A is the effective area of a PD, ∆f is the
electrical bandwidth, and in is the noise current. The performance of D* is limited by three kinds of
noise such as dark current (DC), Johnson noise, and thermal fluctuation noise [103]. By assuming the
shot noise as the dominant contribution, D* is expressed by the formula: D* = R/(2qJd)1/2 where Jd is
the DC density.

3.3. Noise Equivalent Power (NEP)

Noise should be kept as low as possible because it determines minimum detectable signal.
There are several kinds of noises such as thermal noise, shot noise, and flicker noise, composing the
total noise. In this context, NEP is an associated figure of merit, and is defined as the optical power that
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yields a single signal-to-noise ratio for a given bandwidth, in a unit of W·Hz−1/2. NEP also represents
minimum detectable power and is calculated by the following equation.

NEP = in/R = (A·∆f )1/2/D* (2)

3.4. Linear Dynamic Range (LDR)

LDR describes an illumination intensity range within which the current response of a PD scales
linearly with the light intensity. LDR is given by the equation: LDR = 20 log(Jph*/Jd) where Jph* is the
PC density measured at a light intensity of 1 mW·cm−2. For practical applications, it is desirable to
have a large LDR for a PD capable of detecting both weak and strong light.

3.5. Response Speed

The response of a PD to an optical signal is characterized by the rise/fall times, defined as
the times at 10/90% of the maximum PC, respectively, which are strongly related to the charge
transport/collection and the bandwidth of the photoresponse.

In the following sections, the PD characteristics are detailed for various kinds of graphene
TCE/semiconductor heterostructures, whose major figure of merit parameters are summarized
in Table 1.

4. Graphene/Silicon

4.1. Doping of Graphene

The built-in electric potential at the graphene/Si interface is determined by the difference between
the work functions of graphene and Si when no bias is applied. Pristine graphene forms a low Schottky
barrier with Si due to the relatively-small work function (4.5 eV), and the pristine graphene/Si junction
exhibits a large series resistance due to the relatively large sheet resistance of pristine graphene.
These issues should be overcome to enhance the performance of the graphene/Si PDs. Chemical
doping is a very efficient approach for increasing the work function and conductivity of graphene,
resulting in the increase of the Schottky barrier and the reduction of the series resistance. The electrons
and holes are then less recombined, thereby improving the performance of the PDs.

4.2. Graphene/Silicon Wafer

In the last decade, graphene/Si heterostructures have been studied for optical detection based on
a powerful photovoltaic effect. In these structures, light absorption takes place in Si whilst graphene
acts as an electrode for efficient carrier transport and collection. Early studies have shown that
the graphene/Si Schottky junctions, introduced in 2013 (Figure 1a) [24], were very sensitive to the
illumination in broadband wavelengths [24–26], thereby showing R and NEP greater than 107 V/W
and 1 pW·Hz−1/2, respectively, in optical voltage mode, as shown in Figure 1b,c. The Fermi level of
graphene was controlled by 1-pyrenecarboxylic acid doping, allowing smooth transport/collection
of high-density holes photogenerated in Si under illumination, resulting in 0.435A/W R, 65% EQE,
and 7.69 × 109 cm·Hz1/2·W−1 Jones D*.

Table 1. Figure-of-merit parameters of semiconductor heterostructure photodetectors with graphene
TCEs, reported until recently.

Device Structure PC/DC R (A·W−1)/
Gain/EQE (%) D* (cm·Hz1/2·W−1) LDR (dB) Recovery

Time (ms) Ref.

TPA-doped tri-layer graphene/Si 104 EQE: 65
@ 550−800 nm 2.1 × 108 - 3 [24]

Graphene/Si - R: 0.28
@ 1550 nm - - - [25]
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Table 1. Cont.

Device Structure PC/DC R (A·W−1)/
Gain/EQE (%) D* (cm·Hz1/2·W−1) LDR (dB) Recovery

Time (ms) Ref.

Al2O3/graphene/Si 106 EQE: 86.8
@ 200 nm 1.6 × 1013 127 5 × 10−6 [28]

Pt NPs/graphene/Si - EQE: 80
@ 790 nm 7.5 × 1010 - 7.8 × 10−7 [29]

MoO3/graphene/Si - EQE: 80
@ 550 nm 5.4 × 1012 - - [30]

Graphene/thin SiO2/Si 107 EQE: 60
@ 650 nm 4.2 × 1012 90 7.5 × 10−1 [31]

Graphene/SiO2/Si - R: 3
@ 545 nm 3.5 × 1012 - - [32]

Graphene nanowalls/Si - EQE: 79.6
@ 810 nm 5.9 × 1013 105 4 × 10−2 [34]

Graphene/porous Si - EQE: 60
@ 500 nm - - 3 × 10−3 [35]

AuNPs/graphene/CH3-SiNW 106 R: 1.5
@ 950 nm 2.5 × 1014 - 9.6 × 10−2 [36]

AuCl3-doped
graphene/SQDs:SiO2

101 EQE: 72
@ 600 nm 8.9 × 108 73 1.6 × 10−2 [38]

TFSA-doped graphene/SQDs:SiO2 - EQE: 84
@ 600 nm 1.1 × 1010 92 7 × 10−3 [39]

SQDs/graphene/Si - EQE: 80
@ 500 nm 7.4 × 109 - 2.5 × 10−5 [40]

B-doped SQDs/graphene/Si - EQE: 1012

@ 532 nm ~1013 - 9 × 103 [41]

Graphene/GaN 105 R: 0.001
@ 350 nm - - - [42]

Graphene/GaN NWs - R: 0.25
@357 nm - - - [43]

MLG/GaAs 104 R: 0.173
@ 850 nm 1.8 × 1011 - 1.2 × 10−1 [44]

Bilayer-graphene/Al2O3/GaAs 105 R: 0.005
@ 850 nm 2.9 × 1011 - 4.8 × 10−2 [46]

ZnO QDs/graphene/SiO2/Si - Gain: 107

@ 445 nm
- - 103 [49]

Graphene/ZnO Nanorod - R : 3 ×105

@ 365 nm
- - 6.6 × 104 [50]

Fewlayer-graphene/ZnO NWs - R: 6.7 × 104

@ 365 nm 1011 - 1.2 × 104 [54]

ZnOQDs/graphene/SAM/SiO2/Si 107 R: 3 × 109

@ 335 nm 5.1 × 1013 - 2.3 × 103 [55]

ZnO QDs
core/Zn(Ac)shell/graphene/SiO2/Si 1.7 R: 109

@ 330 nm 1 × 1014 - 8.5 × 104 [56]

Graphene/ZnO NR arrays 102 R: 113
@ 365 nm - - 3.6 [57]

Graphene/h-BN/ZnO - R: 1350
@ 365 nm - - 5.2 × 103 [58]

Graphene/ZnO/Si - EQE: 80
@ 390 nm 3.9 × 1013 - 5.4 × 10−1 [61]

Graphene/ZnO 12.1 R: 3 × 104

@ 365 nm 4.3 × 1014 - 2.2 × 104 [62]

Graphene.ZnO NWs/graphene - R: 22.7
@ 370 nm - - 4.7 × 102 [64]

ZrO quantum dots/graphene R: 22
@ 266 nm 104 [68]

MLG/Ga2O3
R: 39.3

@ 254 nm 5.9 × 1013 2.2 × 105 [69]

Graphene/Ga2O3/graphene 103 R: 10
@ 254 nm 9.6 × 102 [70]
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Table 1. Cont.

Device Structure PC/DC R (A·W−1)/
Gain/EQE (%) D* (cm·Hz1/2·W−1) LDR (dB) Recovery

Time (ms) Ref.

P3HT/graphene/PZT - G: 103

@ 325 nm
- - 1.6 × 103 [71]

Pentacene/graphene/cPVP/Al2O3/AuNPs- R: 700
@ 520 nm 1013 - - [72]

C8-BTBT/graphene/SiO2/Si - R: 105

@ 355 nm
- - 8.3 × 102 [73]

MAPbI3/graphene/SiO2/Si - R: 180
@ 520 nm 109 - 5.4 × 102 [74]

MAPbI3/graphene/Al2O3/PVP - R: 115
@ 515 nm 3 × 1012 - 5.3 × 103 [75]

MAPbI3/graphene/AuNPs/SiO2/Si - R: 103

@ 532 nm
- - 1.7 × 104 [76]

PMMA/MAPbI3/ODTS/SiO2/Si - R: 107

@ 532 nm 2 × 1015 9 × 102 [77]

MAPbI3−xClx/P3HT/SiO2/Si - R: 109

@ 598 nm
- - 104 [78]

MAPbI3 NWs/graphene/SiO2/Si - R: 106

@ 633 nm
- - 7.5 × 104 [79]

CsPbBr3−xIx/graphene/SiO2/Si - R: 109

@ 405 nm 2 × 1016 - 3.6 × 103 [80]

Graphite QDs/graphene/SiO2/Si - R: 107

@ 325 nm
- - - [81]

graphene QDs/graphene - G: 103

@ 325 nm
- - - [82]

Graphene QD/graphene/PZT - R: 109

@ 325 nm
- - 1.5 × 104 [83]

Graphene/graphene
QDs/graphene 103 R: 0.5

@ 800 nm 1011 95 2 × 10−3 [84]

Graphene/Si NPs-graphene
QDs/graphene 3 R: 0.31

@ 532 nm - - - [86]

Graphene/SWNT/SiO2/Si - R: 102

@ 650 nm
- - 10−1 [87]

Graphene/CNT/SiO2/Si 102 R: 0.21
@ 980 nm 4.87 × 1010 60 7.8 × 10−1 [88]

InSe/graphene/SiO2/Si - R: 105

@ 633 nm
- - 101 [89]

Graphene/WS2/graphene 54 R: 3.5
@ 532 nm 1011 - - [90]

Graphene/MoTe2/graphene 105 R: 87
@ 473 nm 1012 - 2.3 × 101 [91]

Graphene/MoS2/SiO2/Si - R: 107
@ 532 nm - - - [92]

Graphene/WS2/graphene - EQE: 30
@ 633 nm - - - [93]

Graphene/MoS2/graphene - EQE: 27
@ 514 nm - - 5 × 10−2 [94]

Graphene/WS2/graphene - EQE: 7.3
@ 759 nm - - 5.5 × 10−9 [95]

Graphene/MoS2/SiO2/Si - R: 1.26
@ 1440 nm 4.2 × 1010 - - [96]

MoS2/h-BN/Graphene 6.6 R: 0.3
@ 532 nm - - 1.1 × 104 [97]

WS2/graphene/SiO2/Si 104 R: 350
@ 532 nm 1013 - 3 × 10−2 [99]

WSe2/graphene/MoS2 - R: 104/10−1

@ 400/2400 nm
- - 5 × 10−2/3

× 10−2 [100]
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Figure 1. (a) Schematic diagram and band structure of a typical monolayer graphene/Si heterojunction 
device. Application of a reverse bias raises Ef (graphene: Gr) and opens up a large number of accessible 
states that can be occupied by photoexcited holes injected from Si under illumination; (b) Variation 
of the voltage responsivity as a function of incident power, obtained under the open-circuit condition. 
At the lowest powers, the voltage responsivity exceeds 107 V/W; (c) Spectral dependence of the NEP 
and specific detectivity (D*) in the photocurrent mode. Reproduced with permission for Figure 1a–c 
from 2013 Nano Letter [24]; (d) Incident photon conversion efficiency (IPCE) spectra of graphene-Si 
PDs with and without fractal Pt NPs. The inset shows schematic diagram of a Si-graphene PD with 

Figure 1. (a) Schematic diagram and band structure of a typical monolayer graphene/Si heterojunction
device. Application of a reverse bias raises Ef (graphene: Gr) and opens up a large number of accessible
states that can be occupied by photoexcited holes injected from Si under illumination; (b) Variation of
the voltage responsivity as a function of incident power, obtained under the open-circuit condition.
At the lowest powers, the voltage responsivity exceeds 107 V/W; (c) Spectral dependence of the NEP
and specific detectivity (D*) in the photocurrent mode. Reproduced with permission for Figure 1a–c
from 2013 Nano Letter [24]; (d) Incident photon conversion efficiency (IPCE) spectra of graphene-Si PDs
with and without fractal Pt NPs. The inset shows schematic diagram of a Si-graphene PD with fractal
Pt NPs; (e) Ultraviolet photoelectron spectroscopy data of graphene-Si PDs with and without fractal Pt
NPs, showing the effect of physical doping on the Fermi level; (f) Transient photovoltage characteristics
of graphene-Si PDs with and without fractal Pt NPs under 532 nm pulse laser. Reproduced with
permission for Figure 1d–f from 2017 Advanced Optical Materials [29].

The gapless and semi-metallic properties of graphene are very promising for its application for
broadband photodetection from microwave to UV wavelengths. Graphene/Si Schottky PDs are also
very efficient in fast carrier separation due to the presence of the built-in electric field without suffering
from a sharp reduction in the lifetime of photocarriers under 1550 nm illumination [25], thereby
showing an R of 0.28 A/W, corresponding to an internal quantum efficiency of 10%, much higher than
a typical Schottky junction (~1%). Usually, the R in the UV region is at least 1–2 times lower than
that in the visible-near infrared (NIR) region due to the weak light absorption and relatively short
carrier lifetime of the graphene. TiO2 [27] and Al2O3 anti-reflection layers [28] have been employed to
enhance the photoresponse in the UV region. Recently, graphene/Si Schottky structure with an Al2O3

antireflective layer has been fabricated for UV photodetection, resulting in 0.2 A/W R, 5 ns response
time, 1.6 × 1013 cm·Hz1/2/W D* in wavelength range from 200 to 400 nm, comparable to those of
state-of-the-art Si, GaN, and SiC Schottky PDs.

Unlike traditional transparent electrodes, such as indium tin oxide or ultrathin metals, unique
absorption properties of graphene in the UV range contribute to increasing the lifetime of hot
electrons, thereby leading to large PC. Recently, a variety of graphene/Si-based structures have
been proposed to improve the device performance. A new approach of integrating graphene/Si PD
with two-dimensional (2D) Pt nanoparticles (NPs) has proven to enhance the R and response time
of the PD at the same time, as shown in Figure 1d [29]. Furthermore, the work function of graphene
is increased by the physical doping with Pt NPs, thereby heightening the barrier of the Schottky
junction, resulting in faster response and higher sensitivity, as shown in Figure 1e,f. Molybdenum
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oxide (MoO3) has been widely used for improving the performance of the PD in organic electronics
due to its high work function [104,105] and dramatic surface-transfer hole-doping effect for a variety
of 2D materials such as graphene and MoS2. The functionalization of the MoO3 layer on graphene led
to a significant performance enhancement of the graphene/Si PDs [30], based on the surface-transfer
doping effect, thereby reducing the series resistance of the graphene/Si Schottky barrier, resulting
in 5.4 × 1012 cm·Hz1/2/W D*. However, the interface between graphene and Si normally contains
relatively-high density of surface states, resulting in large leakage current, which can limit the overall
D* of the graphene/Si PD [24,25]. Recently, the DC of the graphene/Si junction was reduced by two
orders at 0 bias by employing a thin interface thin oxide layer [31]. The graphene/thin SiO2/Si PD
showed 0.0078 pW·Hz−1/2 NEP at room temperature, resulting in D* up to 4.08 × 1013 cm·Hz1/2/W.

In addition, graphene/Si Schottky diodes were fabricated in parallel with graphene/SiO2/Si capacitors
for high-performance optical detection [32], thereby showing R/D* of 3 A·W−1/3.5 × 1012 cm·Hz1/2·W−1

in the visible range. Here, the PC exceeded the forward current because the photogenerated minority
carriers accumulated in the Si/SiO2 interface diffused to the graphene/Si junction. According to
another approach, the PC in graphene-based hybrid photodiodes was not only very efficiently
generated in the graphene/Si Schottky barrier region but also in the adjacent graphene/SiO2/Si
region due to the reverse bias voltage [33]. The PC in the graphene/SiO2/Si region rose sharply by
about one order of magnitude at voltages exceeding a certain threshold bias, regardless of the incident
laser power. In Si under SiO2, the inversion layer not only provided a low resistance path for minority
charge transport, but also acted as a passivation layer on the surface states of SiO2 to effectively collect
the charge carriers, resulting in improved PC. These results provide guidelines for establishing the
fundamental mechanism of PC generation in graphene-based hybrid optoelectronic devices and for
designing hybrid photodetectors based on combinations of two- and three-dimensional materials.
The PD was also fabricated by directly growing graphene nanowalls on a Si substrate instead of using
graphene layers CVD-grown via a metal catalyst [27]. Resulting D* was 5.88 × 1013 cm·Hz1/2/W,
higher than ever reported in the planar graphene/Si based PDs, thanks to the ultra-low current noise
of 3.18 fA·Hz1/2, which can be attributed to the excellent junction quality of 0.69 eV barrier height and
1.18 ideal factor. Other principal PD parameters were 107 PC/DC (Ilight/Idark) ratio, 40 µs response time,
8.5 kHz cutoff frequency, and 0.52 A/W R.

4.3. Graphene/One- and Two-Dimensional Silicon

Two-dimensional Si nanostructures such as porous Si (PSi) and Si NWs have high ratio of surface
to volume/light absorption, very useful for their application in graphene-based PDs. Figure 2a shows
a schematic diagram of a graphene/PSi Schottky diode. Graphene/PSi Schottky diodes have been
successfully fabricated to show excellent PD performance including 60% EQE and 3µs response time,
relatively higher than the graphene/Si wafer PDs in the near-UV wavelength range, as shown in
Figure 2c [35]. The performance of the graphene/PSi PDs can be further improved by optimizing the
device structure and the pore depth of PSi. Alternatively, the NIR PDs fabricated based on a structure
of graphene/Si NW array decorated with Au NPs [36] showed high performance of 106 Ilight/Idark ratio
and high response speed (rise/fall time of 73/96 µs), better than those of pure graphene/Si NWs
heterojunction [106], as shown in Figure 2c,d. These high PD parameters possibly resulted from the
enhanced optical absorption due to the strong optical trapping effect of Si NW arrays and the surface
plasmon coupling by Au NPs.
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Figure 2. (a) Schematic diagram of graphene/PSi/n-Si PD with silver top and bottom electrodes under
light illumination; (b) Cross-sectional transmission electron microscopy (TEM) image of graphene/PSi
junction; (c) Quantum efficiencies of as-Si, 1, 3, and 5 s PDs (Here, 1, 3, and 5 s mean the deposition
time (td) of Ag nanoparticles. That is, the pore on the surface of the PSi increases as the time increases,
Reproduced with permission for Figure 2a–c from 2014 ACS Applied Materials & Interfaces [35];
(d) Current-voltage curves of the Au NPs-graphene/SiNWs array PD. The inset shows the device
structure; (e) Photoresponse of three representative devices under 850 nm light illumination at V = 0;
(f) A single normalized cycle measured at 2200 Hz for estimating both rise time (tr) and fall time (tf).
Reproduced with permission for Figure 2d–f from 2014 Scientific Reports [36].

4.4. Graphene/Zero-Dimensional Silicon

Si is widely used as a broadband PD, but is limited in its use for wider applications due to the
inherent indirect bandgap nature. Especially, graphene/Si-based PD exhibits fast photoresponse
in the UV and NIR regions, but not in the visible region. One way to overcome this drawback
is to form Si quantum dots (SQDs) [107,108]. SQDs within a SiO2 matrix allow for large light
absorption in the visible range based on the quantum confinement effect [37,38]. Recently, AuCl3-doped
graphene/SQDs: SiO2 multilayers (MLs)/Si PDs were successfully fabricated to show 0.35 A/W R and
109 cm·Hz1/2/W D* near the wavelength of 600 nm, indicating considerable performance improvement
in the visible region due to the strong photoresponse of SQDs [37,38]. The novel DC/PC behaviors
are dominated by the tunneling of the charge carriers, depending on the SQD size and AuCl3 doping
concentration (nD). However, the performance of the PD is limited by the surface of the AuCl3-doped
graphene on which light is first irradiated due to large reduction in transmittance by the Au NPs
formed by the doping. Recently, long-term stabilities have been remarkably enhanced by employing
bis(trifluoromethanesulfonyl)-amide (TFSA) with low resistance and high transparency as a dopant
for graphene, as shown in Figure 3a [39]. Figure 3b,c shows spectral R and D* of the TFSA-doped
graphene/SQD: SiO2 MLs/Si PDs with 0.413 A/W and 1010 Hz1/2/W at the peak wavelength of
630 nm under low voltage (−2 V), respectively, significantly better than the AuCl3-doped graphene
PDs, indicating minimization of the optical loss by the use of TFSA. On the other hand, graphene/Si
Schottky junction PDs with SQDs on top of the graphene, as show in Figure 3d [40], showed excellent
performances of 6.7 pW·Hz−1/2 NEP, 7.4 × 109 cm·Hz1/2/W D*, and response time ≤ 25 ns, possibly
resulting from significant reduction of the optical reflections, contributed by the SQDs, as shown
in Figure 3e,f. In another approach, high-sensitivity NIR detection of SQDs/graphene/Si hybrid
phototransistors was demonstrated based on the plasmonic effect of SQDs doped with boron [41].
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The local surface plasmon resonance of B-doped SQDs improves the NIR absorption of graphene,
resulting in excellent light output characteristics in the UV to NIR region.
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Figure 3. (a) Schematic of a typical TFSA-doped graphene/SQDs: SiO2 MLs/n-type Si wafer PD with
Au and InGa as the top and bottom electrodes, respectively; (b) Spectral responsivity and quantum
efficiency at a bias of −2 V; (c) Spectral detectivity under various bias voltages. Here, the doping
concentration is 20 mM. Reproduced with permission for Figure 3a–c from 2017 Journal of Materials
Chemistry C [39]; (d) Schematic diagram of a typical Si-QDs/graphene/Si PD; (e) Spectral dependence
of the NEP and corresponding specific detectivity of the graphene/Si and Si-QDs/graphene/Si PDs.
The minimum NEP and the maximum D* of the Si-QDs/graphene/Si PD are 6.7 pW·Hz−1/2 and
7.4 × 109 Jones, respectively, at λ ≈ 877 nm; (f) Time-dependent PC of both the graphene/Si and
Si-QDs/graphene/Si PDs under the bias voltages of 0, −2, −4, and −8 V. Reproduced with permission
for Figure 3d–f from 2016 Advanced Materials [40].

5. Graphene/III-V Semiconductors

5.1.Graphene/GaN

GaN is a wide direct bandgap semiconductor with excellent optical/electrical properties and
high chemical stabilities at high temperature, and has been employed in various PD applications.
Graphene/GaN heterostructures are useful for light detection in the UV/visible region based on
Schottky diode junction [42,43]. Graphene-TCE based GaN Schottky diode for UV detectors [42] has
shown excellent performance of high Ilight/Idark ratio (105) under UV illumination. In another approach,
UV PDs were successfully fabricated by transferring large-area graphene TCE on vertically-standing
GaN NW array as a light absorbing media, as shown in Figure 4a [43]. Figure 4b shows extremely-high
R of 25 A/W at 357 nm. These results represent a potential application of the graphene/GaN junctions
in various optoelectronic devices operating in the UV region.
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Figure 4. (a) Scanning electron microscopy (SEM) image of a graphene film on GaN NWs;
(b) Responsivity for various incident power densities. The inset shows the photocurrent spectrum of the
PD. Reproduced with permission for Figure 4a,b from 2013 Applied Physics Letters [43]; (c) Schematic
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the n-GaAs nanocones array after etching; (e) Single normalized cycle at 50 Hz to find both rise time
(τr) and fall time (τf). Reproduced with permission for Figure 4c–e from 2014 Advanced Functional
Materials [44].

5.1. Graphene/GaAs

GaAs has long been considered as an ideal candidate material for NIR PD applications due
to its striking electrical/optical properties such as high carrier mobility, direct bandgap of ~1.4 eV,
and large optical absorption coefficient. As shown in Figure 4c,d, graphene TCE was applied for
GaAs nanocone array-based NIR light detection [44], resulting in reproducible PD performance of
104 Ilight/Idark ratio, 1.73 mA/W R, and 1011 cm·Hz1/2/W under 850 nm illumination. The PD also
showed fast response speed with rise/fall times of 72/122 µs, as shown in Figure 4e. These results are
believed to originate from the GaAs nanocone arrays, which can efficiently trap incident NIR light,
consistent with previous report [45]. Recently, AlOx thin layer was employed for optimizing R of the
graphene/GaAs NIR PD. Here, the AlOx serves not only as a surface protective layer for suppressing
the carrier recombination, but also as a barrier for reducing the current leakage [46], thereby leading to
significant increase/decrease in PC/DC, respectively. With the use of the AlOx layer, the R and specific
D* increased by 4 times to 5 mA/W and 2.8 × 1011 cm·Hz1/2/W, respectively, whilst rise/fall times
sharply decreased to 320/380 ns.

6. Graphene/Metal Oxides

6.1. Graphene/ZnO

ZnO has received considerable attention over the past two decades due to its unique properties
such as direct bandgap of 3.2 eV, large exciton binding energy of ~60 meV, high transmittance (>80%)
in the wavelength range of 400–800 nm, and wide-variable conductivity in the metallic to insulating
range [109,110]. To date, graphene/ZnO heterostructures have been extensively studied for PD
application. Recently, a seedless solution process has been developed for controllable growth of
crystalline ZnO micro-/nano-wire arrays on graphene for UV PDs [47–52], showing high response of
1.62 A/W, better than the sensors made of epitaxial-ZnO [111] or ZnO-nanoparticles [112]. In another
approach, novel ZnO-QDs-based heterostructures were combined with graphene layers for PDs to
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show excellent visible-blind UV photoresponse [48], resulting from the reduction of the DC, caused
by the formation of the potential barriers between adjacent ZnO QDs and between graphene and
ZnO QDs. It has also been reported that phototransistors composed of ZnO nanostructure as light
harvesting medium and graphene as conducting channel [49–56]. Figure 5a,b shows the effective
charge transfer between ZnO QDs and graphene [49]. Under UV irradiation, the holes separated
from the electrons under photoexcitation are captured by the surface states to discharge the absorbed
oxygen ions on the surface of the ZnO QDs. The unpaired electrons with a relatively long lifetime
move to the graphene layer and then transport in the graphene channel, leading to modulation of the
transport characteristics of graphene. When UV light is turned off, the surrounding oxygen molecules
are re-adsorbed on the QD surface, thereby trapping electrons and lowering the Fermi energy level,
resulting in the recovery of the transport characteristics of the graphene. This photogeneration effect
could lead to high photoconductive gain of 107 through further device optimization, as shown in
Figure 5c.
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Figure 5. (a) Schematics of the graphene device coated with ZnO QDs; (b) The mechanism of the
oxygen-assisted charge transfer process. (i) With irradiation of photon energy larger than the bandgap
of the QDs, electron-hole pairs are generated; (ii) The holes are trapped at the surface states, leaving
behind the unpaired electrons. The trapped holes will discharge the oxygen ions on the surface, and the
oxygen molecules are desorbed; (iii) The electrons will transfer from the QDs to the graphene layer;
(iv) With laser turned off, no more electron-hole pairs are generated. The oxygen molecules will
re-adsorb on QDs and capture the remaining electrons to form oxygen ions on the surface; (c) Gain as
a function of excitation intensity. Reproduced with permission for Figure 5a–c from 2013 Small [49];
(d) Schematic diagram of the MLG/β-Ga2O3 PD; (e) Current-voltage characteristics of the device under
dark and 254 nm-light irradiation. The inset shows the current-voltage curves on a logarithmic scale (f)
Responsivity and detectivity of the multi-layer graphene-Ga2O3 heterojunction PD as a function of
different bias voltages. Reproduced with permission for Figure 5d–f from 2016 Advanced Materials [69].

In recent years, ZnO NW or nanorod (NR) arrays have been combined with various graphene
sheets on rigid or flexible substrates to form UV phototransistors [50–54]. ZnO NR array was grown
on the channel of the graphene field-effect transistor (FET) by the hydrothermal method to successfully
fabricate the UV PDs [50], showing high sensitivity/wavelength selectivity, but still quite a slow
response/recovery under UV illumination at low power. In other studies, UV phototransistors
were fabricated with organic self-assembled monolayer (SAM), sandwiched between inorganic
ZnO-QDs-decorated graphene channel and conventional SiO2/Si substrate [55]. Surprisingly,
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the mobility of the chemically-deposited graphene channel is higher on the SAM than on the SiO2,
thereby greatly reducing the time of the electron transfer in the channel. As a result, the photogenerated
electrons transferred from the QD to the graphene are recycled several times before recombination,
resulting in the increase of the photoconductivity gain. The phototransistors exhibited ~108 A/W R
corresponding to ~3 × 109 gain, ~103 UV/visible rejection ratio, and ~5.1 × 1013 cm·Hz1/2/W specific
D*. More recently, phototransistors consisting of graphene FET and ZnO QDs have been fabricated
based on surface active process [56]. Resulting D* increased up to 7.5 × 1014 Jones due to the efficient
transfer of charge carriers from ZnO QDs to graphene. These results suggest how important the van
der Waals interface is for the efficient optoelectronic processes in heterostructure PDs. On the other
hand, in graphene/ZnO heterostructures photodiodes [57–67], the photogenerated electron/hole pairs
were found to be separated by the built-in potential even at zero bias, thereby potentially reducing
the DC, resulting in the increase of specific D* [61,64,66]. The response of the photodiode was shown
to be much faster than that of the phototransistor-type PD by further increasing the built-in electric
field under moderate reverse bias [57,59,60,62,63]. In addition, large internal current gain could also
be obtained due to the impact ionization of the photocarriers with sufficient energy [16].

A Schottky-junction-type UV PD fabricated by depositing graphene layer on ZnO NR array was
shown to be highly sensitive to UV illumination with excellent operational stability and reproducibility,
resulting in 113 A/W R and 385 gains at −1 V [57]. The response speed was remarkably fast (rise/fall
time: 0.7/3.6 ms) due to the strong light trapping effect by high-crystallinity ZnO NR array. The PD
could also monitor the pulse light at high frequencies of 2250 Hz. The PD performance was further
improved by employing charge tunneling/blocking interlayer [58] and by modulating the Schottky
barrier through back gating [59] or external deformation [60,62]. The R was also enhanced up to
1350 A/W at ~5 V by inserting a hexagonal boron nitride (h-BN) layer into the graphene/ZnO Schottky
junction [58]. The h-BN interface layer reduced the DC by suppressing the electron transfer from
graphene to ZnO, and suppressed the recombination of carriers, resulting in the increase of the PC,
by holding photogenerated electrons in ZnO.

Recently, the effect of strain modulation on PD performance was studied for a flexible
graphene/ZnO nanostructure [60,65]. The R, measured under an external strain of 5 to 30%, showed
maximum 17 µA/W and 3.8 µA/W at a strain of 30% for UV and visible light, respectively [65].
The compressive strain causes ZnO to generate a negative piezoelectric potential, and the charge begins
to accumulate near the conduction band, lowering the conduction band energy. When the conduction
band energy is lowered, the Schottky barrier is increased and the sensitivity of the graphene/ZnO
PD is improved due to an increase in the width of the depletion region, which is advantageous for
the photogenerated electron-hole pair separation. The theoretical simulation results also showed that
the piezo-potential was mainly distributed at the end of the ZnO nanostructure, advantageous for the
effective modulation of the graphene/ZnO Schottky junction.

6.2. Graphenene/Other Metal Oxides

Like graphene/ZnO hybrid structures, other semiconductor metal oxides including ZrO2 [68],
Ga2O3 [69,70] have also been integrated with graphene to form heterostructures for PD applications.
ZrO2 is a promising material for deep-UV detection applications. Recently, in the ZrO2 QDs-graphene
heterostructure, R was shown to be as high as 22 A/W at a deep-UV wavelength of 254 nm [68]. In the
PD, the holes photo-excited in graphene can be circulated through the external circuit several times
under bias voltage before recombining with the electrons photo-excited/collected in the ZrO2 layer
due to the high mobility of graphene. This explains why R is so extremely high

As another approach, a deep UV photodiode was fabricated based on multilayer graphene/Ga2O3

junctions, as shown in Figure 5d [69], exhibiting a significant current increase at forward bias
voltage during deep-UV illumination (254 nm), as shown in Figure 5e. Figure 5f shows the R and
D* of 39.3 A/W and 5.92 × 1013 Jones, respectively, comparable to, or even better than, Ga2O3

nanostructure-based PDs. The PD parameters were reproducible and stable even by repeated
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measurements under UV illumination, showed maxima at ~220 nm, but were almost blinded to
light at wavelengths longer than 280 nm. Most recently, graphene/Ga2O3/graphene PD showed
apparent rectifying characteristics and excellent solar-blind UV photoresponse [70] with fast rise/fall
times of 0.96/0.81 s and Ilight/Idark ratio up to 82.88 under 254 nm illumination.

7. Graphene/Organic Semiconductors

Organic semiconductors including small molecules and polymers are very attractive in practical
view due to their simple solution production processes at low temperatures [113], low cost, and light
weight [114,115]. Graphene/P3HT hybrid heterostructures showed an R about 10 times larger on
a piezoelectric substrate than on a SiO2 substrate [71]. The improved light response was attributed to
the vertical field of the polarization of the piezoelectric substrate, which facilitates the spatial separation
of the photo-generated electrons and holes, thereby enhancing the hole doping of graphene.

Figure 6a,b shows a typical graphene/pentacene heterostructure that serves as a multifunctional
PD with nonvolatile memory (NVM) function for storing optical signals [72]. The PD exhibited
excellent photoresponse at 400–800 nm with maximum R and specific D* being 700 A/W and
of 1013 Jones, respectively, as shown in Figure 6c. Large hysteresis was observed in the transfer
characteristics, in which the Dirac point voltage was shifted toward the positive gate voltage under
dark and illumination. This hysteresis behavior was understood by the trapping/detrapping of the
charge carriers in the Au NPs, resulting from the tunneling through the dielectric layer. The PD also
showed excellent retention characteristics with retention times exceeding 104 s and PC being invariant
for more than 200 cycles (Figure 6e,f). It was also found that as the optical power increased, the PC
increased stepwise, indicating multiple NVM.Micromachines 2018, 9, x FOR PEER REVIEW  14 of 27 
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Figure 6. (a) Schematic diagram of the device structure comprising a graphene PD with a pentacene
light absorption layer and an Au NP charge trapping layer. In the device, the ITO acts as a gate electrode
and Au as source/drain electrode; (b) Photographic image of the graphene PD fabricated on a PEN
substrate; (c) Photoresponsivity and photodetectivity vs. illumination power; (d) Two-dimensional
spatial profile of |E2| of the hybrid PD with or without Au NPs; (e) Retention time and (f) cycling
tests of the graphene PD with a memory functionality under various illumination powers. Reproduced
with permission for Figure 6a–f from 2015 Nano Letters [72].
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For a phototransistor-type PD structure, monolayer organic C8-BTBT crystals were prepared
on graphene by van der Waals epitaxy [73], and was shown to exhibit the R larger than 104 A/W.
By employing multilayer C8-BTBT, the R was further enhanced to 4.76 × 105 A/W. This outstanding
photoresponse was attributed to the ultrahigh photoconductive gain and the efficient interfacial
charge transfer efficiency due to the high quality of C8-BTBT layer and graphene/C8-BTBT interface.
The response speed was ~25 ms for the monolayer PD, but increased to ~830 ms for the multilayer PD,
dominated by interlayer hopping of trapped carriers within C8-BTBT crystals.

8. Graphene/Perovskites

Perovskites have recently received strong attention as next-generation PD materials because of
their high adsorption coefficient, tunable bandgap, small exciton binding energy, long carrier diffusion
length, ambipolar charge transport, and high carrier mobility [116–121]. The perovskite material
has a specific crystal structure as ABX3 formula. The larger A cations occupy cuboctahedral sites
shared with twelve X anions, while smaller B cations stabilize at octahedral sites shared with six X
anions. Organic-inorganic halide perovskite materials are commonly used in solar energy applications.
The graphene/perovskite hybrid structure is very useful for taking advantage of the synergy effect
based on the unique properties of graphene and perovskite materials. Figure 7 shows a typical
early-stage phototransistor composed of graphene/CH3NH3PbI3 (MAPbI3) hybrid, exhibiting the
R of several hundreds of A/W and relatively-rapid response time shorter than 1 s in the UV-visible
range [74,75]. Especially, Figure 7d shows on-off switching behaviors of the perovskite-graphene
PD with rise and fall times of 87 and 540 ms, respectively. These results show the robustness and
reproducibility of the device.
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Figure 7. (a) Schematic diagram of the perovskite-graphene hybrid PD; (b) Optical microscopy image
of the CH3NH3PbI3-graphene PD; (c) Photoresponsivity and EQE vs. illumination power. The inset
shows the photodetectivity (D*) vs. illumination power; (d) On-off switching characteristics of the PD
under dark and light illumination. By the pulsed laser illumination (left top), the temporal response
of the photocurrent is shown (left bottom). Reproduced with permission for Figure 7a−d from 2014
Advanced Materials [74].

It is currently difficult to compare the performances of the graphene/MAPbI3 hybrid
phototransistors with those of graphene-based other semiconductor hybrid PDs operated based on
similar mechanisms [21,22,122], but they are several times higher than those of pure graphene-based
PDs [123]. The enhanced photoresponse performance can be attributed to the transfer of electrons
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from the graphene to the proximate perovskite layer to fill the empty states in the valence band
of the perovskite layer, resulting in the reduction of the recombination of the photocarriers.
The electron trapping process was demonstrated by the dramatic quenching of the PL intensity
in the graphene/perovskite system. In another approach, the graphene/MAPbI3 stack was integrated
with Au NPs having a plasmon resonance peak at ~530 nm, as shown in Figure 8, to fabricate the
hybrid phototransistors showing higher R and faster response speed [76]. The higher R was attributed
to the light-harvesting effect enhanced by the near-field of the perovskite, induced by the plasmonic
coupling of Au NPs. Furthermore, the time for these carriers to diffuse into graphene is shorter
than that for carriers generated far from the perovskite–graphene interface, thus leading to the faster
operation in the PD by the plasmonic effect.
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Figure 8. (a) Schematic of the CH3NH3PbI3-graphene-Au NP hybrid system device architecture (b)
UV-Vis absorbance spectrum of Au-NPs on a 3-aminopropyltriethoxysilane-coated glass; (c) Schematic
of generation, diffusion, and transfer of photo-induced carriers in the perovskite layer with and
without the influence of gold NPs; (d) Response time study on a single representative light/dark cycle.
Reproduced with permission for Figure 8a–d from 2016 Nanoscale [76].

As an advanced step, the sequential vapor deposition method has been developed to grow
ultra-flat MAPbI3 films on graphene, thereby forming a compact heterostructure for efficient light
harvesting and exciton separation, as shown in Figure 9 [77]. This PD showed 1.73 × 107 A/W R
and 2 × 1015 Jones D*, several times larger than those of PD containing a MAPbI3 film prepared
by conventional spin-coating method. Very recently, a thin layer of P3HT has been inserted
between MAPbI3−xClx perovskite and graphene as a hole transport layer for high-performance
phototransistors [78]. In this study, the carrier diffusion length of the MAPbI3−xClx perovskite was
shown to be larger than that of the MAPbI3 perovskite, resulting in more efficient transfer of the
photo-generated holes to the graphene side. In addition, the separation of the photo-generated
electrons and holes was more effective due to the presence of the P3HT layer, thereby reducing
the recombination of the optical carriers, resulting in the transport of high-density electrons to the
perovskite layer. The gain of this PD was close to 1010, at least one order of magnitude higher than
those of other PDs without the P3HT layer [21,22,122].
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Figure 9. (a) Schematic illustration of the graphene–perovskite hybrid phototransistor. The inset shows
the top-view optical microscopy image of the device; (b) Band diagrams of graphene and perovskite
obtained from ultraviolet photoelectron spectroscopy spectra. The schematic diagram of the band
bending at graphene/perovskite interfaces is illustrated below; (c) Responsivity and (d) detectivity of
the hybrid phototransistor as functions of light intensity at three selected drain voltages. Reproduced
with permission for Figure 9a–d from 2017 Scientific Reports [77].

Highly-crystalline perovskite nanostructures are advantageous for the photo-detection application
because the recombination rate of the photo-generated carriers is much smaller in the bulk than
in the thin film. Recently, the graphene/MAPbI3 NWs hybrid phototransistor was fabricated to
show an R as large as 106 A/W [79]. As another approach, the hybridization of graphene with
CsPbBr3−xIx nanocrystals (NCs) was done to fabricate phototransistors showing high R [80]. This PD
also exhibited ultrahigh specific D* (2.4 × 1016 Jones) thanks to the extremely-high carrier mobility
of the graphene, very promising for the application of the perovskite NCs in next-generation
high-performance optoelectronics.

9. Graphene/Carbon Nanomaterials

Low-dimensional carbon materials such as fullerenes, carbon QDs, carbon nanotubes (CNTs),
and graphene have attracted much interest over the past several decades due to their unique
structural and physical properties [124–126]. Recently, various types of carbon nanomaterials have
been integrated into hybrid structures including graphene/carbon nanomaterials, showing physical
properties much better than those of the individual components [124,126].

9.1. Graphene/Zero-Dimensional Carbon

Zero-dimensional carbon materials including graphite QDs, graphene QDs, and C60 were
deposited on the graphene by spin coating or thermal evaporation methods to form hybrid structures
for high-performance phototransistor applications [81–85]. In this structure, for example, graphite
QDs act as light-harvesting material whilst the graphene layer is a conducting pathway for high-speed
carriers, and carbon conductive paste was used as an electrode to complete the PD, as shown in
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Figure 10a [81]. While light is irradiated, the holes move to the graphene, shown in Figure 10b.
In contrast, the electrons in the QDs act as an effective local gate to modulate the conductance of
the graphene through capacitive coupling. The 300 nm SiO2 on Si was employed to investigate
the properties of the intrinsic charge transfer between graphene and graphite QDs in the graphene
FET, as shown in Figure 10a. Figure 10c shows the IDS-Vg characteristics of the graphene FET before
and after the deposition of the graphite QDs. The Dirac points are 1.6 V and 48 V before and after
doping the graphite QDs, respectively. In other words, a higher Vg is required to access the Dirac
point of the graphite QDs/graphene FET because the net negative charge of the graphite QDs
can attract more light-induced free holes in the graphene film. Such carrier transfer is known to
enable more effective charge separation in graphite QDs and consequently suppress the electron-hole
recombination [122,127]. Figure 10d shows PC as a function of drain-source voltage (VDS) under
different optical powers, showing a linear dependence on bias. Here, the photoconduction gain
is enhanced by the recycling of holes through the graphene channel within the lifetime of the
trapped electrons.
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Figure 10. (a) Schematic of all carbon-based PD; (b) Under light illumination, the hole can transfer 
from graphite quantum dots to graphene sheets. The photo-generated electrons are trapped in 
Figure 10. (a) Schematic of all carbon-based PD; (b) Under light illumination, the hole can transfer
from graphite quantum dots to graphene sheets. The photo-generated electrons are trapped in graphite
quantum dots; (c) Transfer characteristics of graphene transistors with and without the addition of
graphite QDs on the graphene sheet; (d) Photocurrent of all carbon-based photodetectors for different
optical powers as functions of drain-source voltage (VDS), showing a linear dependence on bias. The PC
for the pure graphene device without graphite quantum dots is also shown here, which indicates
a negligible effect. Reproduced with permission for Figure 10a–d from 2013 Scientific Reports [81].

Graphene was hybridized with graphene QDs on a rippled poly(dimethylsiloxane) substrate to
fabricate stretchable PD [82], whose PC strongly depended on the external strain. The PC gradually
decreased as the strain increased due to the reduction of light absorption resulting from multiple
reflections of the photons in the ripple. The PD showed 2.8 × 103 photoconductive gain in the UV range.
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Graphene/graphene QDs/graphene PD was also fabricated to form hybrid-type PD that operates over
a wide spectral range from UV to NIR [84,85]. This PD showed ~0.5 A/W R, 1011 cm·Hz1/2/W D*,
~95 dB linear dynamic range (LDR), and 100 µs response time. Recently, PDs composed of silica NPs
and graphene QDs as donors and acceptors were well operated based on Förster resonance energy
transfer (FRET) mechanism, as shown in Figure 11a–c [86]. Under reverse bias at 532 nm, the R of
the FRET system was more than three times greater than that of the PD containing only graphene
QDs, as shown in Figure 11d. This performance improvement was interpreted by the network-like
current paths formed by the graphene QDs on the silica NPs and easy transfer of the carriers generated
from the silica NPs into the graphene QD due to their close attachment. The PD further exhibited
asymmetric and nonlinear current–voltage characteristics, which was attributed to the tunneling of the
charge carriers through the available density of graphene QDs between the metallic graphene layers.
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Figure 11. (a) Band structures of silica NPs (SNP) and graphene QD (GQD). Possible
absorption/emission/transfer processes are described. Here, S0 and S1 indicate ground and lowest
excited states, respectively. SNPs are highly absorptive, especially in the range of the emission spectrum
of GQDs; (b) A schematic of a typical Förster resonance energy transfer (FRET) system composed
of SNPs and GQDs as donors and acceptors, respectively. Photo-excited electron-hole pairs occupy
mostly surface states of SNPs, thereby making it easy for the energy to be transferred to adjacent
GQDs. The distance at which the FRET efficiency drops to 50% is defined as the Forster radius (R0),
typically in the range of 1–10 nm. The use of one-atom-thick GQDs for acceptors can minimize R0

and maximize the contacting area of the acceptors and the donors; (c) Schematic of the PD structure
composed of the FRET system sandwiched between single-layer graphene sheets; (d) Responsivities of
SNPs, GQDs, and SNPs/GQDs hybrid as functions of bias voltage, excited at 532 nm. Reproduced
with permission for Figure 11a–d from 2016 Scientific Reports [86].

9.2. Graphene/One-Dimensional Carbon

CNTs can be metallic or semiconducting depending on their respective chiral vector [128]. Metallic
CNTs are particularly useful as transparent conductors, whilst semiconducting CNTs are promising
candidates as channel materials in FETs for electronic applications. CNTs are also very useful for
new optoelectronic devices due to their inherent excellent optical properties such as direct bandgap
nature, strong light absorption/emission, and high radiation/fluorescence lifetimes. Recently, there
has been a report of a broadband phototransistor made of a graphene film on the ultrathin layer
of single-wall CNTs [87]. In this device, the electrons move to the graphene channel and the holes
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are trapped in the CNTs. The trapped holes effectively modulate the channel conductance, leading
to a continuous negative shift of the Dirac point voltage with increasing the illumination intensity.
In addition, the built-in potential can be effectively tuned by adjusting the graphene Fermi level,
thereby controlling PC and R under different back-gate voltages. The R was shown to be ~120 A/W
and ~40 A/W at 650 and 1550 nm, respectively.

More recently, there has been a report on novel broadband graphene/CNT thin film
photodiode [88], where the optical carriers near the interface are separated by built-in potential
under illumination. The electrons and holes are then collected by each electrode, resulting in
a PC in the external circuit. The Ilight/Idark ratio, R, and specific D* of the PD are 240, 0.21 A/W,
and 4.87 × 1010 Jones, respectively, much larger than other CNTs-based PDs. The PD also exhibited
a fast response rate of 68/78 µs rise/fall times and 5400 Hz 3dB bandwidth.

10. Graphene/2D Layered Semiconductors

The van der Waals interaction between neighboring layers without dangling bonds in 2D materials
allows for their integration with other materials, including graphene, to form a variety of planar
or vertical functional heterostructures with fundamentally different properties. As a prototype
geometry, 2D layered semiconductors such as InSe [89], WS2, [90], MoTe2 [91], and graphene were
used as the light absorbing medium and both-side electrodes, respectively, to fabricate planar
metal-semiconductor-metal-type phototransistors. Compared to metal electrodes, the graphene
electrode has the advantage of tuning the Schottky barrier between the graphene and the 2D
semiconductors by controlling the Fermi level of graphene. Therefore, the photoresponse characteristics
can be adjusted by electrostatic gating or optical input control. An ideal ohmic contact between the
graphene and the 2D layered semiconductor can be achieved by tuning the Schottky barrier.

Recently, the planar graphene/n-InSe/graphene van der Waals heterostructures showed high
R of 4 × 103 A·W−1 and fast rise/fall times of 1/10 ms [89]. The electrons move from graphene
to n-InSe due to the higher work function of graphene, resulting in an accumulation layer at the
graphene/n-InSe interface in equilibrium for a wide range of applied gate voltages. This study provides
an innovative device architecture that enables access to fast electronic speed and high broadband
spectral response. In another study, abnormal dependence of the R on incident light power was
observed in graphene/WS2/graphene heterostructure device [90]. In this device, the R increases as
the optical power increases at Vg = 0 V (off state), considered to be due to an efficient photo-induced
charge transfer process in which electrons reside in the graphene while the holes are located at WS2.
On the other hand, at Vg = 30 V (on state), the R decreases as the optical power increases. When on
state in the phototransistor, the photo-gating effect can increase the Fermi level and reduce the contact
resistance. As a result, the influence of illumination on the Fermi level of graphene is reduced, thereby
causing different power dependence of R.

In device structures dominated by photogating effects, 2D semiconductor serves as a medium
for harvesting light, whereas graphene serves as a conduction channel for carrier transport and
circulation. Recently, mechanically exfoliated graphene-MoS2 hybrid heterostructure phototransistors
exhibited a high R of 5 × 108 and 1 × 1010 A·W−1 at 130 K and room temperature, respectively [22].
Here, the photogenerated holes under illumination are trapped in MoS2 by local conditions, and the
electrons are transferred to the graphene with the help of the gate electric field, resulting in high R.
On the other hand, the trapped holes act as local gates, thereby causing a significant photogating effect
on graphene through capacitive coupling. Eventually, the response time is slow because of the long life
of the trapped holes. In another approach, a similar phototransistor was fabricated using CVD-induced
graphene and MoS2 [92]. This hybrid heterostructure device showed a relatively low response of
~1.2 × 107 A·W−1 due to the low carrier mobility of CVD-graphene and very slow response times of
several-hundred seconds, but seemed to be better suited for practical applications by easy preparation
in large areas.
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Recently, graphene/transition metal dichalcogenide (TMD) heterostructures have also exhibited
significant functionalities in the photodiode type. Carrier generation, separation, and transport
processes were shown to be adjusted by easily modulating the Fermi level of graphene and the height
of the Schottky barrier in graphene/TMD/graphene vertically-stacked heterostructures. For instance,
graphene/WS2/graphene stack heterostructures were useful for efficient light–matter interactions,
leading to improved photon absorption and electron-hole generation [93]. Scanning Photomicroscopy
PC mapping showed that the PC generation occurred primarily in regions of heterogeneous structures
with asymmetric potentials. In addition, R increases from ~10−2 to ~10−1 A·W−1 by integrating
plasmonic metal nanostructures and heterostructures to improve the light absorption. It is worth
noting that these results can be used for designing the dual-gate-type graphene/WS2/graphene
heterostructure to control the polarity and amplitude of the PC by adjusting the direction and intensity
of the built-in electric field [94]. A typical heterostructure of graphene/WSe2/graphene employing
2.2 nm trilayer WSe2, as shown in Figure 12a [95], exhibits fast response (5.5 ps) and high internal
quantum efficiency (70%), as shown in Figure 12b,c. Further improvement of 7.3% in the external
quantum efficiency was achieved by using optical waveguides and cavity or plasmon nanostructures
in the TMD layer to improve light-matter interactions [129–131].
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Figure 12. (a) Schematic illustration of the experimental time-resolved photocurrent set-up and
cross-sectional view of the graphene/WSe2/graphene heterostructure; (b) Photocurrent as a function
of time delay between two pulses; (c) IQE as a function of potential drop across theWSe2 layer ∆V
for devices with channel length = 2.2, 7.4, and 28 nm. Reproduced with permission for Figure 12a–c
from 2016 Nature Nanotechnology [95]; (d) Top: optical image of a device fabricated based on van
der Waals-assembled MoS2-graphene-WSe2. Bottom: schematic side view of the heterostructure;
(e) Responsivity (R) and specific detectivity (D*) of a typical device for wavelengths ranging from
400 to 2400 nm. The device was tested in ambient air at VDS = 1 V and Vg = 0 V. Reproduced with
permission for Figure 12d,e from 2016 Nano Letters [100].

As another approach, relatively-low-R photodiodes were fabricated by integrating graphene
with TMD stacked semiconductors such as MoS2, MoTe2, and WSe2 [96–99]. Here, the gate tunable
mismatch of graphene and semiconductor Fermi levels allows tunable Schottky junctions, thereby
showing adjustable rectification behaviors and photovoltaic response characteristics. Interestingly,
the detection range of the devices can be extended enough to overcome band edge absorption limits of
the semiconductor, useful for the internal photoemission in graphene. Especially, the graphene/MoS2

Schottky junction photodiode exhibited unique optical response over a wide spectral range from 400
to 1500 nm [96]. Maximum R values of 0.52 A·W−1 at 590 nm/1.26 A·W−1 at 1440 nm were obtained
when operating in the energy gap excitation mode/when internal light emission dominated the
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PC generation in graphene, respectively. On the other hand, metal-insulator-semiconductor-like
photodiodes with an insulator layer between graphene and MoS2 showed improved current
rectification and higher current flow compared to 2D-based metal-semiconductor diodes and p-n
junctions based on TMDs [97]. This was attributed to the formation of a multi-layered semiconductor,
resulting in the carrier tunneling in the forward bias and the depressed carrier tunneling in the reverse
bias. Figure 12d shows the vertical tuning of the WSe2/graphene/MoS2 gate tunable rectification
behavior and the broadband response ranging from 400 to 2400 nm. [100]. The device exhibits high R
and D* of up to 105 A·W−1 and 1015 Jones in the visible range, respectively, but they sharply decrease
to 10−1 A·W−1 and 109 Jones at 2400 nm IR wavelength, as shown in Figure 12e. This unique response
to different wavelengths can be understood as follows. In the visible light region where the incident
photon energy is greater than the bandgap of the TMD, the incident light can be absorbed by all three
materials (WSe2, graphene, and MoS2), resulting in a large number of photocarriers, contributing to
significant increase of PC. However, when the IR light having energy smaller than the band gap of
WSe2 is irradiated, only graphene can absorb light, resulting in very low PC. These results suggest that
the van der Waals junctions based on 2D materials are very promising in future critical optoelectronic
device applications.

11. Conclusions and Outlook

Graphene/semiconductor hybrid heterostructures showed their tremendous potential for PD
applications. Particular attention was paid to several important issues related to device design, device
performance, and processing technology to enhance figure-of-merit parameters of the PDs. By the
optimization through various approaches, the PDs typically showed some new features that could open
up the way to many conventional and advanced applications. The work function, surface resistance,
and optical transparency of the graphene TCEs were successfully tuned by adjusting the number
of layers, chemical doping, photo-induced doping, or electric field gating doping, which strongly
affected the performance of the PDs. To meet the requirements for the practical applications of the PDs,
some of the properties of the sensing materials should be optimized. Because the heterogeneity of the
nanostructured materials can greatly affect the uniformity of the device performance, more precise
control of their morphology, crystallinity, and orientation is highly needed. Some emerging methods
such as plasmonic technology and integration of optical waveguides/micro cavities are also useful for
improving the photo-material interactions, resulting in the increase of the light absorption. In particular,
special efforts should be made for high response speed of the PDs by increasing the charge carrier
mobility of the sensing materials or introducing a vertical electric field for the transfer and separation
of photo-carriers. Broadband, spectrally selective, or flexible PDs should also be developed for specific
applications. In addition to the improvements of the figure-of-merit parameters, long-term reliability
and durability, environmentally-friendly and cost-effective machining technologies, large-scale
production and consolidation are also important issues for various applications of the PDs in upcoming
new situations.
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